UNW_RESUME(3) Programming Library UNW_RESUME(3)

NAME
unw_resume -- resume execution in a particular stack frame

SYNOPSIS
#include <libunwind.h>

int unw_resume(unw_cursor_t *cp);

DESCRIPTION
The unw_resume() routine resumes execution at the stack frame identified by cp. The behavior of this
routine differs dightly for local and remote unwinding.

For local unwinding, unw_resume() restores the machine state and then directly resumes execution in
the target stack frame. Thus unw_resume() does not return in this case. Restoring the machine state
normally involves restoring the *‘ preserved’’ (callee-saved) registers. However, if execution in any of
the stack frames younger (more deeply nested) than the one identified by cp wasinterrupted by a
signal, then unw_resume() will restore all registers as well as the signal mask. Attempting to call
unw_resume() on a cursor which identifies the stack frame of another thread results in undefined
behavior (e.g., the program may crash).

For remote unwinding, unw_resume() installs the machine state identified by the cursor by calling the
access_reg and access fpreg accessor callbacks as needed. Once that is accomplished, the resume
accessor callback isinvoked. The unw_resume routine then returns normally (that is, unlikely for local
unwinding, unw_resume will always return for remote unwinding).

Most platforms reserve some registers to pass arguments to exception handlers (e.g., |A-64 uses
r15-r18 for this purpose). These registers are normally treated like *‘ scratch’’ registers. However, if
libunwind is used to set an exception argument register to a particular value (e.g., viaunw_set reg()),
then unw_resume() will install this value as the contents of the register. In other words, the exception
handling arguments are installed even in cases where normally only the ‘*‘ preserved’’ registers are
restored.

Note that unw_resume() does not invoke any unwind handlers (aka, *‘ personality routines’’). If a
program needs this, it will have to do so on its own by obtaining the unw_proc_info_t of each unwound
frame and appropriately processing its unwind handler and language-specific data area (Isda). These
steps are generaly dependent on the target-platform and are regulated by the processor-specific ABI
(application-binary interface).

RETURN VALUE
For local unwinding, unw_resume() does not return on success. For remote unwinding, it returns 0 on

Programming Library 16 August 2007 UNW_RESUME(3)



UNW_RESUME(3) Programming Library

success. On failure, the negative value of one of the errors below is returned.

THREAD AND SIGNAL SAFETY

UNW_RESUME(3)

unw_resume() is thread-safe. If cursor cp isin the local address-space, thisroutine is also safeto use

from asignal handler.

ERRORS
UNW_EUNSPEC
An unspecified error occurred.

UNW_EBADREG
A register needed by unw_resume() wasn’t accessible.

UNW_EINVALIDIP
The instruction pointer identified by cp is not valid.

UNW_BADFRAME
The stack frame identified by cp isnot valid.

SEE ALSO
libunwind(3), unw_set_reg(3), sigprocmask(2)

AUTHOR
David Mosberger-Tang
Email: dmosber ger @gmail.com
WWW: http://www.nongnu.or g/libunwind/.

Programming Library 16 August 2007

UNW_RESUME(3)



