
NAME
zstd - zstd, zstdmt, unzstd, zstdcat - Compress or decompress .zst files

SYNOPSIS
zstd [OPTIONS] [-|INPUT-FILE] [-o OUTPUT-FILE]

zstdmt is equivalent to zstd -T0

unzstd is equivalent to zstd -d

zstdcat is equivalent to zstd -dcf

DESCRIPTION
zstd is a fast lossless compression algorithm and data compression tool, with command line syntax

similar to gzip (1) and xz (1). It is based on the LZ77 family, with further FSE & huff0 entropy stages.

zstd offers highly configurable compression speed, with fast modes at > 200 MB/s per core, and strong

modes nearing lzma compression ratios. It also features a very fast decoder, with speeds > 500 MB/s

per core.

zstd command line syntax is generally similar to gzip, but features the following differences :

+o Source files are preserved by default. It’s possible to remove them automatically by using the --rm
command.

+o When compressing a single file, zstd displays progress notifications and result summary by

default. Use -q to turn them off.

+o zstd does not accept input from console, but it properly accepts stdin when it’s not the console.

+o zstd displays a short help page when command line is an error. Use -q to turn it off.

zstd compresses or decompresses each file according to the selected operation mode. If no files are

given or file is -, zstd reads from standard input and writes the processed data to standard output. zstd
will refuse to write compressed data to standard output if it is a terminal : it will display an error

message and skip the file. Similarly, zstd will refuse to read compressed data from standard input if it is

a terminal.

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



Unless --stdout or -o is specified, files are written to a new file whose name is derived from the source

file name:

+o When compressing, the suffix .zst is appended to the source filename to get the target filename.

+o When decompressing, the .zst suffix is removed from the source filename to get the target

filename

Concatenation with .zst files
It is possible to concatenate .zst files as is. zstd will decompress such files as if they were a single .zst
file.

OPTIONS
Integer suffixes and special values

In most places where an integer argument is expected, an optional suffix is supported to easily indicate

large integers. There must be no space between the integer and the suffix.

KiB
Multiply the integer by 1,024 (2^10). Ki, K, and KB are accepted as synonyms for KiB.

MiB
Multiply the integer by 1,048,576 (2^20). Mi, M, and MB are accepted as synonyms for MiB.

Operation mode
If multiple operation mode options are given, the last one takes effect.

-z, --compress
Compress. This is the default operation mode when no operation mode option is specified and no

other operation mode is implied from the command name (for example, unzstd implies

--decompress).

-d, --decompress, --uncompress
Decompress.

-t, --test
Test the integrity of compressed files. This option is equivalent to --decompress --stdout except

that the decompressed data is discarded instead of being written to standard output. No files are

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



created or removed.

-b# Benchmark file(s) using compression level #

--train FILEs
Use FILEs as a training set to create a dictionary. The training set should contain a lot of small

files (> 100).

-l, --list
Display information related to a zstd compressed file, such as size, ratio, and checksum. Some of

these fields may not be available. This command can be augmented with the -v modifier.

Operation modifiers
+o -#: # compression level [1-19] (default: 3)

+o --ultra: unlocks high compression levels 20+ (maximum 22), using a lot more memory. Note that

decompression will also require more memory when using these levels.

+o --fast[=#]: switch to ultra-fast compression levels. If =# is not present, it defaults to 1. The higher

the value, the faster the compression speed, at the cost of some compression ratio. This setting

overwrites compression level if one was set previously. Similarly, if a compression level is set

after --fast, it overrides it.

+o -T#, --threads=#: Compress using # working threads (default: 1). If # is 0, attempt to detect and

use the number of physical CPU cores. In all cases, the nb of threads is capped to

ZSTDMT_NBWORKERS_MAX, which is either 64 in 32-bit mode, or 256 for 64-bit

environments. This modifier does nothing if zstd is compiled without multithread support.

+o --single-thread: Does not spawn a thread for compression, use a single thread for both I/O and

compression. In this mode, compression is serialized with I/O, which is slightly slower. (This is

different from -T1, which spawns 1 compression thread in parallel of I/O). This mode is the only

one available when multithread support is disabled. Single-thread mode features lower memory

usage. Final compressed result is slightly different from -T1.

+o --auto-threads={physical,logical} (default: physical): When using a default amount of threads via

-T0, choose the default based on the number of detected physical or logical cores.

+o --adapt[=min=#,max=#] : zstd will dynamically adapt compression level to perceived I/O

conditions. Compression level adaptation can be observed live by using command -v. Adaptation

can be constrained between supplied min and max levels. The feature works when combined with

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



multi-threading and --long mode. It does not work with --single-thread. It sets window size to 8

MB by default (can be changed manually, see wlog). Due to the chaotic nature of dynamic

adaptation, compressed result is not reproducible. note : at the time of this writing, --adapt can

remain stuck at low speed when combined with multiple worker threads (>=2).

+o --long[=#]: enables long distance matching with # windowLog, if not # is not present it defaults to

27. This increases the window size (windowLog) and memory usage for both the compressor and

decompressor. This setting is designed to improve the compression ratio for files with long

matches at a large distance.

Note: If windowLog is set to larger than 27, --long=windowLog or --memory=windowSize needs

to be passed to the decompressor.

+o -D DICT: use DICT as Dictionary to compress or decompress FILE(s)

+o --patch-from FILE: Specify the file to be used as a reference point for zstd’s diff engine. This is

effectively dictionary compression with some convenient parameter selection, namely that

windowSize > srcSize.

Note: cannot use both this and -D together Note: --long mode will be automatically activated if

chainLog < fileLog (fileLog being the windowLog required to cover the whole file). You can also

manually force it. Node: for all levels, you can use --patch-from in --single-thread mode to

improve compression ratio at the cost of speed Note: for level 19, you can get increased

compression ratio at the cost of speed by specifying --zstd=targetLength= to be something large

(i.e 4096), and by setting a large --zstd=chainLog=

+o --rsyncable : zstd will periodically synchronize the compression state to make the compressed file

more rsync-friendly. There is a negligible impact to compression ratio, and the faster compression

levels will see a small compression speed hit. This feature does not work with --single-thread. You

probably don’t want to use it with long range mode, since it will decrease the effectiveness of the

synchronization points, but your mileage may vary.

+o -C, --[no-]check: add integrity check computed from uncompressed data (default: enabled)

+o --[no-]content-size: enable / disable whether or not the original size of the file is placed in the

header of the compressed file. The default option is --content-size (meaning that the original size

will be placed in the header).

+o --no-dictID: do not store dictionary ID within frame header (dictionary compression). The decoder

will have to rely on implicit knowledge about which dictionary to use, it won’t be able to check if

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



it’s correct.

+o -M#, --memory=#: Set a memory usage limit. By default, Zstandard uses 128 MB for

decompression as the maximum amount of memory the decompressor is allowed to use, but you

can override this manually if need be in either direction (ie. you can increase or decrease it).

This is also used during compression when using with --patch-from=. In this case, this parameter

overrides that maximum size allowed for a dictionary. (128 MB).

Additionally, this can be used to limit memory for dictionary training. This parameter overrides

the default limit of 2 GB. zstd will load training samples up to the memory limit and ignore the

rest.

+o --stream-size=# : Sets the pledged source size of input coming from a stream. This value must be

exact, as it will be included in the produced frame header. Incorrect stream sizes will cause an

error. This information will be used to better optimize compression parameters, resulting in better

and potentially faster compression, especially for smaller source sizes.

+o --size-hint=#: When handling input from a stream, zstd must guess how large the source size will

be when optimizing compression parameters. If the stream size is relatively small, this guess may

be a poor one, resulting in a higher compression ratio than expected. This feature allows for

controlling the guess when needed. Exact guesses result in better compression ratios.

Overestimates result in slightly degraded compression ratios, while underestimates may result in

significant degradation.

+o -o FILE: save result into FILE

+o -f, --force: disable input and output checks. Allows overwriting existing files, input from console,

output to stdout, operating on links, block devices, etc.

+o -c, --stdout: write to standard output (even if it is the console)

+o --[no-]sparse: enable / disable sparse FS support, to make files with many zeroes smaller on disk.

Creating sparse files may save disk space and speed up decompression by reducing the amount of

disk I/O. default: enabled when output is into a file, and disabled when output is stdout. This

setting overrides default and can force sparse mode over stdout.

+o --rm: remove source file(s) after successful compression or decompression. If used in combination

with -o, will trigger a confirmation prompt (which can be silenced with -f), as this is a destructive

operation.

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



+o -k, --keep: keep source file(s) after successful compression or decompression. This is the default

behavior.

+o -r: operate recursively on directories. It selects all files in the named directory and all its

subdirectories. This can be useful both to reduce command line typing, and to circumvent shell

expansion limitations, when there are a lot of files and naming breaks the maximum size of a

command line.

+o --filelist FILE read a list of files to process as content from FILE. Format is compatible with ls
output, with one file per line.

+o --output-dir-flat DIR: resulting files are stored into target DIR directory, instead of same directory

as origin file. Be aware that this command can introduce name collision issues, if multiple files,

from different directories, end up having the same name. Collision resolution ensures first file

with a given name will be present in DIR, while in combination with -f, the last file will be present

instead.

+o --output-dir-mirror DIR: similar to --output-dir-flat, the output files are stored underneath target

DIR directory, but this option will replicate input directory hierarchy into output DIR.

If input directory contains "..", the files in this directory will be ignored. If input directory is an

absolute directory (i.e. "/var/tmp/abc"), it will be stored into the "output-dir/var/tmp/abc". If there

are multiple input files or directories, name collision resolution will follow the same rules as

--output-dir-flat.

+o --format=FORMAT: compress and decompress in other formats. If compiled with support, zstd

can compress to or decompress from other compression algorithm formats. Possibly available

options are zstd, gzip, xz, lzma, and lz4. If no such format is provided, zstd is the default.

+o -h/-H, --help: display help/long help and exit

+o -V, --version: display version number and exit. Advanced : -vV also displays supported formats.

-vvV also displays POSIX support. -q will only display the version number, suitable for machine

reading.

+o -v, --verbose: verbose mode, display more information

+o -q, --quiet: suppress warnings, interactivity, and notifications. specify twice to suppress errors too.

+o --no-progress: do not display the progress bar, but keep all other messages.

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



+o --show-default-cparams: Shows the default compression parameters that will be used for a

particular src file. If the provided src file is not a regular file (eg. named pipe), the cli will just

output the default parameters. That is, the parameters that are used when the src size is unknown.

+o --: All arguments after -- are treated as files

Restricted usage of Environment Variables
Using environment variables to set parameters has security implications. Therefore, this avenue is

intentionally restricted. Only ZSTD_CLEVEL and ZSTD_NBTHREADS are currently supported.

They set the compression level and number of threads to use during compression, respectively.

ZSTD_CLEVEL can be used to set the level between 1 and 19 (the "normal" range). If the value of

ZSTD_CLEVEL is not a valid integer, it will be ignored with a warning message. ZSTD_CLEVEL just

replaces the default compression level (3).

ZSTD_NBTHREADS can be used to set the number of threads zstd will attempt to use during

compression. If the value of ZSTD_NBTHREADS is not a valid unsigned integer, it will be ignored

with a warning message. ZSTD_NBTHREADS has a default value of (1), and is capped at

ZSTDMT_NBWORKERS_MAX==200. zstd must be compiled with multithread support for this to

have any effect.

They can both be overridden by corresponding command line arguments: -# for compression level and

-T# for number of compression threads.

DICTIONARY BUILDER
zstd offers dictionary compression, which greatly improves efficiency on small files and messages. It’s

possible to train zstd with a set of samples, the result of which is saved into a file called a dictionary.

Then during compression and decompression, reference the same dictionary, using command -D
dictionaryFileName. Compression of small files similar to the sample set will be greatly improved.

--train FILEs
Use FILEs as training set to create a dictionary. The training set should contain a lot of small files

(> 100), and weight typically 100x the target dictionary size (for example, 10 MB for a 100 KB

dictionary). --train can be combined with -r to indicate a directory rather than listing all the files,

which can be useful to circumvent shell expansion limits.

--train supports multithreading if zstd is compiled with threading support (default). Additional

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



parameters can be specified with --train-fastcover. The legacy dictionary builder can be accessed

with --train-legacy. The slower cover dictionary builder can be accessed with --train-cover. Default

is equivalent to --train-fastcover=d=8,steps=4.

-o file
Dictionary saved into file (default name: dictionary).

--maxdict=#
Limit dictionary to specified size (default: 112640).

-# Use # compression level during training (optional). Will generate statistics more tuned for selected

compression level, resulting in a small compression ratio improvement for this level.

-B# Split input files into blocks of size # (default: no split)

-M#, --memory=#
Limit the amount of sample data loaded for training (default: 2 GB). See above for details.

--dictID=#
A dictionary ID is a locally unique ID that a decoder can use to verify it is using the right

dictionary. By default, zstd will create a 4-bytes random number ID. It’s possible to give a precise

number instead. Short numbers have an advantage : an ID < 256 will only need 1 byte in the

compressed frame header, and an ID < 65536 will only need 2 bytes. This compares favorably to 4

bytes default. However, it’s up to the dictionary manager to not assign twice the same ID to 2

different dictionaries.

--train-cover[=k#,d=#,steps=#,split=#,shrink[=#]]
Select parameters for the default dictionary builder algorithm named cover. If d is not specified,

then it tries d = 6 and d = 8. If k is not specified, then it tries steps values in the range [50, 2000]. If

steps is not specified, then the default value of 40 is used. If split is not specified or split <= 0, then

the default value of 100 is used. Requires that d <= k. If shrink flag is not used, then the default

value for shrinkDict of 0 is used. If shrink is not specified, then the default value for

shrinkDictMaxRegression of 1 is used.

Selects segments of size k with highest score to put in the dictionary. The score of a segment is

computed by the sum of the frequencies of all the subsegments of size d. Generally d should be in

the range [6, 8], occasionally up to 16, but the algorithm will run faster with d <= 8. Good values

for k vary widely based on the input data, but a safe range is [2 * d, 2000]. If split is 100, all input

samples are used for both training and testing to find optimal d and k to build dictionary. Supports

multithreading if zstd is compiled with threading support. Having shrink enabled takes a truncated

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



dictionary of minimum size and doubles in size until compression ratio of the truncated dictionary

is at most shrinkDictMaxRegression% worse than the compression ratio of the largest dictionary.

Examples:

zstd --train-cover FILEs

zstd --train-cover=k=50,d=8 FILEs

zstd --train-cover=d=8,steps=500 FILEs

zstd --train-cover=k=50 FILEs

zstd --train-cover=k=50,split=60 FILEs

zstd --train-cover=shrink FILEs

zstd --train-cover=shrink=2 FILEs

--train-fastcover[=k#,d=#,f=#,steps=#,split=#,accel=#]
Same as cover but with extra parameters f and accel and different default value of split If split is

not specified, then it tries split = 75. If f is not specified, then it tries f = 20. Requires that 0 < f <

32. If accel is not specified, then it tries accel = 1. Requires that 0 < accel <= 10. Requires that d =

6 or d = 8.

f is log of size of array that keeps track of frequency of subsegments of size d. The subsegment is

hashed to an index in the range [0,2^f - 1]. It is possible that 2 different subsegments are hashed to

the same index, and they are considered as the same subsegment when computing frequency.

Using a higher f reduces collision but takes longer.

Examples:

zstd --train-fastcover FILEs

zstd --train-fastcover=d=8,f=15,accel=2 FILEs

--train-legacy[=selectivity=#]
Use legacy dictionary builder algorithm with the given dictionary selectivity (default: 9). The

smaller the selectivity value, the denser the dictionary, improving its efficiency but reducing its

possible maximum size. --train-legacy=s=# is also accepted.

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



Examples:

zstd --train-legacy FILEs

zstd --train-legacy=selectivity=8 FILEs

BENCHMARK
-b# benchmark file(s) using compression level #

-e# benchmark file(s) using multiple compression levels, from -b# to -e# (inclusive)

-i# minimum evaluation time, in seconds (default: 3s), benchmark mode only

-B#, --block-size=#
cut file(s) into independent blocks of size # (default: no block)

--priority=rt
set process priority to real-time

Output Format: CompressionLevel#Filename : IntputSize -> OutputSize (CompressionRatio),

CompressionSpeed, DecompressionSpeed

Methodology: For both compression and decompression speed, the entire input is

compressed/decompressed in-memory to measure speed. A run lasts at least 1 sec, so when files are

small, they are compressed/decompressed several times per run, in order to improve measurement

accuracy.

ADVANCED COMPRESSION OPTIONS
-B#:

Select the size of each compression job. This parameter is only available when multi-threading is

enabled. Each compression job is run in parallel, so this value indirectly impacts the nb of active

threads. Default job size varies depending on compression level (generally 4 * windowSize). -B#
makes it possible to manually select a custom size. Note that job size must respect a minimum value

which is enforced transparently. This minimum is either 512 KB, or overlapSize, whichever is largest.

Different job sizes will lead to (slightly) different compressed frames.

--zstd[=options]:
zstd provides 22 predefined compression levels. The selected or default predefined compression level

can be changed with advanced compression options. The options are provided as a comma-separated

list. You may specify only the options you want to change and the rest will be taken from the selected

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



or default compression level. The list of available options:

strategy=strat, strat=strat

Specify a strategy used by a match finder.

There are 9 strategies numbered from 1 to 9, from faster to stronger: 1=ZSTD_fast,

2=ZSTD_dfast, 3=ZSTD_greedy, 4=ZSTD_lazy, 5=ZSTD_lazy2, 6=ZSTD_btlazy2,

7=ZSTD_btopt, 8=ZSTD_btultra, 9=ZSTD_btultra2.

windowLog=wlog, wlog=wlog

Specify the maximum number of bits for a match distance.

The higher number of increases the chance to find a match which usually improves compression

ratio. It also increases memory requirements for the compressor and decompressor. The minimum

wlog is 10 (1 KiB) and the maximum is 30 (1 GiB) on 32-bit platforms and 31 (2 GiB) on 64-bit

platforms.

Note: If windowLog is set to larger than 27, --long=windowLog or --memory=windowSize needs

to be passed to the decompressor.

hashLog=hlog, hlog=hlog

Specify the maximum number of bits for a hash table.

Bigger hash tables cause less collisions which usually makes compression faster, but requires more

memory during compression.

The minimum hlog is 6 (64 B) and the maximum is 30 (1 GiB).

chainLog=clog, clog=clog

Specify the maximum number of bits for a hash chain or a binary tree.

Higher numbers of bits increases the chance to find a match which usually improves compression

ratio. It also slows down compression speed and increases memory requirements for compression.

This option is ignored for the ZSTD_fast strategy.

The minimum clog is 6 (64 B) and the maximum is 29 (524 Mib) on 32-bit platforms and 30 (1

Gib) on 64-bit platforms.

searchLog=slog, slog=slog

Specify the maximum number of searches in a hash chain or a binary tree using logarithmic scale.

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



More searches increases the chance to find a match which usually increases compression ratio but

decreases compression speed.

The minimum slog is 1 and the maximum is ’windowLog’ - 1.

minMatch=mml, mml=mml

Specify the minimum searched length of a match in a hash table.

Larger search lengths usually decrease compression ratio but improve decompression speed.

The minimum mml is 3 and the maximum is 7.

targetLength=tlen, tlen=tlen

The impact of this field vary depending on selected strategy.

For ZSTD_btopt, ZSTD_btultra and ZSTD_btultra2, it specifies the minimum match length that

causes match finder to stop searching. A larger targetLength usually improves compression ratio

but decreases compression speed. t For ZSTD_fast, it triggers ultra-fast mode when > 0. The value

represents the amount of data skipped between match sampling. Impact is reversed : a larger

targetLength increases compression speed but decreases compression ratio.

For all other strategies, this field has no impact.

The minimum tlen is 0 and the maximum is 128 Kib.

overlapLog=ovlog, ovlog=ovlog

Determine overlapSize, amount of data reloaded from previous job. This parameter is only

available when multithreading is enabled. Reloading more data improves compression ratio, but

decreases speed.

The minimum ovlog is 0, and the maximum is 9. 1 means "no overlap", hence completely

independent jobs. 9 means "full overlap", meaning up to windowSize is reloaded from previous

job. Reducing ovlog by 1 reduces the reloaded amount by a factor 2. For example, 8 means

"windowSize/2", and 6 means "windowSize/8". Value 0 is special and means "default" : ovlog is

automatically determined by zstd. In which case, ovlog will range from 6 to 9, depending on

selected strat.

ldmHashLog=lhlog, lhlog=lhlog

Specify the maximum size for a hash table used for long distance matching.

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



This option is ignored unless long distance matching is enabled.

Bigger hash tables usually improve compression ratio at the expense of more memory during

compression and a decrease in compression speed.

The minimum lhlog is 6 and the maximum is 30 (default: 20).

ldmMinMatch=lmml, lmml=lmml

Specify the minimum searched length of a match for long distance matching.

This option is ignored unless long distance matching is enabled.

Larger/very small values usually decrease compression ratio.

The minimum lmml is 4 and the maximum is 4096 (default: 64).

ldmBucketSizeLog=lblog, lblog=lblog

Specify the size of each bucket for the hash table used for long distance matching.

This option is ignored unless long distance matching is enabled.

Larger bucket sizes improve collision resolution but decrease compression speed.

The minimum lblog is 1 and the maximum is 8 (default: 3).

ldmHashRateLog=lhrlog, lhrlog=lhrlog

Specify the frequency of inserting entries into the long distance matching hash table.

This option is ignored unless long distance matching is enabled.

Larger values will improve compression speed. Deviating far from the default value will likely

result in a decrease in compression ratio.

The default value is wlog - lhlog.

Example
The following parameters sets advanced compression options to something similar to predefined level

19 for files bigger than 256 KB:

--zstd=wlog=23,clog=23,hlog=22,slog=6,mml=3,tlen=48,strat=6

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)



BUGS
Report bugs at: https://github.com/facebook/zstd/issues

AUTHOR
Yann Collet

ZSTD(1) User Commands ZSTD(1)

zstd 1.5.2 January 2022 ZSTD(1)


