
NAME
user_caps - user-defined terminfo capability format

SYNOPSIS
infocmp -x

tic -x

DESCRIPTION
Background

Before ncurses 5.0, terminfo databases used a fixed repertoire of terminal capabilities designed for the

SVr2 terminal database in 1984, and extended in stages through SVr4 (1989), and standardized in the

Single Unix Specification beginning in 1995.

Most of the extensions in this fixed repertoire were additions to the tables of Boolean, numeric and

string capabilities. Rather than change the meaning of an existing capability, a new name was added.

The terminfo database uses a binary format; binary compatibility was ensured by using a header which

gave the number of items in the tables for each type of capability. The standardization was incomplete:

+o The binary format itself is not described in the X/Open Curses documentation. Only the source

format is described.

Library developers rely upon the SVr4 documentation, and reverse-engineering the compiled

terminfo files to match the binary format.

+o Lacking a standard for the binary format, most implementations copy the SVr2 binary format,

which uses 16-bit signed integers, and is limited to 4096-byte entries.

The format cannot represent very large numeric capabilities, nor can it represent large numbers of

special keyboard definitions.

+o The tables of capability names differ between implementations.

Although they may provide all of the standard capability names, the position in the tables differs

because some features were added as needed, while others were added (out of order) to comply

with X/Open Curses.

While ncurses’ repertoire of predefined capabilities is closest to Solaris, Solaris’s terminfo

database has a few differences from the list published by X/Open Curses. For example, ncurses

can be configured with tables which match the terminal databases for AIX, HP-UX or OSF/1,

user_caps(5) File formats user_caps(5)

ncurses 6.5 2024-03-16 user_caps(5)



rather than the default Solaris-like configuration.

+o In SVr4 curses and ncurses, the terminal database is defined at compile-time using a text file

which lists the different terminal capabilities.

In principle, the text-file can be extended, but doing this requires recompiling and reinstalling the

library. The text-file used in ncurses for terminal capabilities includes details for various systems

past the documented X/Open Curses features. For example, ncurses supports these capabilities in

each configuration:

memory_lock

(meml) lock memory above cursor

memory_unlock

(memu) unlock memory

box_chars_1

(box1) box characters primary set

The memory lock/unlock capabilities were included because they were used in the X11R6

terminal description for xterm(1). The box1 capability is used in tic to help with terminal

descriptions written for AIX.

During the 1990s, some users were reluctant to use terminfo in spite of its performance advantages

over termcap:

+o The fixed repertoire prevented users from adding features for unanticipated terminal

improvements (or required them to reuse existing capabilities as a workaround).

+o The limitation to 16-bit signed integers was also mentioned. Because termcap stores everything as

a string, it could represent larger numbers.

Although termcap’s extensibility was rarely used (it was never the speaker who had actually used the

feature), the criticism had a point. ncurses 5.0 provided a way to detect nonstandard capabilities,

determine their type and optionally store and retrieve them in a way which did not interfere with other

applications. These are referred to as user-defined capabilities because no modifications to the

toolset’s predefined capability names are needed.

The ncurses utilities tic and infocmp have a command-line option "-x" to control whether the

nonstandard capabilities are stored or retrieved. A library function use_extended_names is provided

user_caps(5) File formats user_caps(5)

ncurses 6.5 2024-03-16 user_caps(5)



for the same purpose.

When compiling a terminal database, if "-x" is set, tic will store a user-defined capability if the

capability name is not one of the predefined names.

Because ncurses provides a termcap library interface, these user-defined capabilities may be visible to

termcap applications:

+o The termcap interface (like all implementations of termcap) requires that the capability names are

2-characters.

When the capability is simple enough for use in a termcap application, it is provided as a

2-character name.

+o There are other user-defined capabilities which refer to features not usable in termcap, e.g.,

parameterized strings that use more than two parameters or use more than the trivial expression

support provided by termcap. For these, the terminfo database should have only capability names

with 3 or more characters.

+o Some terminals can send distinct strings for special keys (cursor-, keypad- or function-keys)

depending on modifier keys (shift, control, etc.). While terminfo and termcap have a set of 60

predefined function-key names, to which a series of keys can be assigned, that is insufficient for

more than a dozen keys multiplied by more than a couple of modifier combinations. The ncurses

database uses a convention based on xterm(1) to provide extended special-key names.

Fitting that into termcap’s limitation of 2-character names would be pointless. These extended

keys are available only with terminfo.

Recognized Capabilities
The ncurses library uses the user-definable capabilities. While the terminfo database may have other

extensions, ncurses makes explicit checks for these:

AX

Boolean, asserts that the terminal interprets SGR 39 and SGR 49 by resetting the foreground

and background color, respectively, to the default.

This is a feature recognized by the screen program as well.

E3 string, tells how to clear the terminal’s scrollback buffer. When present, the clear(1) program

sends this before clearing the terminal.

user_caps(5) File formats user_caps(5)

ncurses 6.5 2024-03-16 user_caps(5)



The command "tput clear" does the same thing.

NQ

Boolean, used to suppress a consistency check in tic for the ncurses capabilities in user6

through user9 (u6, u7, u8 and u9) which tell how to query the terminal’s cursor position and its

device attributes.

RGB

Boolean, number or string, used to assert that the set_a_foreground and set_a_background
capabilities correspond to direct colors, using an RGB (red/green/blue) convention. This

capability allows the color_content function to return appropriate values without requiring the

application to initialize colors using init_color.

The capability type determines the values which ncurses sees:

Boolean

implies that the number of bits for red, green and blue are the same. Using the maximum

number of colors, ncurses adds two, divides that sum by three, and assigns the result to red,

green and blue in that order.

If the number of bits needed for the number of colors is not a multiple of three, the blue

(and green) components lose in comparison to red.

number

tells ncurses what result to add to red, green and blue. If ncurses runs out of bits, blue (and

green) lose just as in the Boolean case.

string

explicitly list the number of bits used for red, green and blue components as a slash-

separated list of decimal integers.

Because there are several RGB encodings in use, applications which make assumptions about

the number of bits per color are unlikely to work reliably. As a trivial case, for example, one

could define RGB#1 to represent the standard eight ANSI colors, i.e., one bit per color.

U8 number, asserts that ncurses must use Unicode values for line-drawing characters, and that it

should ignore the alternate character set capabilities when the locale uses UTF-8 encoding. For

more information, see the discussion of NCURSES_NO_UTF8_ACS in ncurses(3X).

Set this capability to a nonzero value to enable it.

user_caps(5) File formats user_caps(5)

ncurses 6.5 2024-03-16 user_caps(5)



XM

string, override ncurses’s built-in string which enables/disables xterm(1) mouse mode.

ncurses sends a character sequence to the terminal to initialize mouse mode, and when the user

clicks the mouse buttons or (in certain modes) moves the mouse, handles the characters sent

back by the terminal to tell it what was done with the mouse.

The mouse protocol is enabled when the mask passed in the mousemask function is nonzero.

By default, ncurses handles the responses for the X11 xterm mouse protocol. It also knows

about the SGR 1006 xterm mouse protocol, but must to be told to look for this specifically. It

will not be able to guess which mode is used, because the responses are enough alike that only

confusion would result.

The XM capability has a single parameter. If nonzero, the mouse protocol should be enabled.

If zero, the mouse protocol should be disabled. ncurses inspects this capability if it is present,

to see whether the 1006 protocol is used. If so, it expects the responses to use the SGR 1006

xterm mouse protocol.

The xterm mouse protocol is used by other terminal emulators. The terminal database uses

building-blocks for the various xterm mouse protocols which can be used in customized

terminal descriptions.

The terminal database building blocks for this mouse feature also have an experimental

capability xm. The "xm" capability describes the mouse response. Currently there is no

interpreter which would use this information to make the mouse support completely data-

driven.

xm shows the format of the mouse responses. In this experimental capability, the parameters

are

p1 y-ordinate

p2 x-ordinate

p3 button

p4 state, e.g., pressed or released

p5 y-ordinate starting region

user_caps(5) File formats user_caps(5)

ncurses 6.5 2024-03-16 user_caps(5)



p6 x-ordinate starting region

p7 y-ordinate ending region

p8 x-ordinate ending region

Here are examples from the terminal database for the most commonly used xterm mouse

protocols:

xterm+x11mouse|X11 xterm mouse protocol,

kmous=\E[M, XM=\E[?1000%?%p1%{1}%=%th%el%;,

xm=\E[M

%?%p4%t%p3%e%{3}%;%’ ’%+%c

%p2%’!’%+%c

%p1%’!’%+%c,

xterm+sm+1006|xterm SGR-mouse,

kmous=\E[<, XM=\E[?1006;1000%?%p1%{1}%=%th%el%;,

xm=\E[<%i%p3%d;

%p1%d;

%p2%d;

%?%p4%tM%em%;,

Extended Key Definitions
Several terminals provide the ability to send distinct strings for combinations of modified special keys.

There is no standard for what those keys can send.

Since 1999, xterm(1) has supported shift, control, alt, and meta modifiers which produce distinct

special-key strings. In a terminal description, ncurses has no special knowledge of the modifiers used.

Applications can use the naming convention established for xterm to find these special keys in the

terminal description.

Starting with the curses convention that capability codes describing the input generated by a terminal’s

key caps begin with "k", and that shifted special keys use uppercase letters in their names, ncurses’s

terminal database defines the following names and codes to which a suffix is added.

Code Description
------------------------------------------------------------------------------------------------------------------------

kDC shifted kdch1 (delete

user_caps(5) File formats user_caps(5)

ncurses 6.5 2024-03-16 user_caps(5)



character)

kDN shifted kcud1 (cursor

down)

kEND shifted kend

(end)

kHOMshifted khome

(home)

kLFT shifted kcub1 (cursor

back)

kNXT shifted knext

(next)

kPRV shifted kprev

(previous)

kRIT shifted kcuf1 (cursor

forward)

kUP shifted kcuu1 (cursor

up)

Keycap nomenclature on the Unix systems for which curses was developed differs from today’s

ubiquitous descendants of the IBM PC/AT keyboard layout. In the foregoing, interpret "backward" as

"left", "forward" as "right", "next" as "page down", and "prev(ious)" as "page up".

These are the suffixes used to denote the modifiers:

ValueDescription
-----------------------------------------

2 Shift

3 Alt

4 Shift +

Alt

5 Control

6 Shift +

Control

7 Alt +

Control

8 Shift + Alt +

Control

9 Meta

10 Meta +

user_caps(5) File formats user_caps(5)

ncurses 6.5 2024-03-16 user_caps(5)



Shift

11 Meta +

Alt

12 Meta + Alt +

Shift

13 Meta +

Ctrl

14 Meta + Ctrl +

Shift

15 Meta + Ctrl +

Alt

16 Meta + Ctrl + Alt + Shift

None of these are predefined; terminal descriptions can refer to names which ncurses will allocate at

runtime to key-codes. To use these keys in an ncurses program, an application could do this:

+o using a list of extended key names, ask tigetstr(3X) for their values, and

+o given the list of values, ask key_defined(3X) for the key-code which would be returned for those

keys by wgetch(3X).

PORTABILITY
The "-x" extension feature of tic and infocmp has been adopted in NetBSD curses. That

implementation stores user-defined capabilities, but makes no use of these capabilities itself.

AUTHORS
Thomas E. Dickey

beginning with ncurses 5.0 (1999)

SEE ALSO
infocmp(1M), tic(1M)

The terminal database section NCURSES USER-DEFINABLE CAPABILITIES summarizes

commonly-used user-defined capabilities which are used in the terminal descriptions. Some of those

features are mentioned in screen(1) or tmux(1).

XTerm Control Sequences provides further information on the xterm(1) features that are used in these

extended capabilities.

user_caps(5) File formats user_caps(5)

ncurses 6.5 2024-03-16 user_caps(5)


