
NAME
uu_lock, uu_unlock, uu_lockerr - acquire and release control of a serial device

LIBRARY
System Utilities Library (libutil, -lutil)

SYNOPSIS
#include <sys/types.h>
#include <libutil.h>

int

uu_lock(const char *ttyname);

int

uu_lock_txfr(const char *ttyname, pid_t pid);

int

uu_unlock(const char *ttyname);

const char *

uu_lockerr(int uu_lockresult);

DESCRIPTION
The uu_lock() function attempts to create a lock file called /var/spool/lock/LCK.. with a suffix given by

the passed ttyname. If the file already exists, it is expected to contain the process id of the locking

program.

If the file does not already exist, or the owning process given by the process id found in the lock file is

no longer running, uu_lock() will write its own process id into the file and return success.

uu_lock_txfr() transfers lock ownership to another process. uu_lock() must have previously been

successful.

uu_unlock() removes the lockfile created by uu_lock() for the given ttyname. Care should be taken that

uu_lock() was successful before calling uu_unlock().

uu_lockerr() returns an error string representing the error uu_lockresult, as returned from uu_lock().

RETURN VALUES
uu_unlock() returns 0 on success and -1 on failure.

UUCPLOCK(3) FreeBSD Library Functions Manual UUCPLOCK(3)

FreeBSD 14.0-RELEASE-p11 May 10, 2020 FreeBSD 14.0-RELEASE-p11



uu_lock() may return any of the following values:

UU_LOCK_INUSE: The lock is in use by another process.

UU_LOCK_OK: The lock was successfully created.

UU_LOCK_OPEN_ERR: The lock file could not be opened via open(2).

UU_LOCK_READ_ERR: The lock file could not be read via read(2).

UU_LOCK_CREAT_ERR: Cannot create temporary lock file via creat(2).

UU_LOCK_WRITE_ERR: The current process id could not be written to the lock file via a call to

write(2).

UU_LOCK_LINK_ERR: Cannot link temporary lock file via link(2).

UU_LOCK_TRY_ERR: Locking attempts are failed after 5 tries.

If a value of UU_LOCK_OK is passed to uu_lockerr(), an empty string is returned. Otherwise, a string

specifying the reason for failure is returned. uu_lockerr() uses the current value of errno to determine

the exact error. Care should be made not to allow errno to be changed between calls to uu_lock() and

uu_lockerr().

uu_lock_txfr() may return any of the following values:

UU_LOCK_OK: The transfer was successful. The specified process now holds the device lock.

UU_LOCK_OWNER_ERR: The current process does not already own a lock on the specified device.

UU_LOCK_WRITE_ERR: The new process id could not be written to the lock file via a call to write(2).

ERRORS
If uu_lock() returns one of the error values above, the global value errno can be used to determine the

cause. Refer to the respective manual pages for further details.

uu_unlock() will set the global variable errno to reflect the reason that the lock file could not be

removed. Refer to the description of unlink(2) for further details.

SEE ALSO

UUCPLOCK(3) FreeBSD Library Functions Manual UUCPLOCK(3)

FreeBSD 14.0-RELEASE-p11 May 10, 2020 FreeBSD 14.0-RELEASE-p11



lseek(2), open(2), read(2), write(2)

HISTORY
The functions uu_lock(), uu_unlock() and uu_lockerr() first appeared in FreeBSD 2.0.5.

BUGS
It is possible that a stale lock is not recognised as such if a new processes is assigned the same processes

id as the program that left the stale lock.

The calling process must have write permissions to the /var/spool/lock directory. There is no

mechanism in place to ensure that the permissions of this directory are the same as those of the serial

devices that might be locked.

UUCPLOCK(3) FreeBSD Library Functions Manual UUCPLOCK(3)

FreeBSD 14.0-RELEASE-p11 May 10, 2020 FreeBSD 14.0-RELEASE-p11


