
NAME
stdarg - variable argument lists

SYNOPSIS
#include <stdarg.h>

void

va_start(va_list ap, last);

type

va_arg(va_list ap, type);

void

va_copy(va_list dest, va_list src);

void

va_end(va_list ap);

DESCRIPTION
A function may be called with a varying number of arguments of varying types. The include file

<stdarg.h> declares a type (va_list) and defines four macros for stepping through a list of arguments

whose number and types are not known to the called function.

The called function must declare an object of type va_list which is used by the macros va_start(),
va_arg(), va_copy(), and va_end().

The va_start() macro initializes ap for subsequent use by va_arg(), va_copy(), and va_end(), and must be

called first.

The parameter last is the name of the last parameter before the variable argument list, i.e., the last

parameter of which the calling function knows the type.

Because the address of this parameter is used in the va_start() macro, it should not be declared as a

register variable, or as a function or an array type.

The va_arg() macro expands to an expression that has the type and value of the next argument in the

call. The parameter ap is the va_list ap initialized by va_start() or va_copy(). Each call to va_arg()

modifies ap so that the next call returns the next argument. The parameter type is a type name specified

so that the type of a pointer to an object that has the specified type can be obtained simply by adding a *

to type.

STDARG(3) FreeBSD Library Functions Manual STDARG(3)

FreeBSD 14.0-RELEASE-p6 February 25, 2020 FreeBSD 14.0-RELEASE-p6



If there is no next argument, or if type is not compatible with the type of the actual next argument (as

promoted according to the default argument promotions), random errors will occur.

The first use of the va_arg() macro after that of the va_start() macro returns the argument after last.

Successive invocations return the values of the remaining arguments.

The va_copy() macro copies a variable argument list, previously initialized by va_start(), from src to

dest. The state is preserved such that it is equivalent to calling va_start() with the same second argument

used with src, and calling va_arg() the same number of times as called with src.

The va_end() macro cleans up any state associated with the variable argument list ap.

Each invocation of va_start() or va_copy() must be paired with a corresponding invocation of va_end()

in the same function.

RETURN VALUES
The va_arg() macro returns the value of the next argument.

The va_start(), va_copy(), and va_end() macros return no value.

EXAMPLES
The function foo takes a string of format characters and prints out the argument associated with each

format character based on the type.

void foo(char *fmt, ...)

{

va_list ap;

int d;

char c, *s;

va_start(ap, fmt);

while (*fmt)

switch(*fmt++) {

case ’s’: /* string */

s = va_arg(ap, char *);

printf("string %s\n", s);

break;

case ’d’: /* int */

d = va_arg(ap, int);

printf("int %d\n", d);

STDARG(3) FreeBSD Library Functions Manual STDARG(3)

FreeBSD 14.0-RELEASE-p6 February 25, 2020 FreeBSD 14.0-RELEASE-p6



break;

case ’c’: /* char */

/* Note: char is promoted to int. */

c = va_arg(ap, int);

printf("char %c\n", c);

break;

}

va_end(ap);

}

COMPATIBILITY
These macros are not compatible with the historic macros they replace. A backward compatible version

can be found in the include file <varargs.h>.

STANDARDS
The va_start(), va_arg(), va_copy(), and va_end() macros conform to ISO/IEC 9899:1999 ("ISO C99").

HISTORY
The va_start(), va_arg() and va_end() macros were introduced in ANSI X3.159-1989 ("ANSI C89").

The va_copy() macro was introduced in ISO/IEC 9899:1999 ("ISO C99").

BUGS
Unlike the varargs macros, the stdarg macros do not permit programmers to code a function with no

fixed arguments. This problem generates work mainly when converting varargs code to stdarg code, but

it also creates difficulties for variadic functions that wish to pass all of their arguments on to a function

that takes a va_list argument, such as vfprintf(3).

STDARG(3) FreeBSD Library Functions Manual STDARG(3)

FreeBSD 14.0-RELEASE-p6 February 25, 2020 FreeBSD 14.0-RELEASE-p6


