
NAME
printf, fprintf, sprintf, snprintf, asprintf, dprintf, vprintf, vfprintf, vsprintf, vsnprintf, vasprintf, vdprintf -

formatted output conversion

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <stdio.h>

int

printf(const char * restrict format, ...);

int

fprintf(FILE * restrict stream, const char * restrict format, ...);

int

sprintf(char * restrict str, const char * restrict format, ...);

int

snprintf(char * restrict str, size_t size, const char * restrict format, ...);

int

asprintf(char **ret, const char *format, ...);

int

dprintf(int fd, const char * restrict format, ...);

#include <stdarg.h>

int

vprintf(const char * restrict format, va_list ap);

int

vfprintf(FILE * restrict stream, const char * restrict format, va_list ap);

int

vsprintf(char * restrict str, const char * restrict format, va_list ap);

int

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

vsnprintf(char * restrict str, size_t size, const char * restrict format, va_list ap);

int

vasprintf(char **ret, const char *format, va_list ap);

int

vdprintf(int fd, const char * restrict format, va_list ap);

DESCRIPTION
The printf() family of functions produces output according to a format as described below. The printf()
and vprintf() functions write output to stdout, the standard output stream; fprintf() and vfprintf() write

output to the given output stream; dprintf() and vdprintf() write output to the given file descriptor;

sprintf(), snprintf(), vsprintf(), and vsnprintf() write to the character string str; and asprintf() and

vasprintf() dynamically allocate a new string with malloc(3).

These functions write the output under the control of a format string that specifies how subsequent

arguments (or arguments accessed via the variable-length argument facilities of stdarg(3)) are converted

for output.

The asprintf() and vasprintf() functions set *ret to be a pointer to a buffer sufficiently large to hold the

formatted string. This pointer should be passed to free(3) to release the allocated storage when it is no

longer needed. If sufficient space cannot be allocated, asprintf() and vasprintf() will return -1 and set ret

to be a NULL pointer.

The snprintf() and vsnprintf() functions will write at most size-1 of the characters printed into the output

string (the size’th character then gets the terminating ‘\0’); if the return value is greater than or equal to

the size argument, the string was too short and some of the printed characters were discarded. The

output is always null-terminated, unless size is 0.

The sprintf() and vsprintf() functions effectively assume a size of INT_MAX + 1.

The format string is composed of zero or more directives: ordinary characters (not %), which are copied

unchanged to the output stream; and conversion specifications, each of which results in fetching zero or

more subsequent arguments. Each conversion specification is introduced by the % character. The

arguments must correspond properly (after type promotion) with the conversion specifier. After the %,

the following appear in sequence:

+o An optional field, consisting of a decimal digit string followed by a $, specifying the next argument

to access. If this field is not provided, the argument following the last argument accessed will be

used. Arguments are numbered starting at 1. If unaccessed arguments in the format string are

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

interspersed with ones that are accessed the results will be indeterminate.

+o Zero or more of the following flags:

‘#’ The value should be converted to an "alternate form". For c, d, i, n, p, s, and u
conversions, this option has no effect. For b and B conversions, a non-zero result has

the string ‘0b’ (or ‘0B’ for B conversions) prepended to it. For o conversions, the

precision of the number is increased to force the first character of the output string to a

zero. For x and X conversions, a non-zero result has the string ‘0x’ (or ‘0X’ for X
conversions) prepended to it. For a, A, e, E, f, F, g, and G conversions, the result will

always contain a decimal point, even if no digits follow it (normally, a decimal point

appears in the results of those conversions only if a digit follows). For g and G
conversions, trailing zeros are not removed from the result as they would otherwise be.

‘0’ (zero) Zero padding. For all conversions except n, the converted value is padded on the left

with zeros rather than blanks. If a precision is given with a numeric conversion (b, B, d,

i, o, u, i, x, and X), the 0 flag is ignored.

‘-’ A negative field width flag; the converted value is to be left adjusted on the field

boundary. Except for n conversions, the converted value is padded on the right with

blanks, rather than on the left with blanks or zeros. A - overrides a 0 if both are given.

‘ ’ (space) A blank should be left before a positive number produced by a signed conversion (a, A,

d, e, E, f, F, g, G, or i).

‘+’ A sign must always be placed before a number produced by a signed conversion. A +
overrides a space if both are used.

‘’’ (apostrophe)

Decimal conversions (d, u, or i) or the integral portion of a floating point conversion (f
or F) should be grouped and separated by thousands using the non-monetary separator

returned by localeconv(3).

+o An optional decimal digit string specifying a minimum field width. If the converted value has fewer

characters than the field width, it will be padded with spaces on the left (or right, if the left-

adjustment flag has been given) to fill out the field width.

+o An optional precision, in the form of a period . followed by an optional digit string. If the digit

string is omitted, the precision is taken as zero. This gives the minimum number of digits to appear

for b, B, d, i, o, u, x, and X conversions, the number of digits to appear after the decimal-point for a,

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

A, e, E, f, and F conversions, the maximum number of significant digits for g and G conversions, or

the maximum number of characters to be printed from a string for s conversions.

+o An optional length modifier, that specifies the size of the argument. The following length modifiers

are valid for the b, B, d, i, n, o, u, x, or X conversion:

Modifier d, i b, B, o, u, x, X n
hh signed char unsigned char signed char *

h short unsigned short short *

l (ell) long unsigned long long *

ll (ell ell) long long unsigned long long long long *

j intmax_t uintmax_t intmax_t *

t ptrdiff_t (see note) ptrdiff_t *

wN intN_t uintN_t intN_t *

wfN int_fastN_t uint_fastN_t int_fastN_t *

z (see note) size_t (see note)

q (deprecated) quad_t u_quad_t quad_t *

Note: the t modifier, when applied to a b, B, o, u, x, or X conversion, indicates that the argument is

of an unsigned type equivalent in size to a ptrdiff_t. The z modifier, when applied to a d or i
conversion, indicates that the argument is of a signed type equivalent in size to a size_t. Similarly,

when applied to an n conversion, it indicates that the argument is a pointer to a signed type

equivalent in size to a size_t.

The following length modifier is valid for the a, A, e, E, f, F, g, or G conversion:

Modifier a, A, e, E, f, F, g, G
l (ell) double (ignored, same behavior as without it)

L long double

The following length modifier is valid for the c or s conversion:

Modifier c s
l (ell) wint_t wchar_t *

+o A character that specifies the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk ‘*’ or an asterisk followed by one or

more decimal digits and a ‘$’ instead of a digit string. In this case, an int argument supplies the field

width or precision. A negative field width is treated as a left adjustment flag followed by a positive field

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

width; a negative precision is treated as though it were missing. If a single format directive mixes

positional (nn$) and non-positional arguments, the results are undefined.

The conversion specifiers and their meanings are:

bBdiouxX The int (or appropriate variant) argument is converted to unsigned binary (b and B), signed

decimal (d and i), unsigned octal (o), unsigned decimal (u), or unsigned hexadecimal (x and

X) notation. The letters "abcdef" are used for x conversions; the letters "ABCDEF" are used

for X conversions. The precision, if any, gives the minimum number of digits that must

appear; if the converted value requires fewer digits, it is padded on the left with zeros.

DOU The long int argument is converted to signed decimal, unsigned octal, or unsigned decimal,

as if the format had been ld, lo, or lu respectively. These conversion characters are

deprecated, and will eventually disappear.

eE The double argument is rounded and converted in the style [-]d.ddde+-dd where there is one

digit before the decimal-point character and the number of digits after it is equal to the

precision; if the precision is missing, it is taken as 6; if the precision is zero, no decimal-

point character appears. An E conversion uses the letter ‘E’ (rather than ‘e’) to introduce the

exponent. The exponent always contains at least two digits; if the value is zero, the exponent

is 00.

For a, A, e, E, f, F, g, and G conversions, positive and negative infinity are represented as inf

and -inf respectively when using the lowercase conversion character, and INF and -INF

respectively when using the uppercase conversion character. Similarly, NaN is represented

as nan when using the lowercase conversion, and NAN when using the uppercase

conversion.

fF The double argument is rounded and converted to decimal notation in the style [-]ddd.ddd,

where the number of digits after the decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the precision is explicitly zero, no

decimal-point character appears. If a decimal point appears, at least one digit appears before

it.

gG The double argument is converted in style f or e (or F or E for G conversions). The precision

specifies the number of significant digits. If the precision is missing, 6 digits are given; if

the precision is zero, it is treated as 1. Style e is used if the exponent from its conversion is

less than -4 or greater than or equal to the precision. Trailing zeros are removed from the

fractional part of the result; a decimal point appears only if it is followed by at least one

digit.

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

aA The double argument is rounded and converted to hexadecimal notation in the style

[-]0xh.hhhp[+-]d, where the number of digits after the hexadecimal-point character is equal

to the precision specification. If the precision is missing, it is taken as enough to represent

the floating-point number exactly, and no rounding occurs. If the precision is zero, no

hexadecimal-point character appears. The p is a literal character ‘p’, and the exponent

consists of a positive or negative sign followed by a decimal number representing an

exponent of 2. The A conversion uses the prefix "0X" (rather than "0x"), the letters

"ABCDEF" (rather than "abcdef") to represent the hex digits, and the letter ‘P’ (rather than

‘p’) to separate the mantissa and exponent.

Note that there may be multiple valid ways to represent floating-point numbers in this

hexadecimal format. For example, 0x1.92p+1, 0x3.24p+0, 0x6.48p-1, and 0xc.9p-2 are all

equivalent. FreeBSD 8.0 and later always prints finite non-zero numbers using ‘1’ as the

digit before the hexadecimal point. Zeroes are always represented with a mantissa of 0

(preceded by a ‘-’ if appropriate) and an exponent of +0.

C Treated as c with the l (ell) modifier.

c The int argument is converted to an unsigned char, and the resulting character is written.

If the l (ell) modifier is used, the wint_t argument shall be converted to a wchar_t, and the

(potentially multi-byte) sequence representing the single wide character is written, including

any shift sequences. If a shift sequence is used, the shift state is also restored to the original

state after the character.

S Treated as s with the l (ell) modifier.

s The char * argument is expected to be a pointer to an array of character type (pointer to a

string). Characters from the array are written up to (but not including) a terminating NUL

character; if a precision is specified, no more than the number specified are written. If a

precision is given, no null character need be present; if the precision is not specified, or is

greater than the size of the array, the array must contain a terminating NUL character.

If the l (ell) modifier is used, the wchar_t * argument is expected to be a pointer to an array

of wide characters (pointer to a wide string). For each wide character in the string, the

(potentially multi-byte) sequence representing the wide character is written, including any

shift sequences. If any shift sequence is used, the shift state is also restored to the original

state after the string. Wide characters from the array are written up to (but not including) a

terminating wide NUL character; if a precision is specified, no more than the number of

bytes specified are written (including shift sequences). Partial characters are never written.

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

If a precision is given, no null character need be present; if the precision is not specified, or

is greater than the number of bytes required to render the multibyte representation of the

string, the array must contain a terminating wide NUL character.

p The void * pointer argument is printed in hexadecimal (as if by ‘%#x’ or ‘%#lx’).

n The number of characters written so far is stored into the integer indicated by the int * (or

variant) pointer argument. No argument is converted.

m Print the string representation of the error code stored in the errno variable at the beginning

of the call, as returned by strerror(3). No argument is taken.

% A ‘%’ is written. No argument is converted. The complete conversion specification is

‘%%’.

The decimal point character is defined in the program’s locale (category LC_NUMERIC).

In no case does a non-existent or small field width cause truncation of a numeric field; if the result of a

conversion is wider than the field width, the field is expanded to contain the conversion result.

RETURN VALUES
These functions return the number of characters printed (not including the trailing ‘\0’ used to end

output to strings), except for snprintf() and vsnprintf(), which return the number of characters that would

have been printed if the size were unlimited (again, not including the final ‘\0’). These functions return

a negative value if an error occurs.

EXAMPLES
To print a date and time in the form "Sunday, July 3, 10:02", where weekday and month are pointers to

strings:

#include <stdio.h>

fprintf(stdout, "%s, %s %d, %.2d:%.2d\n",

weekday, month, day, hour, min);

To print pi to five decimal places:

#include <math.h>

#include <stdio.h>

fprintf(stdout, "pi = %.5f\n", 4 * atan(1.0));

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

To allocate a 128 byte string and print into it:

#include <stdio.h>

#include <stdlib.h>

#include <stdarg.h>

char *newfmt(const char *fmt, ...)

{

char *p;

va_list ap;

if ((p = malloc(128)) == NULL)

return (NULL);

va_start(ap, fmt);

(void) vsnprintf(p, 128, fmt, ap);

va_end(ap);

return (p);

}

COMPATIBILITY
The conversion formats %D, %O, and %U are not standard and are provided only for backward

compatibility. The conversion format %m is also not standard and provides the popular extension from

the GNU C library.

The effect of padding the %p format with zeros (either by the 0 flag or by specifying a precision), and

the benign effect (i.e., none) of the # flag on %n and %p conversions, as well as other nonsensical

combinations such as %Ld, are not standard; such combinations should be avoided.

ERRORS
In addition to the errors documented for the write(2) system call, the printf() family of functions may fail

if:

[EILSEQ] An invalid wide character code was encountered.

[ENOMEM] Insufficient storage space is available.

[EOVERFLOW] The size argument exceeds INT_MAX + 1, or the return value would be too large

to be represented by an int.

SEE ALSO
printf(1), errno(2), fmtcheck(3), scanf(3), setlocale(3), strerror(3), wprintf(3)

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

STANDARDS
Subject to the caveats noted in the BUGS section below, the fprintf(), printf(), sprintf(), vprintf(),
vfprintf(), and vsprintf() functions conform to ANSI X3.159-1989 ("ANSI C89") and ISO/IEC

9899:1999 ("ISO C99"). With the same reservation, the snprintf() and vsnprintf() functions conform to

ISO/IEC 9899:1999 ("ISO C99"), while dprintf() and vdprintf() conform to IEEE Std 1003.1-2008

("POSIX.1").

HISTORY
The functions asprintf() and vasprintf() first appeared in the GNU C library. These were implemented

by Peter Wemm <peter@FreeBSD.org> in FreeBSD 2.2, but were later replaced with a different

implementation from OpenBSD 2.3 by Todd C. Miller <Todd.Miller@courtesan.com>. The dprintf()
and vdprintf() functions were added in FreeBSD 8.0. The %m format extension first appeared in the

GNU C library, and was implemented in FreeBSD 12.0.

BUGS
The printf family of functions do not correctly handle multibyte characters in the format argument.

SECURITY CONSIDERATIONS
The sprintf() and vsprintf() functions are easily misused in a manner which enables malicious users to

arbitrarily change a running program’s functionality through a buffer overflow attack. Because sprintf()
and vsprintf() assume an infinitely long string, callers must be careful not to overflow the actual space;

this is often hard to assure. For safety, programmers should use the snprintf() interface instead. For

example:

void

foo(const char *arbitrary_string, const char *and_another)

{

char onstack[8];

#ifdef BAD

/*

* This first sprintf is bad behavior. Do not use sprintf!

*/

sprintf(onstack, "%s, %s", arbitrary_string, and_another);

#else

/*

* The following two lines demonstrate better use of

* snprintf().

*/

snprintf(onstack, sizeof(onstack), "%s, %s", arbitrary_string,

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

and_another);

#endif

}

The printf() and sprintf() family of functions are also easily misused in a manner allowing malicious

users to arbitrarily change a running program’s functionality by either causing the program to print

potentially sensitive data "left on the stack", or causing it to generate a memory fault or bus error by

dereferencing an invalid pointer.

%n can be used to write arbitrary data to potentially carefully-selected addresses. Programmers are

therefore strongly advised to never pass untrusted strings as the format argument, as an attacker can put

format specifiers in the string to mangle your stack, leading to a possible security hole. This holds true

even if the string was built using a function like snprintf(), as the resulting string may still contain user-

supplied conversion specifiers for later interpolation by printf().

Always use the proper secure idiom:

snprintf(buffer, sizeof(buffer), "%s", string);

PRINTF(3) FreeBSD Library Functions Manual PRINTF(3)

FreeBSD 14.0-RELEASE-p6 September 5, 2023 FreeBSD 14.0-RELEASE-p6

