
NAME
vfork - create a new process without copying the address space

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <unistd.h>

pid_t

vfork(void);

DESCRIPTION
Since this function is hard to use correctly from application software, it is recommended to use
posix_spawn(3) or fork(2) instead.

The vfork() system call can be used to create new processes without fully copying the address space of

the old process, which is inefficient in a paged environment. It is useful when the purpose of fork(2)

would have been to create a new system context for an execve(2). The vfork() system call differs from

fork(2) in that the child borrows the parent process’s address space and the calling thread’s stack until a

call to execve(2) or an exit (either by a call to _exit(2) or abnormally). The calling thread is suspended

while the child is using its resources. Other threads continue to run.

The vfork() system call returns 0 in the child’s context and (later) the pid of the child in the parent’s

context.

Many problems can occur when replacing fork(2) with vfork(). For example, it does not work to return

while running in the child’s context from the procedure that called vfork() since the eventual return from

vfork() would then return to a no longer existent stack frame. Also, changing process state which is

partially implemented in user space such as signal handlers with libthr(3) will corrupt the parent’s state.

Be careful, also, to call _exit(2) rather than exit(3) if you cannot execve(2), since exit(3) will flush and

close standard I/O channels, and thereby mess up the parent processes standard I/O data structures.

(Even with fork(2) it is wrong to call exit(3) since buffered data would then be flushed twice.)

RETURN VALUES
Same as for fork(2).

SEE ALSO
_exit(2), execve(2), fork(2), rfork(2), sigaction(2), wait(2), exit(3), posix_spawn(3)

VFORK(2) FreeBSD System Calls Manual VFORK(2)

FreeBSD 14.0-RELEASE-p11 May 22, 2016 FreeBSD 14.0-RELEASE-p11



HISTORY
The vfork() system call appeared in 3BSD.

BUGS
To avoid a possible deadlock situation, processes that are children in the middle of a vfork() are never

sent SIGTTOU or SIGTTIN signals; rather, output or ioctl(2) calls are allowed and input attempts result

in an end-of-file indication.

VFORK(2) FreeBSD System Calls Manual VFORK(2)

FreeBSD 14.0-RELEASE-p11 May 22, 2016 FreeBSD 14.0-RELEASE-p11


