
NAME
wprintf, fwprintf, swprintf, vwprintf, vfwprintf, vswprintf - formatted wide character output conversion

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int

fwprintf(FILE * restrict stream, const wchar_t * restrict format, ...);

int

swprintf(wchar_t * restrict ws, size_t n, const wchar_t * restrict format, ...);

int

wprintf(const wchar_t * restrict format, ...);

#include <stdarg.h>

int

vfwprintf(FILE * restrict stream, const wchar_t * restrict, va_list ap);

int

vswprintf(wchar_t * restrict ws, size_t n, const wchar_t *restrict format, va_list ap);

int

vwprintf(const wchar_t * restrict format, va_list ap);

DESCRIPTION
The wprintf() family of functions produces output according to a format as described below. The

wprintf() and vwprintf() functions write output to stdout, the standard output stream; fwprintf() and

vfwprintf() write output to the given output stream; swprintf() and vswprintf() write to the wide

character string ws.

These functions write the output under the control of a format string that specifies how subsequent

arguments (or arguments accessed via the variable-length argument facilities of stdarg(3)) are converted

for output.

WPRINTF(3) FreeBSD Library Functions Manual WPRINTF(3)

FreeBSD 14.2-RELEASE July 5, 2003 FreeBSD 14.2-RELEASE



These functions return the number of characters printed (not including the trailing ‘\0’ used to end

output to strings).

The swprintf() and vswprintf() functions will fail if n or more wide characters were requested to be

written,

The format string is composed of zero or more directives: ordinary characters (not %), which are copied

unchanged to the output stream; and conversion specifications, each of which results in fetching zero or

more subsequent arguments. Each conversion specification is introduced by the % character. The

arguments must correspond properly (after type promotion) with the conversion specifier. After the %,

the following appear in sequence:

+o An optional field, consisting of a decimal digit string followed by a $, specifying the next argument

to access. If this field is not provided, the argument following the last argument accessed will be

used. Arguments are numbered starting at 1. If unaccessed arguments in the format string are

interspersed with ones that are accessed the results will be indeterminate.

+o Zero or more of the following flags:

‘#’ The value should be converted to an "alternate form". For c, d, i, n, p, s, and u
conversions, this option has no effect. For o conversions, the precision of the number is

increased to force the first character of the output string to a zero (except if a zero value

is printed with an explicit precision of zero). For x and X conversions, a non-zero result

has the string ‘0x’ (or ‘0X’ for X conversions) prepended to it. For a, A, e, E, f, F, g,

and G conversions, the result will always contain a decimal point, even if no digits

follow it (normally, a decimal point appears in the results of those conversions only if a

digit follows). For g and G conversions, trailing zeros are not removed from the result

as they would otherwise be.

‘0’ (zero) Zero padding. For all conversions except n, the converted value is padded on the left

with zeros rather than blanks. If a precision is given with a numeric conversion (d, i, o,

u, i, x, and X), the 0 flag is ignored.

‘-’ A negative field width flag; the converted value is to be left adjusted on the field

boundary. Except for n conversions, the converted value is padded on the right with

blanks, rather than on the left with blanks or zeros. A - overrides a 0 if both are given.

‘ ’ (space) A blank should be left before a positive number produced by a signed conversion (a, A,

d, e, E, f, F, g, G, or i).

WPRINTF(3) FreeBSD Library Functions Manual WPRINTF(3)

FreeBSD 14.2-RELEASE July 5, 2003 FreeBSD 14.2-RELEASE



‘+’ A sign must always be placed before a number produced by a signed conversion. A +
overrides a space if both are used.

‘’’ Decimal conversions (d, u, or i) or the integral portion of a floating point conversion (f
or F) should be grouped and separated by thousands using the non-monetary separator

returned by localeconv(3).

+o An optional decimal digit string specifying a minimum field width. If the converted value has fewer

characters than the field width, it will be padded with spaces on the left (or right, if the left-

adjustment flag has been given) to fill out the field width.

+o An optional precision, in the form of a period . followed by an optional digit string. If the digit

string is omitted, the precision is taken as zero. This gives the minimum number of digits to appear

for d, i, o, u, x, and X conversions, the number of digits to appear after the decimal-point for a, A, e,

E, f, and F conversions, the maximum number of significant digits for g and G conversions, or the

maximum number of characters to be printed from a string for s conversions.

+o An optional length modifier, that specifies the size of the argument. The following length modifiers

are valid for the d, i, n, o, u, x, or X conversion:

Modifier d, i o, u, x, X n
hh signed char unsigned char signed char *

h short unsigned short short *

l (ell) long unsigned long long *

ll (ell ell) long long unsigned long long long long *

j intmax_t uintmax_t intmax_t *

t ptrdiff_t (see note) ptrdiff_t *

z (see note) size_t (see note)

q (deprecated) quad_t u_quad_t quad_t *

Note: the t modifier, when applied to a o, u, x, or X conversion, indicates that the argument is of an

unsigned type equivalent in size to a ptrdiff_t. The z modifier, when applied to a d or i conversion,

indicates that the argument is of a signed type equivalent in size to a size_t. Similarly, when applied

to an n conversion, it indicates that the argument is a pointer to a signed type equivalent in size to a

size_t.

The following length modifier is valid for the a, A, e, E, f, F, g, or G conversion:

Modifier a, A, e, E, f, F, g, G
L long double

WPRINTF(3) FreeBSD Library Functions Manual WPRINTF(3)

FreeBSD 14.2-RELEASE July 5, 2003 FreeBSD 14.2-RELEASE



The following length modifier is valid for the c or s conversion:

Modifier c s
l (ell) wint_t wchar_t *

+o A character that specifies the type of conversion to be applied.

A field width or precision, or both, may be indicated by an asterisk ‘*’ or an asterisk followed by one or

more decimal digits and a ‘$’ instead of a digit string. In this case, an int argument supplies the field

width or precision. A negative field width is treated as a left adjustment flag followed by a positive field

width; a negative precision is treated as though it were missing. If a single format directive mixes

positional (nn$) and non-positional arguments, the results are undefined.

The conversion specifiers and their meanings are:

diouxX The int (or appropriate variant) argument is converted to signed decimal (d and i), unsigned

octal (o), unsigned decimal (u), or unsigned hexadecimal (x and X) notation. The letters

"abcdef" are used for x conversions; the letters "ABCDEF" are used for X conversions. The

precision, if any, gives the minimum number of digits that must appear; if the converted value

requires fewer digits, it is padded on the left with zeros.

DOU The long int argument is converted to signed decimal, unsigned octal, or unsigned decimal, as if

the format had been ld, lo, or lu respectively. These conversion characters are deprecated, and

will eventually disappear.

eE The double argument is rounded and converted in the style [-]d.ddde+-dd where there is one

digit before the decimal-point character and the number of digits after it is equal to the

precision; if the precision is missing, it is taken as 6; if the precision is zero, no decimal-point

character appears. An E conversion uses the letter ‘E’ (rather than ‘e’) to introduce the

exponent. The exponent always contains at least two digits; if the value is zero, the exponent is

00.

For a, A, e, E, f, F, g, and G conversions, positive and negative infinity are represented as inf

and -inf respectively when using the lowercase conversion character, and INF and -INF

respectively when using the uppercase conversion character. Similarly, NaN is represented as

nan when using the lowercase conversion, and NAN when using the uppercase conversion.

fF The double argument is rounded and converted to decimal notation in the style [-]ddd.ddd,

where the number of digits after the decimal-point character is equal to the precision

specification. If the precision is missing, it is taken as 6; if the precision is explicitly zero, no

WPRINTF(3) FreeBSD Library Functions Manual WPRINTF(3)

FreeBSD 14.2-RELEASE July 5, 2003 FreeBSD 14.2-RELEASE



decimal-point character appears. If a decimal point appears, at least one digit appears before it.

gG The double argument is converted in style f or e (or F or E for G conversions). The precision

specifies the number of significant digits. If the precision is missing, 6 digits are given; if the

precision is zero, it is treated as 1. Style e is used if the exponent from its conversion is less

than -4 or greater than or equal to the precision. Trailing zeros are removed from the fractional

part of the result; a decimal point appears only if it is followed by at least one digit.

aA The double argument is converted to hexadecimal notation in the style [-]0xh.hhhp[+-]d, where

the number of digits after the hexadecimal-point character is equal to the precision

specification. If the precision is missing, it is taken as enough to exactly represent the floating-

point number; if the precision is explicitly zero, no hexadecimal-point character appears. This

is an exact conversion of the mantissa+exponent internal floating point representation; the

[-]0xh.hhh portion represents exactly the mantissa; only denormalized mantissas have a zero

value to the left of the hexadecimal point. The p is a literal character ‘p’; the exponent is

preceded by a positive or negative sign and is represented in decimal, using only enough

characters to represent the exponent. The A conversion uses the prefix "0X" (rather than "0x"),

the letters "ABCDEF" (rather than "abcdef") to represent the hex digits, and the letter ‘P’

(rather than ‘p’) to separate the mantissa and exponent.

C Treated as c with the l (ell) modifier.

c The int argument is converted to an unsigned char, then to a wchar_t as if by btowc(3), and the

resulting character is written.

If the l (ell) modifier is used, the wint_t argument is converted to a wchar_t and written.

S Treated as s with the l (ell) modifier.

s The char * argument is expected to be a pointer to an array of character type (pointer to a string)

containing a multibyte sequence. Characters from the array are converted to wide characters

and written up to (but not including) a terminating NUL character; if a precision is specified, no

more than the number specified are written. If a precision is given, no null character need be

present; if the precision is not specified, or is greater than the size of the array, the array must

contain a terminating NUL character.

If the l (ell) modifier is used, the wchar_t * argument is expected to be a pointer to an array of

wide characters (pointer to a wide string). Each wide character in the string is written. Wide

characters from the array are written up to (but not including) a terminating wide NUL

character; if a precision is specified, no more than the number specified are written (including

WPRINTF(3) FreeBSD Library Functions Manual WPRINTF(3)

FreeBSD 14.2-RELEASE July 5, 2003 FreeBSD 14.2-RELEASE



shift sequences). If a precision is given, no null character need be present; if the precision is not

specified, or is greater than the number of characters in the string, the array must contain a

terminating wide NUL character.

p The void * pointer argument is printed in hexadecimal (as if by ‘%#x’ or ‘%#lx’).

n The number of characters written so far is stored into the integer indicated by the int * (or

variant) pointer argument. No argument is converted.

% A ‘%’ is written. No argument is converted. The complete conversion specification is ‘%%’.

The decimal point character is defined in the program’s locale (category LC_NUMERIC).

In no case does a non-existent or small field width cause truncation of a numeric field; if the result of a

conversion is wider than the field width, the field is expanded to contain the conversion result.

SEE ALSO
btowc(3), fputws(3), printf(3), putwc(3), setlocale(3), wcsrtombs(3), wscanf(3)

STANDARDS
Subject to the caveats noted in the BUGS section of printf(3), the wprintf(), fwprintf(), swprintf(),
vwprintf(), vfwprintf() and vswprintf() functions conform to ISO/IEC 9899:1999 ("ISO C99").

SECURITY CONSIDERATIONS
Refer to printf(3).

WPRINTF(3) FreeBSD Library Functions Manual WPRINTF(3)

FreeBSD 14.2-RELEASE July 5, 2003 FreeBSD 14.2-RELEASE


