
NAME
vlan - IEEE 802.1Q VLAN network interface

SYNOPSIS
To compile this driver into the kernel, place the following line in your kernel configuration file:

device vlan

Alternatively, to load the driver as a module at boot time, place the following line in loader.conf(5):

if_vlan_load="YES"

DESCRIPTION
The vlan driver demultiplexes frames tagged according to the IEEE 802.1Q standard into logical vlan
network interfaces, which allows routing/bridging between multiple VLANs through a single switch

trunk port.

Each vlan interface is created at runtime using interface cloning. This is most easily done with the

ifconfig(8) create command or using the cloned_interfaces variable in rc.conf(5).

To function, a vlan interface must be assigned a parent interface and numeric VLAN tag using

ifconfig(8). A single parent can be assigned to multiple vlan interfaces provided they have different

tags. The parent interface is likely to be an Ethernet card connected to a properly configured switch

port. The VLAN tag should match one of those set up in the switched network.

vlan initially assumes the same minimum length for tagged and untagged frames. This mode is selected

by setting the sysctl(8) variable net.link.vlan.soft_pad to 0 (default). However, there are network

devices that fail to adjust frame length when it falls below the allowed minimum due to untagging. Such

devices should be able to interoperate with vlan after changing the value of net.link.vlan.soft_pad to 1.

In the latter mode, vlan will pad short frames before tagging them so that their length is not less than the

minimum value after untagging by the non-compliant devices.

HARDWARE
The vlan driver supports efficient operation over parent interfaces that can provide help in processing

VLANs. Such interfaces are automatically recognized by their capabilities. Depending on the level of

sophistication found in a physical interface, it may do full VLAN processing or just be able to receive

and transmit long frames (up to 1522 bytes including an Ethernet header and FCS). The capabilities

may be user-controlled by the respective parameters to ifconfig(8), vlanhwtag, and vlanmtu. However, a

physical interface is not obliged to react to them: It may have either capability enabled permanently

without a way to turn it off. The whole issue is very specific to a particular device and its driver.

VLAN(4) FreeBSD Kernel Interfaces Manual VLAN(4)

FreeBSD 14.2-RELEASE December 26, 2020 FreeBSD 14.2-RELEASE



At present, these devices are capable of full VLAN processing in hardware: ae(4), age(4), alc(4), ale(4),

bce(4), bge(4), bxe(4), cxgb(4), cxgbe(4), em(4), igb(4), ix(4), jme(4), liquidio(4), msk(4), mxge(4),

nge(4), re(4), sge(4), stge(4), ti(4), and vge(4).

Other Ethernet interfaces can run VLANs using software emulation in the vlan driver. However, some

lack the capability of transmitting and receiving long frames. Assigning such an interface as the parent

to vlan will result in a reduced MTU on the corresponding vlan interfaces. In the modern Internet, this is

likely to cause tcp(4) connectivity problems due to massive, inadequate icmp(4) filtering that breaks the

Path MTU Discovery mechanism.

These interfaces natively support long frames for vlan: axe(4), bfe(4), cas(4), dc(4), et(4), fwe(4), fxp(4),

gem(4), le(4), nfe(4), rl(4), sis(4), sk(4), ste(4), vr(4), vte(4), and xl(4).

The vlan driver automatically recognizes devices that natively support long frames for vlan use and

calculates the appropriate frame MTU based on the capabilities of the parent interface. Some other

interfaces not listed above may handle long frames, but they do not advertise this ability. The MTU

setting on vlan can be corrected manually if used in conjunction with such a parent interface.

SEE ALSO
ifconfig(8), sysctl(8)

VLAN(4) FreeBSD Kernel Interfaces Manual VLAN(4)

FreeBSD 14.2-RELEASE December 26, 2020 FreeBSD 14.2-RELEASE


