
NAME
wscanf, fwscanf, swscanf, vwscanf, vswscanf, vfwscanf - wide character input format conversion

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <stdio.h>
#include <wchar.h>

int

wscanf(const wchar_t * restrict format, ...);

int

fwscanf(FILE * restrict stream, const wchar_t * restrict format, ...);

int

swscanf(const wchar_t * restrict str, const wchar_t * restrict format, ...);

#include <stdarg.h>

int

vwscanf(const wchar_t * restrict format, va_list ap);

int

vswscanf(const wchar_t * restrict str, const wchar_t * restrict format, va_list ap);

int

vfwscanf(FILE * restrict stream, const wchar_t * restrict format, va_list ap);

DESCRIPTION
The wscanf() family of functions scans input according to a format as described below. This format

may contain conversion specifiers; the results from such conversions, if any, are stored through the

pointer arguments. The wscanf() function reads input from the standard input stream stdin, fwscanf()
reads input from the stream pointer stream, and swscanf() reads its input from the wide character string

pointed to by str. The vfwscanf() function is analogous to vfwprintf(3) and reads input from the stream

pointer stream using a variable argument list of pointers (see stdarg(3)). The vwscanf() function scans a

variable argument list from the standard input and the vswscanf() function scans it from a wide character

string; these are analogous to the vwprintf() and vswprintf() functions respectively. Each successive

pointer argument must correspond properly with each successive conversion specifier (but see the *

WSCANF(3) FreeBSD Library Functions Manual WSCANF(3)

FreeBSD 14.0-RELEASE-p11 July 5, 2003 FreeBSD 14.0-RELEASE-p11

conversion below). All conversions are introduced by the % (percent sign) character. The format string

may also contain other characters. White space (such as blanks, tabs, or newlines) in the format string

match any amount of white space, including none, in the input. Everything else matches only itself.

Scanning stops when an input character does not match such a format character. Scanning also stops

when an input conversion cannot be made (see below).

CONVERSIONS
Following the % character introducing a conversion there may be a number of flag characters, as

follows:

* Suppresses assignment. The conversion that follows occurs as usual, but no pointer is used;

the result of the conversion is simply discarded.

hh Indicates that the conversion will be one of dioux or n and the next pointer is a pointer to a

char (rather than int).

h Indicates that the conversion will be one of dioux or n and the next pointer is a pointer to a

short int (rather than int).

l (ell) Indicates that the conversion will be one of dioux or n and the next pointer is a pointer to a

long int (rather than int), that the conversion will be one of a, e, f, or g and the next pointer is

a pointer to double (rather than float), or that the conversion will be one of c or s and the next

pointer is a pointer to an array of wchar_t (rather than char).

ll (ell ell)

Indicates that the conversion will be one of dioux or n and the next pointer is a pointer to a

long long int (rather than int).

L Indicates that the conversion will be one of a, e, f, or g and the next pointer is a pointer to long

double.

j Indicates that the conversion will be one of dioux or n and the next pointer is a pointer to a

intmax_t (rather than int).

t Indicates that the conversion will be one of dioux or n and the next pointer is a pointer to a

ptrdiff_t (rather than int).

z Indicates that the conversion will be one of dioux or n and the next pointer is a pointer to a

size_t (rather than int).

WSCANF(3) FreeBSD Library Functions Manual WSCANF(3)

FreeBSD 14.0-RELEASE-p11 July 5, 2003 FreeBSD 14.0-RELEASE-p11

q (deprecated.) Indicates that the conversion will be one of dioux or n and the next pointer is a

pointer to a long long int (rather than int).

In addition to these flags, there may be an optional maximum field width, expressed as a decimal

integer, between the % and the conversion. If no width is given, a default of "infinity" is used (with one

exception, below); otherwise at most this many characters are scanned in processing the conversion.

Before conversion begins, most conversions skip white space; this white space is not counted against the

field width.

The following conversions are available:

% Matches a literal ‘%’. That is, "%%" in the format string matches a single input ‘%’ character.

No conversion is done, and assignment does not occur.

d Matches an optionally signed decimal integer; the next pointer must be a pointer to int.

i Matches an optionally signed integer; the next pointer must be a pointer to int. The integer is

read in base 16 if it begins with ‘0x’ or ‘0X’, in base 8 if it begins with ‘0’, and in base 10

otherwise. Only characters that correspond to the base are used.

o Matches an octal integer; the next pointer must be a pointer to unsigned int.

u Matches an optionally signed decimal integer; the next pointer must be a pointer to unsigned int.

x, X Matches an optionally signed hexadecimal integer; the next pointer must be a pointer to

unsigned int.

a, A, e, E, f, F, g, G
Matches a floating-point number in the style of wcstod(3). The next pointer must be a pointer

to float (unless l or L is specified.)

s Matches a sequence of non-white-space wide characters; the next pointer must be a pointer to

char, and the array must be large enough to accept the multibyte representation of all the

sequence and the terminating NUL character. The input string stops at white space or at the

maximum field width, whichever occurs first.

If an l qualifier is present, the next pointer must be a pointer to wchar_t, into which the input

will be placed.

S The same as ls.

WSCANF(3) FreeBSD Library Functions Manual WSCANF(3)

FreeBSD 14.0-RELEASE-p11 July 5, 2003 FreeBSD 14.0-RELEASE-p11

c Matches a sequence of width count wide characters (default 1); the next pointer must be a

pointer to char, and there must be enough room for the multibyte representation of all the

characters (no terminating NUL is added). The usual skip of leading white space is suppressed.

To skip white space first, use an explicit space in the format.

If an l qualifier is present, the next pointer must be a pointer to wchar_t, into which the input

will be placed.

C The same as lc.

[Matches a nonempty sequence of characters from the specified set of accepted characters; the

next pointer must be a pointer to char, and there must be enough room for the multibyte

representation of all the characters in the string, plus a terminating NUL character. The usual

skip of leading white space is suppressed. The string is to be made up of characters in (or not

in) a particular set; the set is defined by the characters between the open bracket [character and

a close bracket] character. The set excludes those characters if the first character after the open

bracket is a circumflex ^. To include a close bracket in the set, make it the first character after

the open bracket or the circumflex; any other position will end the set. To include a hyphen in

the set, make it the last character before the final close bracket; some implementations of

wscanf() use "A-Z" to represent the range of characters between ‘A’ and ‘Z’. The string ends

with the appearance of a character not in the (or, with a circumflex, in) set or when the field

width runs out.

If an l qualifier is present, the next pointer must be a pointer to wchar_t, into which the input

will be placed.

p Matches a pointer value (as printed by ‘%p’ in wprintf(3)); the next pointer must be a pointer to

void.

n Nothing is expected; instead, the number of characters consumed thus far from the input is

stored through the next pointer, which must be a pointer to int. This is not a conversion,

although it can be suppressed with the * flag.

The decimal point character is defined in the program’s locale (category LC_NUMERIC).

For backwards compatibility, a "conversion" of ‘%\0’ causes an immediate return of EOF.

RETURN VALUES
These functions return the number of input items assigned, which can be fewer than provided for, or

even zero, in the event of a matching failure. Zero indicates that, while there was input available, no

WSCANF(3) FreeBSD Library Functions Manual WSCANF(3)

FreeBSD 14.0-RELEASE-p11 July 5, 2003 FreeBSD 14.0-RELEASE-p11

conversions were assigned; typically this is due to an invalid input character, such as an alphabetic

character for a ‘%d’ conversion. The value EOF is returned if an input failure occurs before any

conversion such as an end-of-file occurs. If an error or end-of-file occurs after conversion has begun,

the number of conversions which were successfully completed is returned.

SEE ALSO
fgetwc(3), scanf(3), wcrtomb(3), wcstod(3), wcstol(3), wcstoul(3), wprintf(3)

STANDARDS
The fwscanf(), wscanf(), swscanf(), vfwscanf(), vwscanf() and vswscanf() functions conform to

ISO/IEC 9899:1999 ("ISO C99").

BUGS
In addition to the bugs documented in scanf(3), wscanf() does not support the "A-Z" notation for

specifying character ranges with the character class conversion (‘%[’).

WSCANF(3) FreeBSD Library Functions Manual WSCANF(3)

FreeBSD 14.0-RELEASE-p11 July 5, 2003 FreeBSD 14.0-RELEASE-p11

