
NAME
wait, waitid, waitpid, wait3, wait4, wait6 - wait for processes to change status

LIBRARY
Standard C Library (libc, -lc)

SYNOPSIS
#include <sys/wait.h>

pid_t

wait(int *status);

pid_t

waitpid(pid_t wpid, int *status, int options);

#include <signal.h>

int

waitid(idtype_t idtype, id_t id, siginfo_t *info, int options);

#include <sys/time.h>
#include <sys/resource.h>

pid_t

wait3(int *status, int options, struct rusage *rusage);

pid_t

wait4(pid_t wpid, int *status, int options, struct rusage *rusage);

pid_t

wait6(idtype_t idtype, id_t id, int *status, int options, struct __wrusage *wrusage, siginfo_t *infop);

DESCRIPTION
The wait() function suspends execution of its calling thread until status information is available for a

child process or a signal is received. On return from a successful wait() call, the status area contains

information about the process that reported a status change as defined below.

The wait4() and wait6() system calls provide a more general interface for programs that need to wait for

specific child processes, that need resource utilization statistics accumulated by child processes, or that

require options. The other wait functions are implemented using either wait4() or wait6().

WAIT(2) FreeBSD System Calls Manual WAIT(2)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



The wait6() function is the most general function in this family and its distinct features are:

All of the desired process statuses to be waited on must be explicitly specified in options. The wait(),
waitpid(), wait3(), and wait4() functions all implicitly wait for exited and trapped processes, but the

waitid() and wait6() functions require the corresponding WEXITED and WTRAPPED flags to be

explicitly specified. This allows waiting for processes which have experienced other status changes

without having to also handle the exit status from terminated processes.

The wait6() function accepts a wrusage argument which points to a structure defined as:

struct __wrusage {

struct rusage wru_self;

struct rusage wru_children;

};

This allows the calling process to collect resource usage statistics from both its own child process as

well as from its grand children. When no resource usage statistics are needed this pointer can be NULL.

The last argument infop must be either NULL or a pointer to a siginfo_t structure. If non-NULL, the

structure is filled with the same data as for a SIGCHLD signal delivered when the process changed state.

The set of child processes to be queried is specified by the arguments idtype and id. The separate idtype

and id arguments support many other types of identifiers in addition to process IDs and process group

IDs.

+o If idtype is P_PID, waitid() and wait6() wait for the child process with a process ID equal to

(pid_t)id.

+o If idtype is P_PGID, waitid() and wait6() wait for the child process with a process group ID

equal to (pid_t)id.

+o If idtype is P_ALL, waitid() and wait6() wait for any child process and the id is ignored.

+o If idtype is P_PID or P_PGID and the id is zero, waitid() and wait6() wait for any child

process in the same process group as the caller.

Non-standard identifier types supported by this implementation of waitid() and wait6() are:

P_UID Wait for processes whose effective user ID is equal to (uid_t) id.

WAIT(2) FreeBSD System Calls Manual WAIT(2)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



P_GID Wait for processes whose effective group ID is equal to (gid_t) id.

P_SID Wait for processes whose session ID is equal to id. If the child process started its own

session, its session ID will be the same as its process ID. Otherwise the session ID of a child

process will match the caller’s session ID.

P_JAILID Waits for processes within a jail whose jail identifier is equal to id.

For the waitpid() and wait4() functions, the single wpid argument specifies the set of child processes for

which to wait.

+o If wpid is -1, the call waits for any child process.

+o If wpid is 0, the call waits for any child process in the process group of the caller.

+o If wpid is greater than zero, the call waits for the process with process ID wpid.

+o If wpid is less than -1, the call waits for any process whose process group ID equals the

absolute value of wpid.

The status argument is defined below.

The options argument contains the bitwise OR of any of the following options.

WCONTINUED Report the status of selected processes that have continued from a job control stop by

receiving a SIGCONT signal.

WNOHANG Do not block when there are no processes wishing to report status.

WUNTRACED Report the status of selected processes which are stopped due to a SIGTTIN,

SIGTTOU, SIGTSTP, or SIGSTOP signal.

WSTOPPED An alias for WUNTRACED.

WTRAPPED Report the status of selected processes which are being traced via ptrace(2) and have

trapped or reached a breakpoint. This flag is implicitly set for the functions wait(),
waitpid(), wait3(), and wait4().

For the waitid() and wait6() functions, the flag has to be explicitly included in options

if status reports from trapped processes are expected.

WAIT(2) FreeBSD System Calls Manual WAIT(2)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



WEXITED Report the status of selected processes which have terminated. This flag is implicitly

set for the functions wait(), waitpid(), wait3(), and wait4().

For the waitid() and wait6() functions, the flag has to be explicitly included in options

if status reports from terminated processes are expected.

WNOWAIT Keep the process whose status is returned in a waitable state. The process may be

waited for again after this call completes.

For the waitid() and wait6() functions, at least one of the options WEXITED, WUNTRACED,

WSTOPPED, WTRAPPED, or WCONTINUED must be specified. Otherwise there will be no events

for the call to report. To avoid hanging indefinitely in such a case these functions return -1 with errno

set to EINVAL.

If rusage is non-NULL, a summary of the resources used by the terminated process and all its children is

returned.

If wrusage is non-NULL, separate summaries are returned for the resources used by the terminated

process and the resources used by all its children.

If infop is non-NULL, a siginfo_t structure is returned with the si_signo field set to SIGCHLD and the

si_pid field set to the process ID of the process reporting status. For the exited process, the si_status

field of the siginfo_t structure contains the full 32 bit exit status passed to _exit(2); the status argument

of other calls only returns 8 lowest bits of the exit status.

When the WNOHANG option is specified and no processes wish to report status, waitid() sets the

si_signo and si_pid fields in infop to zero. Checking these fields is the only way to know if a status

change was reported.

When the WNOHANG option is specified and no processes wish to report status, wait4() and wait6()

return a process id of 0.

The wait() call is the same as wait4() with a wpid value of -1, with an options value of zero, and a

rusage value of NULL. The waitpid() function is identical to wait4() with an rusage value of NULL.

The older wait3() call is the same as wait4() with a wpid value of -1. The wait4() function is identical to

wait6() with the flags WEXITED and WTRAPPED set in options and infop set to NULL.

The following macros may be used to test the current status of the process. Exactly one of the following

four macros will evaluate to a non-zero (true) value:

WIFCONTINUED(status)

WAIT(2) FreeBSD System Calls Manual WAIT(2)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



True if the process has not terminated, and has continued after a job control stop. This macro

can be true only if the wait call specified the WCONTINUED option.

WIFEXITED(status)

True if the process terminated normally by a call to _exit(2) or exit(3).

WIFSIGNALED(status)

True if the process terminated due to receipt of a signal.

WIFSTOPPED(status)

True if the process has not terminated, but has stopped and can be restarted. This macro can be

true only if the wait call specified the WUNTRACED option or if the child process is being

traced (see ptrace(2)).

Depending on the values of those macros, the following macros produce the remaining status

information about the child process:

WEXITSTATUS(status)

If WIFEXITED(status) is true, evaluates to the low-order 8 bits of the argument passed to

_exit(2) or exit(3) by the child.

WTERMSIG(status)

If WIFSIGNALED(status) is true, evaluates to the number of the signal that caused the

termination of the process.

WCOREDUMP(status)

If WIFSIGNALED(status) is true, evaluates as true if the termination of the process was

accompanied by the creation of a core file containing an image of the process when the signal

was received.

WSTOPSIG(status)

If WIFSTOPPED(status) is true, evaluates to the number of the signal that caused the process to

stop.

NOTES
See sigaction(2) for a list of termination signals. A status of 0 indicates normal termination.

If a parent process terminates without waiting for all of its child processes to terminate, the remaining

child processes are re-assigned to the reaper of the exiting process as the parent, see procctl(2)

PROC_REAP_ACQUIRE. If no specific reaper was assigned, the process with ID 1, the init process,

WAIT(2) FreeBSD System Calls Manual WAIT(2)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



becomes the parent of the orphaned children by default.

If a signal is caught while any of the wait() calls are pending, the call may be interrupted or restarted

when the signal-catching routine returns, depending on the options in effect for the signal; see discussion

of SA_RESTART in sigaction(2).

The implementation queues one SIGCHLD signal for each child process whose status has changed; if

wait() returns because the status of a child process is available, the pending SIGCHLD signal associated

with the process ID of the child process will be discarded. Any other pending SIGCHLD signals remain

pending.

If SIGCHLD is blocked and wait() returns because the status of a child process is available, the pending

SIGCHLD signal will be cleared unless another status of the child process is available.

RETURN VALUES
If wait() returns due to a stopped, continued, or terminated child process, the process ID of the child is

returned to the calling process. Otherwise, a value of -1 is returned and errno is set to indicate the error.

If wait6(), wait4(), wait3(), or waitpid() returns due to a stopped, continued, or terminated child process,

the process ID of the child is returned to the calling process. If there are no children not previously

awaited, -1 is returned with errno set to ECHILD. Otherwise, if WNOHANG is specified and there are

no stopped, continued or exited children, 0 is returned. If an error is detected or a caught signal aborts

the call, a value of -1 is returned and errno is set to indicate the error.

If waitid() returns because one or more processes have a state change to report, 0 is returned. If an error

is detected, a value of -1 is returned and errno is set to indicate the error. If WNOHANG is specified

and there are no stopped, continued or exited children, 0 is returned. The si_signo and si_pid fields of

infop must be checked against zero to determine if a process reported status.

The wait() family of functions will not return a child process created with pdfork(2) unless specifically

directed to do so by specifying its process ID.

ERRORS
The wait() function will fail and return immediately if:

[ECHILD] The calling process has no existing unwaited-for child processes.

[ECHILD] No status from the terminated child process is available because the calling

process has asked the system to discard such status by ignoring the signal

SIGCHLD or setting the flag SA_NOCLDWAIT for that signal.

WAIT(2) FreeBSD System Calls Manual WAIT(2)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11



[EFAULT] The status or rusage argument points to an illegal address. (May not be detected

before exit of a child process.)

[EINTR] The call was interrupted by a caught signal, or the signal did not have the

SA_RESTART flag set.

[EINVAL] An invalid value was specified for options, or idtype and id do not specify a valid

set of processes.

SEE ALSO
_exit(2), procctl(2), ptrace(2), sigaction(2), exit(3), siginfo(3)

STANDARDS
The wait(), waitpid(), and waitid() functions are defined by POSIX; wait6(), wait4(), and wait3() are not

specified by POSIX. The WCOREDUMP() macro is an extension to the POSIX interface.

The ability to use the WNOWAIT flag with waitpid() is an extension; POSIX only permits this flag with

waitid().

HISTORY
The wait() function appeared in Version 1 AT&T UNIX.

WAIT(2) FreeBSD System Calls Manual WAIT(2)

FreeBSD 14.0-RELEASE-p11 June 24, 2022 FreeBSD 14.0-RELEASE-p11


