
NAME
msleep, msleep_sbt, msleep_spin, msleep_spin_sbt, pause, pause_sig, pause_sbt, tsleep, tsleep_sbt,
wakeup, wakeup_one, wakeup_any - wait for events

SYNOPSIS
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/proc.h>

int

msleep(const void *chan, struct mtx *mtx, int priority, const char *wmesg, int timo);

int

msleep_sbt(const void *chan, struct mtx *mtx, int priority, const char *wmesg, sbintime_t sbt,

sbintime_t pr, int flags);

int

msleep_spin(const void *chan, struct mtx *mtx, const char *wmesg, int timo);

int

msleep_spin_sbt(const void *chan, struct mtx *mtx, const char *wmesg, sbintime_t sbt, sbintime_t pr,

int flags);

int

pause(const char *wmesg, int timo);

int

pause_sig(const char *wmesg, int timo);

int

pause_sbt(const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags);

int

tsleep(const void *chan, int priority, const char *wmesg, int timo);

int

tsleep_sbt(const void *chan, int priority, const char *wmesg, sbintime_t sbt, sbintime_t pr, int flags);

void

wakeup(const void *chan);

SLEEP(9) FreeBSD Kernel Developer’s Manual SLEEP(9)

FreeBSD 14.0-RELEASE-p11 June 19, 2019 FreeBSD 14.0-RELEASE-p11



void

wakeup_one(const void *chan);

void

wakeup_any(const void *chan);

DESCRIPTION
The functions tsleep(), msleep(), msleep_spin(), pause(), pause_sig(), pause_sbt(), wakeup(),

wakeup_one(), and wakeup_any() handle event-based thread blocking. If a thread must wait for an

external event, it is put to sleep by tsleep(), msleep(), msleep_spin(), pause(), pause_sig(), or

pause_sbt(). Threads may also wait using one of the locking primitive sleep routines mtx_sleep(9),

rw_sleep(9), or sx_sleep(9).

The parameter chan is an arbitrary address that uniquely identifies the event on which the thread is being

put to sleep. All threads sleeping on a single chan are woken up later by wakeup(), often called from

inside an interrupt routine, to indicate that the resource the thread was blocking on is available now.

The parameter priority specifies a new priority for the thread as well as some optional flags. If the new

priority is not 0, then the thread will be made runnable with the specified priority when it resumes.

PZERO should never be used, as it is for compatibility only. A new priority of 0 means to use the

thread’s current priority when it is made runnable again.

If priority includes the PCATCH flag, pending signals are allowed to interrupt the sleep, otherwise

pending signals are ignored during the sleep. If PCATCH is set and a signal becomes pending,

ERESTART is returned if the current system call should be restarted if possible, and EINTR is returned

if the system call should be interrupted by the signal (return EINTR).

The parameter wmesg is a string describing the sleep condition for tools like ps(1). Due to the limited

space of those programs to display arbitrary strings, this message should not be longer than 6 characters.

The parameter timo specifies a timeout for the sleep. If timo is not 0, then the thread will sleep for at

most timo / hz seconds. If the timeout expires, then the sleep function will return EWOULDBLOCK.

msleep_sbt(), msleep_spin_sbt(), pause_sbt() and tsleep_sbt() functions take sbt parameter instead of

timo. It allows the caller to specify relative or absolute wakeup time with higher resolution in form of

sbintime_t. The parameter pr allows the caller to specify wanted absolute event precision. The

parameter flags allows the caller to pass additional callout_reset_sbt() flags.

Several of the sleep functions including msleep(), msleep_spin(), and the locking primitive sleep

routines specify an additional lock parameter. The lock will be released before sleeping and reacquired

SLEEP(9) FreeBSD Kernel Developer’s Manual SLEEP(9)

FreeBSD 14.0-RELEASE-p11 June 19, 2019 FreeBSD 14.0-RELEASE-p11



before the sleep routine returns. If priority includes the PDROP flag, then the lock will not be

reacquired before returning. The lock is used to ensure that a condition can be checked atomically, and

that the current thread can be suspended without missing a change to the condition, or an associated

wakeup. In addition, all of the sleep routines will fully drop the Giant mutex (even if recursed) while the

thread is suspended and will reacquire the Giant mutex before the function returns. Note that the Giant

mutex may be specified as the lock to drop. In that case, however, the PDROP flag is not allowed.

To avoid lost wakeups, either a lock should be used to protect against races, or a timeout should be

specified to place an upper bound on the delay due to a lost wakeup. As a result, the tsleep() function

should only be invoked with a timeout of 0 when the Giant mutex is held.

The msleep() function requires that mtx reference a default, i.e. non-spin, mutex. Its use is deprecated in

favor of mtx_sleep(9) which provides identical behavior.

The msleep_spin() function requires that mtx reference a spin mutex. The msleep_spin() function does

not accept a priority parameter and thus does not support changing the current thread’s priority, the

PDROP flag, or catching signals via the PCATCH flag.

The pause() function is a wrapper around tsleep() that suspends execution of the current thread for the

indicated timeout. The thread can not be awakened early by signals or calls to wakeup(), wakeup_one()

or wakeup_any(). The pause_sig() function is a variant of pause() which can be awakened early by

signals.

The wakeup_one() function makes the first highest priority thread in the queue that is sleeping on the

parameter chan runnable. This reduces the load when a large number of threads are sleeping on the

same address, but only one of them can actually do any useful work when made runnable.

Due to the way it works, the wakeup_one() function requires that only related threads sleep on a specific

chan address. It is the programmer’s responsibility to choose a unique chan value. The older wakeup()

function did not require this, though it was never good practice for threads to share a chan value. When

converting from wakeup() to wakeup_one(), pay particular attention to ensure that no other threads wait

on the same chan.

The wakeup_any() function is similar to wakeup_one(), except that it makes runnable last thread on the

queue (sleeping less), ignoring fairness. It can be used when threads sleeping on the chan are known to

be identical and there is no reason to be fair.

If the timeout given by timo or sbt is based on an absolute real-time clock value, then the thread should

copy the global rtc_generation into its td_rtcgen member before reading the RTC. If the real-time clock

is adjusted, these functions will set td_rtcgen to zero and return zero. The caller should reconsider its

SLEEP(9) FreeBSD Kernel Developer’s Manual SLEEP(9)

FreeBSD 14.0-RELEASE-p11 June 19, 2019 FreeBSD 14.0-RELEASE-p11



orientation with the new RTC value.

RETURN VALUES
When awakened by a call to wakeup() or wakeup_one(), if a signal is pending and PCATCH is

specified, a non-zero error code is returned. If the thread is awakened by a call to wakeup() or

wakeup_one(), the msleep(), msleep_spin(), tsleep(), and locking primitive sleep functions return 0.

Zero can also be returned when the real-time clock is adjusted; see above regarding td_rtcgen.

Otherwise, a non-zero error code is returned.

ERRORS
msleep(), msleep_spin(), tsleep(), and the locking primitive sleep functions will fail if:

[EINTR] The PCATCH flag was specified, a signal was caught, and the system call should

be interrupted.

[ERESTART] The PCATCH flag was specified, a signal was caught, and the system call should

be restarted.

[EWOULDBLOCK] A non-zero timeout was specified and the timeout expired.

SEE ALSO
ps(1), callout(9), locking(9), malloc(9), mi_switch(9), mtx_sleep(9), rw_sleep(9), sx_sleep(9)

HISTORY
The functions sleep() and wakeup() were present in Version 1 AT&T UNIX. They were probably also

present in the preceding PDP-7 version of UNIX. They were the basic process synchronization model.

The tsleep() function appeared in 4.4BSD and added the parameters wmesg and timo. The sleep()

function was removed in FreeBSD 2.2. The wakeup_one() function appeared in FreeBSD 2.2. The

msleep() function appeared in FreeBSD 5.0, and the msleep_spin() function appeared in FreeBSD 6.2.

The pause() function appeared in FreeBSD 7.0. The pause_sig() function appeared in FreeBSD 12.0.

AUTHORS
This manual page was written by J"org Wunsch <joerg@FreeBSD.org>.

SLEEP(9) FreeBSD Kernel Developer’s Manual SLEEP(9)

FreeBSD 14.0-RELEASE-p11 June 19, 2019 FreeBSD 14.0-RELEASE-p11


