
NAME
warnings - Perl pragma to control optional warnings

SYNOPSIS
use warnings;

no warnings;

use warnings "all";

no warnings "uninitialized";

# or equivalent to those last two ...

use warnings qw(all -uninitialized);

use warnings::register;

if (warnings::enabled()) {

warnings::warn("some warning");

}

if (warnings::enabled("void")) {

warnings::warn("void", "some warning");

}

if (warnings::enabled($object)) {

warnings::warn($object, "some warning");

}

warnings::warnif("some warning");

warnings::warnif("void", "some warning");

warnings::warnif($object, "some warning");

DESCRIPTION
The "warnings" pragma gives control over which warnings are enabled in which parts of a Perl

program. It’s a more flexible alternative for both the command line flag -w and the equivalent Perl

variable, $^W.

This pragma works just like the "strict" pragma. This means that the scope of the warning pragma is

limited to the enclosing block. It also means that the pragma setting will not leak across files (via

"use", "require" or "do"). This allows authors to independently define the degree of warning checks

that will be applied to their module.

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



By default, optional warnings are disabled, so any legacy code that doesn’t attempt to control the

warnings will work unchanged.

All warnings are enabled in a block by either of these:

use warnings;

use warnings ’all’;

Similarly all warnings are disabled in a block by either of these:

no warnings;

no warnings ’all’;

For example, consider the code below:

use warnings;

my @x;

{

no warnings;

my $y = @x[0];

}

my $z = @x[0];

The code in the enclosing block has warnings enabled, but the inner block has them disabled. In this

case that means the assignment to the scalar $z will trip the "Scalar value @x[0] better written as

$x[0]" warning, but the assignment to the scalar $y will not.

Default Warnings and Optional Warnings
Before the introduction of lexical warnings, Perl had two classes of warnings: mandatory and optional.

As its name suggests, if your code tripped a mandatory warning, you would get a warning whether you

wanted it or not. For example, the code below would always produce an "isn’t numeric" warning about

the "2:".

my $x = "2:" + 3;

With the introduction of lexical warnings, mandatory warnings now become default warnings. The

difference is that although the previously mandatory warnings are still enabled by default, they can

then be subsequently enabled or disabled with the lexical warning pragma. For example, in the code

below, an "isn’t numeric" warning will only be reported for the $x variable.

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



my $x = "2:" + 3;

no warnings;

my $y = "2:" + 3;

Note that neither the -w flag or the $^W can be used to disable/enable default warnings. They are still

mandatory in this case.

"Negative warnings"
As a convenience, you can (as of Perl 5.34) pass arguments to the "import()" method both positively

and negatively. Negative warnings are those with a "-" sign prepended to their names; positive

warnings are anything else. This lets you turn on some warnings and turn off others in one command.

So, assuming that you’ve already turned on a bunch of warnings but want to tweak them a bit in some

block, you can do this:

{

use warnings qw(uninitialized -redefine);

...

}

which is equivalent to:

{

use warnings qw(uninitialized);

no warnings qw(redefine);

...

}

The argument list is processed in the order you specify. So, for example, if you don’t want to be

warned about use of experimental features, except for "somefeature" that you really dislike, you can

say this:

use warnings qw(all -experimental experimental::somefeature);

which is equivalent to:

use warnings ’all’;

no warnings ’experimental’;

use warnings ’experimental::somefeature’;

What’s wrong with -w and $^W

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



Although very useful, the big problem with using -w on the command line to enable warnings is that it

is all or nothing. Take the typical scenario when you are writing a Perl program. Parts of the code you

will write yourself, but it’s very likely that you will make use of pre-written Perl modules. If you use

the -w flag in this case, you end up enabling warnings in pieces of code that you haven’t written.

Similarly, using $^W to either disable or enable blocks of code is fundamentally flawed. For a start,

say you want to disable warnings in a block of code. You might expect this to be enough to do the

trick:

{

local ($^W) = 0;

my $x =+ 2;

my $y; chop $y;

}

When this code is run with the -w flag, a warning will be produced for the $x line: "Reversed +=

operator".

The problem is that Perl has both compile-time and run-time warnings. To disable compile-time

warnings you need to rewrite the code like this:

{

BEGIN { $^W = 0 }

my $x =+ 2;

my $y; chop $y;

}

And note that unlike the first example, this will permanently set $^W since it cannot both run during

compile-time and be localized to a run-time block.

The other big problem with $^W is the way you can inadvertently change the warning setting in

unexpected places in your code. For example, when the code below is run (without the -w flag), the

second call to "doit" will trip a "Use of uninitialized value" warning, whereas the first will not.

sub doit

{

my $y; chop $y;

}

doit();

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



{

local ($^W) = 1;

doit()

}

This is a side-effect of $^W being dynamically scoped.

Lexical warnings get around these limitations by allowing finer control over where warnings can or

can’t be tripped.

Controlling Warnings from the Command Line
There are three Command Line flags that can be used to control when warnings are (or aren’t)

produced:

-w This is the existing flag. If the lexical warnings pragma is not used in any of your code, or any

of the modules that you use, this flag will enable warnings everywhere. See "Backward

Compatibility" for details of how this flag interacts with lexical warnings.

-W If the -W flag is used on the command line, it will enable all warnings throughout the program

regardless of whether warnings were disabled locally using "no warnings" or "$^W =0". This

includes all files that get included via "use", "require" or "do". Think of it as the Perl equivalent

of the "lint" command.

-X Does the exact opposite to the -W flag, i.e. it disables all warnings.

Backward Compatibility
If you are used to working with a version of Perl prior to the introduction of lexically scoped warnings,

or have code that uses both lexical warnings and $^W, this section will describe how they interact.

How Lexical Warnings interact with -w/$^W:

1. If none of the three command line flags (-w, -W or -X) that control warnings is used and neither

$^W nor the "warnings" pragma are used, then default warnings will be enabled and optional

warnings disabled. This means that legacy code that doesn’t attempt to control the warnings will

work unchanged.

2. The -w flag just sets the global $^W variable as in 5.005. This means that any legacy code that

currently relies on manipulating $^W to control warning behavior will still work as is.

3. Apart from now being a boolean, the $^W variable operates in exactly the same horrible

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



uncontrolled global way, except that it cannot disable/enable default warnings.

4. If a piece of code is under the control of the "warnings" pragma, both the $^W variable and the

-w flag will be ignored for the scope of the lexical warning.

5. The only way to override a lexical warnings setting is with the -W or -X command line flags.

The combined effect of 3 & 4 is that it will allow code which uses the "warnings" pragma to control the

warning behavior of $^W-type code (using a "local $^W=0") if it really wants to, but not vice-versa.

Category Hierarchy
A hierarchy of "categories" have been defined to allow groups of warnings to be enabled/disabled in

isolation.

The current hierarchy is:

all -+

|

+- closure

|

+- deprecated

|

+- exiting

|

+- experimental --+

| |

| +- experimental::alpha_assertions

| |

| +- experimental::bitwise

| |

| +- experimental::const_attr

| |

| +- experimental::declared_refs

| |

| +- experimental::isa

| |

| +- experimental::lexical_subs

| |

| +- experimental::postderef

| |

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



| +- experimental::private_use

| |

| +- experimental::re_strict

| |

| +- experimental::refaliasing

| |

| +- experimental::regex_sets

| |

| +- experimental::script_run

| |

| +- experimental::signatures

| |

| +- experimental::smartmatch

| |

| +- experimental::try

| |

| +- experimental::uniprop_wildcards

| |

| +- experimental::vlb

| |

| +- experimental::win32_perlio

|

+- glob

|

+- imprecision

|

+- io ------------+

| |

| +- closed

| |

| +- exec

| |

| +- layer

| |

| +- newline

| |

| +- pipe

| |

| +- syscalls

| |

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



| +- unopened

|

+- locale

|

+- misc

|

+- missing

|

+- numeric

|

+- once

|

+- overflow

|

+- pack

|

+- portable

|

+- recursion

|

+- redefine

|

+- redundant

|

+- regexp

|

+- severe --------+

| |

| +- debugging

| |

| +- inplace

| |

| +- internal

| |

| +- malloc

|

+- shadow

|

+- signal

|

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



+- substr

|

+- syntax --------+

| |

| +- ambiguous

| |

| +- bareword

| |

| +- digit

| |

| +- illegalproto

| |

| +- parenthesis

| |

| +- precedence

| |

| +- printf

| |

| +- prototype

| |

| +- qw

| |

| +- reserved

| |

| +- semicolon

|

+- taint

|

+- threads

|

+- uninitialized

|

+- unpack

|

+- untie

|

+- utf8 ----------+

| |

| +- non_unicode

| |

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



| +- nonchar

| |

| +- surrogate

|

+- void

Just like the "strict" pragma any of these categories can be combined

use warnings qw(void redefine);

no warnings qw(io syntax untie);

Also like the "strict" pragma, if there is more than one instance of the "warnings" pragma in a given

scope the cumulative effect is additive.

use warnings qw(void); # only "void" warnings enabled

...

use warnings qw(io); # only "void" & "io" warnings enabled

...

no warnings qw(void); # only "io" warnings enabled

To determine which category a specific warning has been assigned to see perldiag.

Note: Before Perl 5.8.0, the lexical warnings category "deprecated" was a sub-category of the "syntax"

category. It is now a top-level category in its own right.

Note: Before 5.21.0, the "missing" lexical warnings category was internally defined to be the same as

the "uninitialized" category. It is now a top-level category in its own right.

Fatal Warnings
The presence of the word "FATAL" in the category list will escalate warnings in those categories into

fatal errors in that lexical scope.

NOTE: FATAL warnings should be used with care, particularly "FATAL => ’all’".

Libraries using warnings::warn for custom warning categories generally don’t expect warnings::warn

to be fatal and can wind up in an unexpected state as a result. For XS modules issuing categorized

warnings, such unanticipated exceptions could also expose memory leak bugs.

Moreover, the Perl interpreter itself has had serious bugs involving fatalized warnings. For a summary

of resolved and unresolved problems as of January 2015, please see this perl5-porters post

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



<http://www.nntp.perl.org/group/perl.perl5.porters/2015/01/msg225235.html>.

While some developers find fatalizing some warnings to be a useful defensive programming technique,

using "FATAL => ’all’" to fatalize all possible warning categories -- including custom ones -- is

particularly risky. Therefore, the use of "FATAL => ’all’" is discouraged.

The strictures module on CPAN offers one example of a warnings subset that the module’s authors

believe is relatively safe to fatalize.

NOTE: Users of FATAL warnings, especially those using "FATAL => ’all’", should be fully aware

that they are risking future portability of their programs by doing so. Perl makes absolutely no

commitments to not introduce new warnings or warnings categories in the future; indeed, we explicitly

reserve the right to do so. Code that may not warn now may warn in a future release of Perl if the Perl5

development team deems it in the best interests of the community to do so. Should code using FATAL

warnings break due to the introduction of a new warning we will NOT consider it an incompatible

change. Users of FATAL warnings should take special caution during upgrades to check to see if their

code triggers any new warnings and should pay particular attention to the fine print of the

documentation of the features they use to ensure they do not exploit features that are documented as

risky, deprecated, or unspecified, or where the documentation says "so don’t do that", or anything with

the same sense and spirit. Use of such features in combination with FATAL warnings is ENTIRELY

AT THE USER’S RISK.

The following documentation describes how to use FATAL warnings but the perl5 porters strongly

recommend that you understand the risks before doing so, especially for library code intended for use

by others, as there is no way for downstream users to change the choice of fatal categories.

In the code below, the use of "time", "length" and "join" can all produce a "Useless use of xxx in void

context" warning.

use warnings;

time;

{

use warnings FATAL => qw(void);

length "abc";

}

join "", 1,2,3;

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



print "done\n";

When run it produces this output

Useless use of time in void context at fatal line 3.

Useless use of length in void context at fatal line 7.

The scope where "length" is used has escalated the "void" warnings category into a fatal error, so the

program terminates immediately when it encounters the warning.

To explicitly turn off a "FATAL" warning you just disable the warning it is associated with. So, for

example, to disable the "void" warning in the example above, either of these will do the trick:

no warnings qw(void);

no warnings FATAL => qw(void);

If you want to downgrade a warning that has been escalated into a fatal error back to a normal warning,

you can use the "NONFATAL" keyword. For example, the code below will promote all warnings into

fatal errors, except for those in the "syntax" category.

use warnings FATAL => ’all’, NONFATAL => ’syntax’;

As of Perl 5.20, instead of "use warnings FATAL => ’all’;" you can use:

use v5.20; # Perl 5.20 or greater is required for the following

use warnings ’FATAL’; # short form of "use warnings FATAL => ’all’;"

However, you should still heed the guidance earlier in this section against using "use warnings FATAL

=" ’all’;>.

If you want your program to be compatible with versions of Perl before 5.20, you must use "use

warnings FATAL => ’all’;" instead. (In previous versions of Perl, the behavior of the statements "use

warnings ’FATAL’;", "use warnings ’NONFATAL’;" and "no warnings ’FATAL’;" was unspecified;

they did not behave as if they included the "=> ’all’" portion. As of 5.20, they do.)

Reporting Warnings from a Module
The "warnings" pragma provides a number of functions that are useful for module authors. These are

used when you want to report a module-specific warning to a calling module has enabled warnings via

the "warnings" pragma.

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



Consider the module "MyMod::Abc" below.

package MyMod::Abc;

use warnings::register;

sub open {

my $path = shift;

if ($path !~ m#^/#) {

warnings::warn("changing relative path to /var/abc")

if warnings::enabled();

$path = "/var/abc/$path";

}

}

1;

The call to "warnings::register" will create a new warnings category called "MyMod::Abc", i.e. the new

category name matches the current package name. The "open" function in the module will display a

warning message if it gets given a relative path as a parameter. This warnings will only be displayed if

the code that uses "MyMod::Abc" has actually enabled them with the "warnings" pragma like below.

use MyMod::Abc;

use warnings ’MyMod::Abc’;

...

abc::open("../fred.txt");

It is also possible to test whether the pre-defined warnings categories are set in the calling module with

the "warnings::enabled" function. Consider this snippet of code:

package MyMod::Abc;

sub open {

if (warnings::enabled("deprecated")) {

warnings::warn("deprecated",

"open is deprecated, use new instead");

}

new(@_);

}

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



sub new

...

1;

The function "open" has been deprecated, so code has been included to display a warning message

whenever the calling module has (at least) the "deprecated" warnings category enabled. Something

like this, say.

use warnings ’deprecated’;

use MyMod::Abc;

...

MyMod::Abc::open($filename);

Either the "warnings::warn" or "warnings::warnif" function should be used to actually display the

warnings message. This is because they can make use of the feature that allows warnings to be

escalated into fatal errors. So in this case

use MyMod::Abc;

use warnings FATAL => ’MyMod::Abc’;

...

MyMod::Abc::open(’../fred.txt’);

the "warnings::warnif" function will detect this and die after displaying the warning message.

The three warnings functions, "warnings::warn", "warnings::warnif" and "warnings::enabled" can

optionally take an object reference in place of a category name. In this case the functions will use the

class name of the object as the warnings category.

Consider this example:

package Original;

no warnings;

use warnings::register;

sub new

{

my $class = shift;

bless [], $class;

}

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



sub check

{

my $self = shift;

my $value = shift;

if ($value % 2 && warnings::enabled($self))

{ warnings::warn($self, "Odd numbers are unsafe") }

}

sub doit

{

my $self = shift;

my $value = shift;

$self->check($value);

# ...

}

1;

package Derived;

use warnings::register;

use Original;

our @ISA = qw( Original );

sub new

{

my $class = shift;

bless [], $class;

}

1;

The code below makes use of both modules, but it only enables warnings from "Derived".

use Original;

use Derived;

use warnings ’Derived’;

my $x = Original->new();

$x->doit(1);

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



my $y = Derived->new();

$x->doit(1);

When this code is run only the "Derived" object, $y, will generate a warning.

Odd numbers are unsafe at main.pl line 7

Notice also that the warning is reported at the line where the object is first used.

When registering new categories of warning, you can supply more names to warnings::register like

this:

package MyModule;

use warnings::register qw(format precision);

...

warnings::warnif(’MyModule::format’, ’...’);

FUNCTIONS
Note: The functions with names ending in "_at_level" were added in Perl 5.28.

use warnings::register

Creates a new warnings category with the same name as the package where the call to the pragma

is used.

warnings::enabled()
Use the warnings category with the same name as the current package.

Return TRUE if that warnings category is enabled in the calling module. Otherwise returns

FALSE.

warnings::enabled($category)

Return TRUE if the warnings category, $category, is enabled in the calling module. Otherwise

returns FALSE.

warnings::enabled($object)

Use the name of the class for the object reference, $object, as the warnings category.

Return TRUE if that warnings category is enabled in the first scope where the object is used.

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



Otherwise returns FALSE.

warnings::enabled_at_level($category, $level)

Like "warnings::enabled", but $level specifies the exact call frame, 0 being the immediate caller.

warnings::fatal_enabled()
Return TRUE if the warnings category with the same name as the current package has been set to

FATAL in the calling module. Otherwise returns FALSE.

warnings::fatal_enabled($category)

Return TRUE if the warnings category $category has been set to FATAL in the calling module.

Otherwise returns FALSE.

warnings::fatal_enabled($object)

Use the name of the class for the object reference, $object, as the warnings category.

Return TRUE if that warnings category has been set to FATAL in the first scope where the object

is used. Otherwise returns FALSE.

warnings::fatal_enabled_at_level($category, $level)

Like "warnings::fatal_enabled", but $level specifies the exact call frame, 0 being the immediate

caller.

warnings::warn($message)

Print $message to STDERR.

Use the warnings category with the same name as the current package.

If that warnings category has been set to "FATAL" in the calling module then die. Otherwise

return.

warnings::warn($category, $message)

Print $message to STDERR.

If the warnings category, $category, has been set to "FATAL" in the calling module then die.

Otherwise return.

warnings::warn($object, $message)

Print $message to STDERR.

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)



Use the name of the class for the object reference, $object, as the warnings category.

If that warnings category has been set to "FATAL" in the scope where $object is first used then

die. Otherwise return.

warnings::warn_at_level($category, $level, $message)

Like "warnings::warn", but $level specifies the exact call frame, 0 being the immediate caller.

warnings::warnif($message)

Equivalent to:

if (warnings::enabled())

{ warnings::warn($message) }

warnings::warnif($category, $message)

Equivalent to:

if (warnings::enabled($category))

{ warnings::warn($category, $message) }

warnings::warnif($object, $message)

Equivalent to:

if (warnings::enabled($object))

{ warnings::warn($object, $message) }

warnings::warnif_at_level($category, $level, $message)

Like "warnings::warnif", but $level specifies the exact call frame, 0 being the immediate caller.

warnings::register_categories(@names)

This registers warning categories for the given names and is primarily for use by the

warnings::register pragma.

See also "Pragmatic Modules" in perlmodlib and perldiag.

warnings(3) Perl Programmers Reference Guide warnings(3)

perl v5.34.3 2023-11-28 warnings(3)


