
NAME
x509v3_config - X509 V3 certificate extension configuration format

DESCRIPTION
Several OpenSSL commands can add extensions to a certificate or certificate request based on the

contents of a configuration file and CLI options such as -addext. The syntax of configuration files is

described in config(5). The commands typically have an option to specify the name of the

configuration file, and a section within that file; see the documentation of the individual command for

details.

This page uses extensions as the name of the section, when needed in examples.

Each entry in the extension section takes the form:

name = [critical, ]value(s)

If critical is present then the extension will be marked as critical.

If multiple entries are processed for the same extension name, later entries override earlier ones with

the same name.

The format of values depends on the value of name, many have a type-value pairing where the type and

value are separated by a colon. There are four main types of extension:

string

multi-valued

raw

arbitrary

Each is described in the following paragraphs.

String extensions simply have a string which contains either the value itself or how it is obtained.

Multi-valued extensions have a short form and a long form. The short form is a comma-separated list

of names and values:

basicConstraints = critical, CA:true, pathlen:1

The long form allows the values to be placed in a separate section:

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



[extensions]

basicConstraints = critical, @basic_constraints

[basic_constraints]

CA = true

pathlen = 1

Both forms are equivalent.

If an extension is multi-value and a field value must contain a comma the long form must be used

otherwise the comma would be misinterpreted as a field separator. For example:

subjectAltName = URI:ldap://somehost.com/CN=foo,OU=bar

will produce an error but the equivalent form:

[extensions]

subjectAltName = @subject_alt_section

[subject_alt_section]

subjectAltName = URI:ldap://somehost.com/CN=foo,OU=bar

is valid.

OpenSSL does not support multiple occurrences of the same field within a section. In this example:

[extensions]

subjectAltName = @alt_section

[alt_section]

email = steve@example.com

email = steve@example.org

will only recognize the last value. To specify multiple values append a numeric identifier, as shown

here:

[extensions]

subjectAltName = @alt_section

[alt_section]

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



email.1 = steve@example.com

email.2 = steve@example.org

The syntax of raw extensions is defined by the source code that parses the extension but should be

documented. See "Certificate Policies" for an example of a raw extension.

If an extension type is unsupported, then the arbitrary extension syntax must be used, see the

"ARBITRARY EXTENSIONS" section for more details.

STANDARD EXTENSIONS
The following sections describe the syntax of each supported extension. They do not define the

semantics of the extension.

Basic Constraints
This is a multi-valued extension which indicates whether a certificate is a CA certificate. The first

value is CA followed by TRUE or FALSE. If CA is TRUE then an optional pathlen name followed by

a nonnegative value can be included.

For example:

basicConstraints = CA:TRUE

basicConstraints = CA:FALSE

basicConstraints = critical, CA:TRUE, pathlen:1

A CA certificate must include the basicConstraints name with the CA parameter set to TRUE. An end-

user certificate must either have CA:FALSE or omit the extension entirely. The pathlen parameter

specifies the maximum number of CAs that can appear below this one in a chain. A pathlen of zero

means the CA cannot sign any sub-CA’s, and can only sign end-entity certificates.

Key Usage
Key usage is a multi-valued extension consisting of a list of names of the permitted key usages. The

defined values are: "digitalSignature", "nonRepudiation", "keyEncipherment", "dataEncipherment",

"keyAgreement", "keyCertSign", "cRLSign", "encipherOnly", and "decipherOnly".

Examples:

keyUsage = digitalSignature, nonRepudiation

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



keyUsage = critical, keyCertSign

Extended Key Usage
This extension consists of a list of values indicating purposes for which the certificate public key can

be used. Each value can be either a short text name or an OID. The following text names, and their

intended meaning, are known:

Value Meaning according to RFC 5280 etc.

----- ----------------------------------

serverAuth SSL/TLS WWW Server Authentication

clientAuth SSL/TLS WWW Client Authentication

codeSigning Code Signing

emailProtection E-mail Protection (S/MIME)

timeStamping Trusted Timestamping

OCSPSigning OCSP Signing

ipsecIKE ipsec Internet Key Exchange

msCodeInd Microsoft Individual Code Signing (authenticode)

msCodeCom Microsoft Commercial Code Signing (authenticode)

msCTLSign Microsoft Trust List Signing

msEFS Microsoft Encrypted File System

While IETF RFC 5280 says that id-kp-serverAuth and id-kp-clientAuth are only for WWW use, in

practice they are used for all kinds of TLS clients and servers, and this is what OpenSSL assumes as

well.

Examples:

extendedKeyUsage = critical, codeSigning, 1.2.3.4

extendedKeyUsage = serverAuth, clientAuth

Subject Key Identifier
The SKID extension specification has a value with three choices. If the value is the word none then no

SKID extension will be included. If the value is the word hash, or by default for the x509, req, and ca
apps, the process specified in RFC 5280 section 4.2.1.2. (1) is followed: The keyIdentifier is composed

of the 160-bit SHA-1 hash of the value of the BIT STRING subjectPublicKey (excluding the tag,

length, and number of unused bits).

Otherwise, the value must be a hex string (possibly with ":" separating bytes) to output directly,

however, this is strongly discouraged.

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



Example:

subjectKeyIdentifier = hash

Authority Key Identifier
The AKID extension specification may have the value none indicating that no AKID shall be included.

Otherwise it may have the value keyid or issuer or both of them, separated by ",". Either or both can

have the option always, indicated by putting a colon ":" between the value and this option. For self-

signed certificates the AKID is suppressed unless always is present. By default the x509, req, and ca
apps behave as if "none" was given for self-signed certificates and "keyid, issuer" otherwise.

If keyid is present, an attempt is made to copy the subject key identifier (SKID) from the issuer

certificate except if the issuer certificate is the same as the current one and it is not self-signed. The

hash of the public key related to the signing key is taken as fallback if the issuer certificate is the same

as the current certificate. If always is present but no value can be obtained, an error is returned.

If issuer is present, and in addition it has the option always specified or keyid is not present, then the

issuer DN and serial number are copied from the issuer certificate.

Examples:

authorityKeyIdentifier = keyid, issuer

authorityKeyIdentifier = keyid, issuer:always

Subject Alternative Name
This is a multi-valued extension that supports several types of name identifier, including email (an

email address), URI (a uniform resource indicator), DNS (a DNS domain name), RID (a registered ID:

OBJECT IDENTIFIER), IP (an IP address), dirName (a distinguished name), and otherName. The

syntax of each is described in the following paragraphs.

The email option has two special values. "copy" will automatically include any email addresses

contained in the certificate subject name in the extension. "move" will automatically move any email

addresses from the certificate subject name to the extension.

The IP address used in the IP option can be in either IPv4 or IPv6 format.

The value of dirName is specifies the configuration section containing the distinguished name to use,

as a set of name-value pairs. Multi-valued AVAs can be formed by prefacing the name with a +
character.

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



The value of otherName can include arbitrary data associated with an OID; the value should be the

OID followed by a semicolon and the content in specified using the syntax in

ASN1_generate_nconf(3).

Examples:

subjectAltName = email:copy, email:my@example.com, URI:http://my.example.com/

subjectAltName = IP:192.168.7.1

subjectAltName = IP:13::17

subjectAltName = email:my@example.com, RID:1.2.3.4

subjectAltName = otherName:1.2.3.4;UTF8:some other identifier

[extensions]

subjectAltName = dirName:dir_sect

[dir_sect]

C = UK

O = My Organization

OU = My Unit

CN = My Name

Non-ASCII Email Address conforming the syntax defined in Section 3.3 of RFC 6531 are provided as

otherName.SmtpUTF8Mailbox. According to RFC 8398, the email address should be provided as

UTF8String. To enforce the valid representation in the certificate, the SmtpUTF8Mailbox should be

provided as follows

subjectAltName=@alts

[alts]

otherName = 1.3.6.1.5.5.7.8.9;FORMAT:UTF8,UTF8String:nonasciiname.example.com

Issuer Alternative Name
This extension supports most of the options of subject alternative name; it does not support email:copy.

It also adds issuer:copy as an allowed value, which copies any subject alternative names from the issuer

certificate, if possible.

Example:

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



issuerAltName = issuer:copy

Authority Info Access
This extension gives details about how to retrieve information that related to the certificate that the CA

makes available. The syntax is access_id;location, where access_id is an object identifier (although

only a few values are well-known) and location has the same syntax as subject alternative name (except

that email:copy is not supported).

Possible values for access_id include OCSP (OCSP responder), caIssuers (CA Issuers),

ad_timestamping (AD Time Stamping), AD_DVCS (ad dvcs), caRepository (CA Repository).

Examples:

authorityInfoAccess = OCSP;URI:http://ocsp.example.com/,caIssuers;URI:http://myca.example.com/ca.cer

authorityInfoAccess = OCSP;URI:http://ocsp.example.com/

CRL distribution points
This is a multi-valued extension whose values can be either a name-value pair using the same form as

subject alternative name or a single value specifying the section name containing all the distribution

point values.

When a name-value pair is used, a DistributionPoint extension will be set with the given value as the

fullName field as the distributionPoint value, and the reasons and cRLIssuer fields will be omitted.

When a single option is used, the value specifies the section, and that section can have the following

items:

fullname

The full name of the distribution point, in the same format as the subject alternative name.

relativename

The value is taken as a distinguished name fragment that is set as the value of the

nameRelativeToCRLIssuer field.

CRLIssuer

The value must in the same format as the subject alternative name.

reasons

A multi-value field that contains the reasons for revocation. The recognized values are:

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



"keyCompromise", "CACompromise", "affiliationChanged", "superseded",

"cessationOfOperation", "certificateHold", "privilegeWithdrawn", and "AACompromise".

Only one of fullname or relativename should be specified.

Simple examples:

crlDistributionPoints = URI:http://example.com/myca.crl

crlDistributionPoints = URI:http://example.com/myca.crl, URI:http://example.org/my.crl

Full distribution point example:

[extensions]

crlDistributionPoints = crldp1_section

[crldp1_section]

fullname = URI:http://example.com/myca.crl

CRLissuer = dirName:issuer_sect

reasons = keyCompromise, CACompromise

[issuer_sect]

C = UK

O = Organisation

CN = Some Name

Issuing Distribution Point
This extension should only appear in CRLs. It is a multi-valued extension whose syntax is similar to

the "section" pointed to by the CRL distribution points extension. The following names have meaning:

fullname

The full name of the distribution point, in the same format as the subject alternative name.

relativename

The value is taken as a distinguished name fragment that is set as the value of the

nameRelativeToCRLIssuer field.

onlysomereasons

A multi-value field that contains the reasons for revocation. The recognized values are:

"keyCompromise", "CACompromise", "affiliationChanged", "superseded",

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



"cessationOfOperation", "certificateHold", "privilegeWithdrawn", and "AACompromise".

onlyuser, onlyCA, onlyAA, indirectCRL

The value for each of these names is a boolean.

Example:

[extensions]

issuingDistributionPoint = critical, @idp_section

[idp_section]

fullname = URI:http://example.com/myca.crl

indirectCRL = TRUE

onlysomereasons = keyCompromise, CACompromise

Certificate Policies
This is a raw extension that supports all of the defined fields of the certificate extension.

Policies without qualifiers are specified by giving the OID. Multiple policies are comma-separated. For

example:

certificatePolicies = 1.2.4.5, 1.1.3.4

To include policy qualifiers, use the "@section" syntax to point to a section that specifies all the

information.

The section referred to must include the policy OID using the name policyIdentifier. cPSuri qualifiers

can be included using the syntax:

CPS.nnn = value

where "nnn" is a number.

userNotice qualifiers can be set using the syntax:

userNotice.nnn = @notice

The value of the userNotice qualifier is specified in the relevant section. This section can include

explicitText, organization, and noticeNumbers options. explicitText and organization are text strings,

noticeNumbers is a comma separated list of numbers. The organization and noticeNumbers options (if

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



included) must BOTH be present. Some software might require the ia5org option at the top level; this

changes the encoding from Displaytext to IA5String.

Example:

[extensions]

certificatePolicies = ia5org, 1.2.3.4, 1.5.6.7.8, @polsect

[polsect]

policyIdentifier = 1.3.5.8

CPS.1 = "http://my.host.example.com/"

CPS.2 = "http://my.your.example.com/"

userNotice.1 = @notice

[notice]

explicitText = "Explicit Text Here"

organization = "Organisation Name"

noticeNumbers = 1, 2, 3, 4

The character encoding of explicitText can be specified by prefixing the value with UTF8, BMP, or

VISIBLE followed by colon. For example:

[notice]

explicitText = "UTF8:Explicit Text Here"

Policy Constraints
This is a multi-valued extension which consisting of the names requireExplicitPolicy or

inhibitPolicyMapping and a non negative integer value. At least one component must be present.

Example:

policyConstraints = requireExplicitPolicy:3

Inhibit Any Policy
This is a string extension whose value must be a non negative integer.

Example:

inhibitAnyPolicy = 2

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



Name Constraints
This is a multi-valued extension. The name should begin with the word permitted or excluded followed

by a ;. The rest of the name and the value follows the syntax of subjectAltName except email:copy is

not supported and the IP form should consist of an IP addresses and subnet mask separated by a /.

Examples:

nameConstraints = permitted;IP:192.168.0.0/255.255.0.0

nameConstraints = permitted;email:.example.com

nameConstraints = excluded;email:.com

OCSP No Check
This is a string extension. It is parsed, but ignored.

Example:

noCheck = ignored

TLS Feature (aka Must Staple)
This is a multi-valued extension consisting of a list of TLS extension identifiers. Each identifier may be

a number (0..65535) or a supported name. When a TLS client sends a listed extension, the TLS server

is expected to include that extension in its reply.

The supported names are: status_request and status_request_v2.

Example:

tlsfeature = status_request

DEPRECATED EXTENSIONS
The following extensions are non standard, Netscape specific and largely obsolete. Their use in new

applications is discouraged.

Netscape String extensions
Netscape Comment (nsComment) is a string extension containing a comment which will be displayed

when the certificate is viewed in some browsers. Other extensions of this type are: nsBaseUrl,
nsRevocationUrl, nsCaRevocationUrl, nsRenewalUrl, nsCaPolicyUrl and nsSslServerName.

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



Netscape Certificate Type
This is a multi-valued extensions which consists of a list of flags to be included. It was used to indicate

the purposes for which a certificate could be used. The basicConstraints, keyUsage and extended key

usage extensions are now used instead.

Acceptable values for nsCertType are: client, server, email, objsign, reserved, sslCA, emailCA, objCA.

ARBITRARY EXTENSIONS
If an extension is not supported by the OpenSSL code then it must be encoded using the arbitrary

extension format. It is also possible to use the arbitrary format for supported extensions. Extreme care

should be taken to ensure that the data is formatted correctly for the given extension type.

There are two ways to encode arbitrary extensions.

The first way is to use the word ASN1 followed by the extension content using the same syntax as

ASN1_generate_nconf(3). For example:

[extensions]

1.2.3.4 = critical, ASN1:UTF8String:Some random data

1.2.3.4.1 = ASN1:SEQUENCE:seq_sect

[seq_sect]

field1 = UTF8:field1

field2 = UTF8:field2

It is also possible to use the word DER to include the raw encoded data in any extension.

1.2.3.4 = critical, DER:01:02:03:04

1.2.3.4.1 = DER:01020304

The value following DER is a hex dump of the DER encoding of the extension Any extension can be

placed in this form to override the default behaviour. For example:

basicConstraints = critical, DER:00:01:02:03

WARNINGS
There is no guarantee that a specific implementation will process a given extension. It may therefore be

sometimes possible to use certificates for purposes prohibited by their extensions because a specific

application does not recognize or honour the values of the relevant extensions.

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)



The DER and ASN1 options should be used with caution. It is possible to create invalid extensions if

they are not used carefully.

SEE ALSO
openssl-req(1), openssl-ca(1), openssl-x509(1), ASN1_generate_nconf(3)

COPYRIGHT
Copyright 2004-2023 The OpenSSL Project Authors. All Rights Reserved.

Licensed under the Apache License 2.0 (the "License"). You may not use this file except in

compliance with the License. You can obtain a copy in the file LICENSE in the source distribution or

at <https://www.openssl.org/source/license.html>.

X509V3_CONFIG(5ossl) OpenSSL X509V3_CONFIG(5ossl)

3.0.11 2023-09-19 X509V3_CONFIG(5ossl)


