
NAME
malloc, mallocarray, free, zfree, realloc, reallocf, malloc_usable_size, malloc_aligned, malloc_exec,

MALLOC_DECLARE, MALLOC_DEFINE, malloc_domainset, malloc_domainset_aligned,

malloc_domainset_exec, mallocarray_domainset - kernel memory management routines

SYNOPSIS
#include <sys/types.h>
#include <sys/malloc.h>

void *

malloc(size_t size, struct malloc_type *type, int flags);

void *

mallocarray(size_t nmemb, size_t size, struct malloc_type *type, int flags);

void

free(void *addr, struct malloc_type *type);

void

zfree(void *addr, struct malloc_type *type);

void *

realloc(void *addr, size_t size, struct malloc_type *type, int flags);

void *

reallocf(void *addr, size_t size, struct malloc_type *type, int flags);

size_t

malloc_usable_size(const void *addr);

void *

malloc_aligned(size_t size, size_t align, struct malloc_type *type, int flags);

void *

malloc_exec(size_t size, struct malloc_type *type, int flags);

MALLOC_DECLARE(type);

#include <sys/param.h>
#include <sys/malloc.h>

MALLOC(9) FreeBSD Kernel Developer’s Manual MALLOC(9)

FreeBSD 14.0-RELEASE-p6 October 12, 2022 FreeBSD 14.0-RELEASE-p6



#include <sys/kernel.h>

MALLOC_DEFINE(type, shortdesc, longdesc);

#include <sys/param.h>
#include <sys/domainset.h>
#include <sys/malloc.h>

void *

malloc_domainset(size_t size, struct malloc_type *type, struct domainset *ds, int flags);

void *

malloc_domainset_aligned(size_t size, size_t align, struct malloc_type *type, struct domainset *ds,

int flags);

void *

malloc_domainset_exec(size_t size, struct malloc_type *type, struct domainset *ds, int flags);

void *

mallocarray_domainset(size_t nmemb, size_t size, struct malloc_type *type, struct domainset *ds,

int flags);

DESCRIPTION
The malloc() function allocates uninitialized memory in kernel address space for an object whose size is

specified by size.

The malloc_domainset() variant allocates memory from a specific numa(4) domain using the specified

domain selection policy. See domainset(9) for some example policies.

The malloc_aligned() and malloc_domainset_aligned() variants return allocations aligned as specified

by align, which must be non-zero, a power of two, and less than or equal to the page size.

Both malloc_exec() and malloc_domainset_exec() can be used to return executable memory. Not all

platforms enforce a distinction between executable and non-executable memory.

The mallocarray() function allocates uninitialized memory in kernel address space for an array of

nmemb entries whose size is specified by size.

The mallocarray_domainset() variant allocates memory from a specific numa(4) domain using the

specified domain selection policy. See domainset(9) for some example policies.

MALLOC(9) FreeBSD Kernel Developer’s Manual MALLOC(9)

FreeBSD 14.0-RELEASE-p6 October 12, 2022 FreeBSD 14.0-RELEASE-p6



The free() function releases memory at address addr that was previously allocated by malloc() for re-use.

The memory is not zeroed. If addr is NULL, then free() does nothing.

Like free(), the zfree() function releases memory at address addr that was previously allocated by

malloc() for re-use. However, zfree() will zero the memory before it is released.

The realloc() function changes the size of the previously allocated memory referenced by addr to size

bytes. The contents of the memory are unchanged up to the lesser of the new and old sizes. Note that

the returned value may differ from addr. If the requested memory cannot be allocated, NULL is

returned and the memory referenced by addr is valid and unchanged. If addr is NULL, the realloc()

function behaves identically to malloc() for the specified size.

The reallocf() function is identical to realloc() except that it will free the passed pointer when the

requested memory cannot be allocated.

The malloc_usable_size() function returns the usable size of the allocation pointed to by addr. The

return value may be larger than the size that was requested during allocation.

Unlike its standard C library counterpart (malloc(3)), the kernel version takes two more arguments. The

flags argument further qualifies malloc()’s operational characteristics as follows:

M_ZERO

Causes the allocated memory to be set to all zeros.

M_NODUMP

For allocations greater than page size, causes the allocated memory to be excluded from kernel

core dumps.

M_NOWAIT

Causes malloc(), realloc(), and reallocf() to return NULL if the request cannot be immediately

fulfilled due to resource shortage. Note that M_NOWAIT is required when running in an

interrupt context.

M_WAITOK

Indicates that it is OK to wait for resources. If the request cannot be immediately fulfilled, the

current process is put to sleep to wait for resources to be released by other processes. The

malloc(), mallocarray(), realloc(), and reallocf() functions cannot return NULL if M_WAITOK is

specified. If the multiplication of nmemb and size would cause an integer overflow, the

mallocarray() function induces a panic.

MALLOC(9) FreeBSD Kernel Developer’s Manual MALLOC(9)

FreeBSD 14.0-RELEASE-p6 October 12, 2022 FreeBSD 14.0-RELEASE-p6



M_USE_RESERVE

Indicates that the system can use its reserve of memory to satisfy the request. This option should

only be used in combination with M_NOWAIT when an allocation failure cannot be tolerated by

the caller without catastrophic effects on the system.

Exactly one of either M_WAITOK or M_NOWAIT must be specified.

The type argument is used to perform statistics on memory usage, and for basic sanity checks. It can be

used to identify multiple allocations. The statistics can be examined by ‘vmstat -m’.

A type is defined using struct malloc_type via the MALLOC_DECLARE() and MALLOC_DEFINE()

macros.

/* sys/something/foo_extern.h */

MALLOC_DECLARE(M_FOOBUF);

/* sys/something/foo_main.c */

MALLOC_DEFINE(M_FOOBUF, "foobuffers", "Buffers to foo data into the ether");

/* sys/something/foo_subr.c */

...

buf = malloc(sizeof(*buf), M_FOOBUF, M_NOWAIT);

In order to use MALLOC_DEFINE(), one must include <sys/param.h> (instead of <sys/types.h>) and

<sys/kernel.h>.

CONTEXT
malloc(), realloc() and reallocf() may not be called from fast interrupts handlers. When called from

threaded interrupts, flags must contain M_NOWAIT.

malloc(), realloc() and reallocf() may sleep when called with M_WAITOK. free() never sleeps.

However, malloc(), realloc(), reallocf() and free() may not be called in a critical section or while holding

a spin lock.

Any calls to malloc() (even with M_NOWAIT) or free() when holding a vnode(9) interlock, will cause a

LOR (Lock Order Reversal) due to the intertwining of VM Objects and Vnodes.

MALLOC(9) FreeBSD Kernel Developer’s Manual MALLOC(9)

FreeBSD 14.0-RELEASE-p6 October 12, 2022 FreeBSD 14.0-RELEASE-p6



IMPLEMENTATION NOTES
The memory allocator allocates memory in chunks that have size a power of two for requests up to the

size of a page of memory. For larger requests, one or more pages is allocated. While it should not be

relied upon, this information may be useful for optimizing the efficiency of memory use.

RETURN VALUES
The malloc(), realloc(), and reallocf() functions return a kernel virtual address that is suitably aligned for

storage of any type of object, or NULL if the request could not be satisfied (implying that M_NOWAIT

was set).

DIAGNOSTICS
A kernel compiled with the INVARIANTS configuration option attempts to detect memory corruption

caused by such things as writing outside the allocated area and imbalanced calls to the malloc() and

free() functions. Failing consistency checks will cause a panic or a system console message.

SEE ALSO
numa(4), vmstat(8), contigmalloc(9), domainset(9), memguard(9), vnode(9)

HISTORY
zfree() first appeared in FreeBSD 13.0.

MALLOC(9) FreeBSD Kernel Developer’s Manual MALLOC(9)

FreeBSD 14.0-RELEASE-p6 October 12, 2022 FreeBSD 14.0-RELEASE-p6


