
NAME
zfs-program - execute ZFS channel programs

SYNOPSIS
zfs program [-jn] [-t instruction-limit] [-m memory-limit] pool script [script arguments]

DESCRIPTION
The ZFS channel program interface allows ZFS administrative operations to be run programmatically as

a Lua script. The entire script is executed atomically, with no other administrative operations taking

effect concurrently. A library of ZFS calls is made available to channel program scripts. Channel

programs may only be run with root privileges.

A modified version of the Lua 5.2 interpreter is used to run channel program scripts. The Lua 5.2

manual can be found at http://www.lua.org/manual/5.2/

The channel program given by script will be run on pool, and any attempts to access or modify other

pools will cause an error.

OPTIONS
-j Display channel program output in JSON format. When this flag is specified and standard output is

empty - channel program encountered an error. The details of such an error will be printed to

standard error in plain text.

-n
Executes a read-only channel program, which runs faster. The program cannot change on-disk state

by calling functions from the zfs.sync submodule. The program can be used to gather information

such as properties and determining if changes would succeed (zfs.check.*). Without this flag, all

pending changes must be synced to disk before a channel program can complete.

-t instruction-limit

Limit the number of Lua instructions to execute. If a channel program executes more than the

specified number of instructions, it will be stopped and an error will be returned. The default limit is

10 million instructions, and it can be set to a maximum of 100 million instructions.

-m memory-limit

Memory limit, in bytes. If a channel program attempts to allocate more memory than the given limit,

it will be stopped and an error returned. The default memory limit is 10 MiB, and can be set to a

maximum of 100 MiB.

All remaining argument strings will be passed directly to the Lua script as described in the LUA

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

INTERFACE section below.

LUA INTERFACE
A channel program can be invoked either from the command line, or via a library call to

lzc_channel_program().

Arguments
Arguments passed to the channel program are converted to a Lua table. If invoked from the command

line, extra arguments to the Lua script will be accessible as an array stored in the argument table with the

key ’argv’:

args = ...

argv = args["argv"]

-- argv == {1="arg1", 2="arg2", ...}

If invoked from the libzfs interface, an arbitrary argument list can be passed to the channel program,

which is accessible via the same "..." syntax in Lua:

args = ...

-- args == {"foo"="bar", "baz"={...}, ...}

Note that because Lua arrays are 1-indexed, arrays passed to Lua from the libzfs interface will have their

indices incremented by 1. That is, the element in arr[0] in a C array passed to a channel program will be

stored in arr[1] when accessed from Lua.

Return Values
Lua return statements take the form:

return ret0, ret1, ret2, ...

Return statements returning multiple values are permitted internally in a channel program script, but

attempting to return more than one value from the top level of the channel program is not permitted and

will throw an error. However, tables containing multiple values can still be returned. If invoked from

the command line, a return statement:

a = {foo="bar", baz=2}

return a

Will be output formatted as:

Channel program fully executed with return value:

return:

baz: 2

foo: ’bar’

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

Fatal Errors
If the channel program encounters a fatal error while running, a non-zero exit status will be returned. If

more information about the error is available, a singleton list will be returned detailing the error:

error: "error string, including Lua stack trace"

If a fatal error is returned, the channel program may have not executed at all, may have partially

executed, or may have fully executed but failed to pass a return value back to userland.

If the channel program exhausts an instruction or memory limit, a fatal error will be generated and the

program will be stopped, leaving the program partially executed. No attempt is made to reverse or undo

any operations already performed. Note that because both the instruction count and amount of memory

used by a channel program are deterministic when run against the same inputs and filesystem state, as

long as a channel program has run successfully once, you can guarantee that it will finish successfully

against a similar size system.

If a channel program attempts to return too large a value, the program will fully execute but exit with a

nonzero status code and no return value.

Note: ZFS API functions do not generate Fatal Errors when correctly invoked, they return an error code

and the channel program continues executing. See the ZFS API section below for function-specific

details on error return codes.

Lua to C Value Conversion
When invoking a channel program via the libzfs interface, it is necessary to translate arguments and

return values from Lua values to their C equivalents, and vice-versa.

There is a correspondence between nvlist values in C and Lua tables. A Lua table which is returned

from the channel program will be recursively converted to an nvlist, with table values converted to their

natural equivalents:

string ->string

number ->int64

boolean->boolean_value

nil ->boolean (no value)

table ->nvlist

Likewise, table keys are replaced by string equivalents as follows:

string ->no

change

number ->signed decimal string ("%lld")

boolean->"true" |

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

"false"

Any collision of table key strings (for example, the string "true" and a true boolean value) will cause a

fatal error.

Lua numbers are represented internally as signed 64-bit integers.

LUA STANDARD LIBRARY
The following Lua built-in base library functions are available:

assertrawlen collectgarbagerawget

error rawset getmetatable select

ipairssetmetatablenext tonumber

pairs tostring rawequal type

All functions in the coroutine, string, and table built-in submodules are also available. A complete list

and documentation of these modules is available in the Lua manual.

The following functions base library functions have been disabled and are not available for use in

channel programs:

dofileloadfileloadpcallprintxpcall

ZFS API
Function Arguments
Each API function takes a fixed set of required positional arguments and optional keyword arguments.

For example, the destroy function takes a single positional string argument (the name of the dataset to

destroy) and an optional "defer" keyword boolean argument. When using parentheses to specify the

arguments to a Lua function, only positional arguments can be used:

zfs.sync.destroy("rpool@snap")

To use keyword arguments, functions must be called with a single argument that is a Lua table

containing entries mapping integers to positional arguments and strings to keyword arguments:

zfs.sync.destroy({1="rpool@snap", defer=true})

The Lua language allows curly braces to be used in place of parenthesis as syntactic sugar for this

calling convention:

zfs.sync.snapshot{"rpool@snap", defer=true}

Function Return Values
If an API function succeeds, it returns 0. If it fails, it returns an error code and the channel program

continues executing. API functions do not generate Fatal Errors except in the case of an unrecoverable

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

internal file system error.

In addition to returning an error code, some functions also return extra details describing what caused

the error. This extra description is given as a second return value, and will always be a Lua table, or Nil

if no error details were returned. Different keys will exist in the error details table depending on the

function and error case. Any such function may be called expecting a single return value:

errno = zfs.sync.promote(dataset)

Or, the error details can be retrieved:

errno, details = zfs.sync.promote(dataset)

if (errno == EEXIST) then

assert(details ~= Nil)

list_of_conflicting_snapshots = details

end

The following global aliases for API function error return codes are defined for use in channel programs:

EPERM ECHILD ENODEV ENOSPC ENOENTEAGAIN ENOTDIR

ESPIPE ESRCH ENOMEMEISDIR EROFS EINTR EACCES

EINVAL EMLINKEIO EFAULT ENFILE EPIPE ENXIO

ENOTBLKEMFILE EDOM E2BIG EBUSY ENOTTYERANGE

ENOEXECEEXIST ETXTBSYEDQUOTEBADF EXDEV EFBIG

API Functions
For detailed descriptions of the exact behavior of any ZFS administrative operations, see the main zfs(8)

manual page.

zfs.debug(msg)

Record a debug message in the zfs_dbgmsg log. A log of these messages can be printed via mdb’s

"::zfs_dbgmsg" command, or can be monitored live by running

dtrace -n ’zfs-dbgmsg{trace(stringof(arg0))}’

msg (string) Debug message to be printed.

zfs.exists(dataset)

Returns true if the given dataset exists, or false if it doesn’t. A fatal error will be thrown if the

dataset is not in the target pool. That is, in a channel program running on rpool,

zfs.exists("rpool/nonexistent_fs") returns false, but zfs.exists("somepool/fs_that_may_exist") will

error.

dataset (string) Dataset to check for existence. Must be in the target pool.

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

zfs.get_prop(dataset, property)

Returns two values. First, a string, number or table containing the property value for the given

dataset. Second, a string containing the source of the property (i.e. the name of the dataset in which

it was set or nil if it is readonly). Throws a Lua error if the dataset is invalid or the property doesn’t

exist. Note that Lua only supports int64 number types whereas ZFS number properties are uint64.

This means very large values (like GUIDs) may wrap around and appear negative.

dataset (string) Filesystem or snapshot path to retrieve properties from.

property (string) Name of property to retrieve. All filesystem, snapshot and volume properties are

supported except for mounted and iscsioptions. Also supports the written@snap

and written#bookmark properties and the <user|group><quota|used>@id

properties, though the id must be in numeric form.

zfs.sync submodule
The sync submodule contains functions that modify the on-disk state. They are executed in "syncing

context".

The available sync submodule functions are as follows:

zfs.sync.destroy(dataset, [defer=true|false])

Destroy the given dataset. Returns 0 on successful destroy, or a nonzero error code if the dataset

could not be destroyed (for example, if the dataset has any active children or clones).

dataset (string) Filesystem or snapshot to be destroyed.

[defer (boolean)] Valid only for destroying snapshots. If set to true, and the snapshot has

holds or clones, allows the snapshot to be marked for deferred deletion

rather than failing.

zfs.sync.inherit(dataset, property)

Clears the specified property in the given dataset, causing it to be inherited from an ancestor, or

restored to the default if no ancestor property is set. The zfs inherit -S option has not been

implemented. Returns 0 on success, or a nonzero error code if the property could not be cleared.

dataset (string) Filesystem or snapshot containing the property to clear.

property (string) The property to clear. Allowed properties are the same as those for the

zfs inherit command.

zfs.sync.promote(dataset)

Promote the given clone to a filesystem. Returns 0 on successful promotion, or a nonzero error

code otherwise. If EEXIST is returned, the second return value will be an array of the clone’s

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

snapshots whose names collide with snapshots of the parent filesystem.

dataset (string) Clone to be promoted.

zfs.sync.rollback(filesystem)

Rollback to the previous snapshot for a dataset. Returns 0 on successful rollback, or a nonzero

error code otherwise. Rollbacks can be performed on filesystems or zvols, but not on snapshots

or mounted datasets. EBUSY is returned in the case where the filesystem is mounted.

filesystem (string) Filesystem to rollback.

zfs.sync.set_prop(dataset, property, value)

Sets the given property on a dataset. Currently only user properties are supported. Returns 0 if

the property was set, or a nonzero error code otherwise.

dataset (string) The dataset where the property will be set.

property (string) The property to set.

value (string) The value of the property to be set.

zfs.sync.snapshot(dataset)

Create a snapshot of a filesystem. Returns 0 if the snapshot was successfully created, and a

nonzero error code otherwise.

Note: Taking a snapshot will fail on any pool older than legacy version 27. To enable taking

snapshots from ZCP scripts, the pool must be upgraded.

dataset (string) Name of snapshot to create.

zfs.sync.rename_snapshot(dataset, oldsnapname, newsnapname)

Rename a snapshot of a filesystem or a volume. Returns 0 if the snapshot was successfully

renamed, and a nonzero error code otherwise.

dataset (string) Name of the snapshot’s parent dataset.

oldsnapname (string) Original name of the snapshot.

newsnapname (string) New name of the snapshot.

zfs.sync.bookmark(source, newbookmark)

Create a bookmark of an existing source snapshot or bookmark. Returns 0 if the new bookmark

was successfully created, and a nonzero error code otherwise.

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

Note: Bookmarking requires the corresponding pool feature to be enabled.

source (string) Full name of the existing snapshot or bookmark.

newbookmark (string) Full name of the new bookmark.

zfs.check submodule
For each function in the zfs.sync submodule, there is a corresponding zfs.check function which

performs a "dry run" of the same operation. Each takes the same arguments as its zfs.sync
counterpart and returns 0 if the operation would succeed, or a non-zero error code if it would fail,

along with any other error details. That is, each has the same behavior as the corresponding sync

function except for actually executing the requested change. For example, zfs.check.destroy("fs")

returns 0 if zfs.sync.destroy("fs") would successfully destroy the dataset.

The available zfs.check functions are:

zfs.check.destroy(dataset, [defer=true|false])

zfs.check.promote(dataset)

zfs.check.rollback(filesystem)

zfs.check.set_property(dataset, property, value)

zfs.check.snapshot(dataset)

zfs.list submodule
The zfs.list submodule provides functions for iterating over datasets and properties. Rather than

returning tables, these functions act as Lua iterators, and are generally used as follows:

for child in zfs.list.children("rpool") do

...

end

The available zfs.list functions are:

zfs.list.clones(snapshot)

Iterate through all clones of the given snapshot.

snapshot (string) Must be a valid snapshot path in the current pool.

zfs.list.snapshots(dataset)

Iterate through all snapshots of the given dataset. Each snapshot is returned as a string

containing the full dataset name, e.g. "pool/fs@snap".

dataset (string) Must be a valid filesystem or volume.

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

zfs.list.children(dataset)

Iterate through all direct children of the given dataset. Each child is returned as a string

containing the full dataset name, e.g. "pool/fs/child".

dataset (string) Must be a valid filesystem or volume.

zfs.list.bookmarks(dataset)

Iterate through all bookmarks of the given dataset. Each bookmark is returned as a string

containing the full dataset name, e.g. "pool/fs#bookmark".

dataset (string) Must be a valid filesystem or volume.

zfs.list.holds(snapshot)

Iterate through all user holds on the given snapshot. Each hold is returned as a pair of the hold’s

tag and the timestamp (in seconds since the epoch) at which it was created.

snapshot (string) Must be a valid snapshot.

zfs.list.properties(dataset)

An alias for zfs.list.user_properties (see relevant entry).

dataset (string) Must be a valid filesystem, snapshot, or volume.

zfs.list.user_properties(dataset)

Iterate through all user properties for the given dataset. For each step of the iteration, output the

property name, its value, and its source. Throws a Lua error if the dataset is invalid.

dataset (string) Must be a valid filesystem, snapshot, or volume.

zfs.list.system_properties(dataset)

Returns an array of strings, the names of the valid system (non-user defined) properties for the

given dataset. Throws a Lua error if the dataset is invalid.

dataset (string) Must be a valid filesystem, snapshot or volume.

EXAMPLES
Example 1
The following channel program recursively destroys a filesystem and all its snapshots and children in a

naive manner. Note that this does not involve any error handling or reporting.

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

function destroy_recursive(root)

for child in zfs.list.children(root) do

destroy_recursive(child)

end

for snap in zfs.list.snapshots(root) do

zfs.sync.destroy(snap)

end

zfs.sync.destroy(root)

end

destroy_recursive("pool/somefs")

Example 2
A more verbose and robust version of the same channel program, which properly detects and reports

errors, and also takes the dataset to destroy as a command line argument, would be as follows:

succeeded = {}

failed = {}

function destroy_recursive(root)

for child in zfs.list.children(root) do

destroy_recursive(child)

end

for snap in zfs.list.snapshots(root) do

err = zfs.sync.destroy(snap)

if (err ~= 0) then

failed[snap] = err

else

succeeded[snap] = err

end

end

err = zfs.sync.destroy(root)

if (err ~= 0) then

failed[root] = err

else

succeeded[root] = err

end

end

args = ...

argv = args["argv"]

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

destroy_recursive(argv[1])

results = {}

results["succeeded"] = succeeded

results["failed"] = failed

return results

Example 3
The following function performs a forced promote operation by attempting to promote the given clone

and destroying any conflicting snapshots.

function force_promote(ds)

errno, details = zfs.check.promote(ds)

if (errno == EEXIST) then

assert(details ~= Nil)

for i, snap in ipairs(details) do

zfs.sync.destroy(ds .. "@" .. snap)

end

elseif (errno ~= 0) then

return errno

end

return zfs.sync.promote(ds)

end

ZFS-PROGRAM(8) FreeBSD System Manager’s Manual ZFS-PROGRAM(8)

FreeBSD 14.0-RELEASE-p6 May 27, 2021 FreeBSD 14.0-RELEASE-p6

