
NAME
zfs-send - generate backup stream of ZFS dataset

SYNOPSIS
zfs send [-DLPVbcehnpsvw] [-R [-X dataset[,dataset]<?>]] [[-I|-i] snapshot] snapshot

zfs send [-DLPVcensvw] [-i snapshot|bookmark] filesystem|volume|snapshot

zfs send --redact redaction_bookmark [-DLPVcenpv] [-i snapshot|bookmark] snapshot

zfs send [-PVenv] -t receive_resume_token

zfs send [-PVnv] -S filesystem

zfs redact snapshot redaction_bookmark redaction_snapshot<?>

DESCRIPTION
zfs send [-DLPVbcehnpsvw] [-R [-X dataset[,dataset]<?>]] [[-I|-i] snapshot] snapshot

Creates a stream representation of the second snapshot, which is written to standard output. The output

can be redirected to a file or to a different system (for example, using ssh(1)). By default, a full stream

is generated.

-D, --dedup
Deduplicated send is no longer supported. This flag is accepted for backwards compatibility, but a

regular, non-deduplicated stream will be generated.

-I snapshot

Generate a stream package that sends all intermediary snapshots from the first snapshot to the

second snapshot. For example, -I @a fs@d is similar to -i @a fs@b; -i @b fs@c; -i @c fs@d. The

incremental source may be specified as with the -i option.

-L, --large-block
Generate a stream which may contain blocks larger than 128 KiB. This flag has no effect if the

large_blocks pool feature is disabled, or if the recordsize property of this filesystem has never been

set above 128 KiB. The receiving system must have the large_blocks pool feature enabled as well.

See zpool-features(7) for details on ZFS feature flags and the large_blocks feature.

-P, --parsable
Print machine-parsable verbose information about the stream package generated.

-R, --replicate
Generate a replication stream package, which will replicate the specified file system, and all

descendent file systems, up to the named snapshot. When received, all properties, snapshots,

descendent file systems, and clones are preserved.

ZFS-SEND(8) FreeBSD System Manager’s Manual ZFS-SEND(8)

FreeBSD 14.0-RELEASE-p6 July 27, 2023 FreeBSD 14.0-RELEASE-p6

If the -i or -I flags are used in conjunction with the -R flag, an incremental replication stream is

generated. The current values of properties, and current snapshot and file system names are set

when the stream is received. If the -F flag is specified when this stream is received, snapshots and

file systems that do not exist on the sending side are destroyed. If the -R flag is used to send

encrypted datasets, then -w must also be specified.

-V, --proctitle
Set the process title to a per-second report of how much data has been sent.

-X, --exclude dataset[,dataset]<?>

With -R, -X specifies a set of datasets (and, hence, their descendants), to be excluded from the send

stream. The root dataset may not be excluded. -X a -X b is equivalent to -X a,b.

-e, --embed
Generate a more compact stream by using WRITE_EMBEDDED records for blocks which are

stored more compactly on disk by the embedded_data pool feature. This flag has no effect if the

embedded_data feature is disabled. The receiving system must have the embedded_data feature

enabled. If the lz4_compress feature is active on the sending system, then the receiving system

must have that feature enabled as well. Datasets that are sent with this flag may not be received as

an encrypted dataset, since encrypted datasets cannot use the embedded_data feature. See

zpool-features(7) for details on ZFS feature flags and the embedded_data feature.

-b, --backup
Sends only received property values whether or not they are overridden by local settings, but only

if the dataset has ever been received. Use this option when you want zfs receive to restore received

properties backed up on the sent dataset and to avoid sending local settings that may have nothing

to do with the source dataset, but only with how the data is backed up.

-c, --compressed
Generate a more compact stream by using compressed WRITE records for blocks which are

compressed on disk and in memory (see the compression property for details). If the lz4_compress
feature is active on the sending system, then the receiving system must have that feature enabled as

well. If the large_blocks feature is enabled on the sending system but the -L option is not supplied

in conjunction with -c, then the data will be decompressed before sending so it can be split into

smaller block sizes. Streams sent with -c will not have their data recompressed on the receiver side

using -o compress= value. The data will stay compressed as it was from the sender. The new

compression property will be set for future data. Note that uncompressed data from the sender will

still attempt to compress on the receiver, unless you specify -o compress= off.

-w, --raw

ZFS-SEND(8) FreeBSD System Manager’s Manual ZFS-SEND(8)

FreeBSD 14.0-RELEASE-p6 July 27, 2023 FreeBSD 14.0-RELEASE-p6

For encrypted datasets, send data exactly as it exists on disk. This allows backups to be taken even

if encryption keys are not currently loaded. The backup may then be received on an untrusted

machine since that machine will not have the encryption keys to read the protected data or alter it

without being detected. Upon being received, the dataset will have the same encryption keys as it

did on the send side, although the keylocation property will be defaulted to prompt if not otherwise

provided. For unencrypted datasets, this flag will be equivalent to -Lec. Note that if you do not

use this flag for sending encrypted datasets, data will be sent unencrypted and may be re-encrypted

with a different encryption key on the receiving system, which will disable the ability to do a raw

send to that system for incrementals.

-h, --holds
Generate a stream package that includes any snapshot holds (created with the zfs hold command),

and indicating to zfs receive that the holds be applied to the dataset on the receiving system.

-i snapshot

Generate an incremental stream from the first snapshot (the incremental source) to the second

snapshot (the incremental target). The incremental source can be specified as the last component of

the snapshot name (the @ character and following) and it is assumed to be from the same file

system as the incremental target.

If the destination is a clone, the source may be the origin snapshot, which must be fully specified

(for example, pool/fs@origin, not just @origin).

-n, --dryrun
Do a dry-run ("No-op") send. Do not generate any actual send data. This is useful in conjunction

with the -v or -P flags to determine what data will be sent. In this case, the verbose output will be

written to standard output (contrast with a non-dry-run, where the stream is written to standard

output and the verbose output goes to standard error).

-p, --props
Include the dataset’s properties in the stream. This flag is implicit when -R is specified. The

receiving system must also support this feature. Sends of encrypted datasets must use -w when

using this flag.

-s, --skip-missing
Allows sending a replication stream even when there are snapshots missing in the hierarchy. When

a snapshot is missing, instead of throwing an error and aborting the send, a warning is printed to the

standard error stream and the dataset to which it belongs and its descendents are skipped. This flag

can only be used in conjunction with -R.

ZFS-SEND(8) FreeBSD System Manager’s Manual ZFS-SEND(8)

FreeBSD 14.0-RELEASE-p6 July 27, 2023 FreeBSD 14.0-RELEASE-p6

-v, --verbose
Print verbose information about the stream package generated. This information includes a per-

second report of how much data has been sent. The same report can be requested by sending

SIGINFO or SIGUSR1, regardless of -v.

The format of the stream is committed. You will be able to receive your streams on future versions

of ZFS.

zfs send [-DLPVcenvw] [-i snapshot|bookmark] filesystem|volume|snapshot

Generate a send stream, which may be of a filesystem, and may be incremental from a bookmark. If

the destination is a filesystem or volume, the pool must be read-only, or the filesystem must not be

mounted. When the stream generated from a filesystem or volume is received, the default snapshot

name will be "--head--".

-D, --dedup
Deduplicated send is no longer supported. This flag is accepted for backwards compatibility, but a

regular, non-deduplicated stream will be generated.

-L, --large-block
Generate a stream which may contain blocks larger than 128 KiB. This flag has no effect if the

large_blocks pool feature is disabled, or if the recordsize property of this filesystem has never been

set above 128 KiB. The receiving system must have the large_blocks pool feature enabled as well.

See zpool-features(7) for details on ZFS feature flags and the large_blocks feature.

-P, --parsable
Print machine-parsable verbose information about the stream package generated.

-c, --compressed
Generate a more compact stream by using compressed WRITE records for blocks which are

compressed on disk and in memory (see the compression property for details). If the lz4_compress
feature is active on the sending system, then the receiving system must have that feature enabled as

well. If the large_blocks feature is enabled on the sending system but the -L option is not supplied

in conjunction with -c, then the data will be decompressed before sending so it can be split into

smaller block sizes.

-w, --raw
For encrypted datasets, send data exactly as it exists on disk. This allows backups to be taken even

if encryption keys are not currently loaded. The backup may then be received on an untrusted

machine since that machine will not have the encryption keys to read the protected data or alter it

without being detected. Upon being received, the dataset will have the same encryption keys as it

ZFS-SEND(8) FreeBSD System Manager’s Manual ZFS-SEND(8)

FreeBSD 14.0-RELEASE-p6 July 27, 2023 FreeBSD 14.0-RELEASE-p6

did on the send side, although the keylocation property will be defaulted to prompt if not otherwise

provided. For unencrypted datasets, this flag will be equivalent to -Lec. Note that if you do not

use this flag for sending encrypted datasets, data will be sent unencrypted and may be re-encrypted

with a different encryption key on the receiving system, which will disable the ability to do a raw

send to that system for incrementals.

-e, --embed
Generate a more compact stream by using WRITE_EMBEDDED records for blocks which are

stored more compactly on disk by the embedded_data pool feature. This flag has no effect if the

embedded_data feature is disabled. The receiving system must have the embedded_data feature

enabled. If the lz4_compress feature is active on the sending system, then the receiving system

must have that feature enabled as well. Datasets that are sent with this flag may not be received as

an encrypted dataset, since encrypted datasets cannot use the embedded_data feature. See

zpool-features(7) for details on ZFS feature flags and the embedded_data feature.

-i snapshot|bookmark

Generate an incremental send stream. The incremental source must be an earlier snapshot in the

destination’s history. It will commonly be an earlier snapshot in the destination’s file system, in

which case it can be specified as the last component of the name (the # or @ character and

following).

If the incremental target is a clone, the incremental source can be the origin snapshot, or an earlier

snapshot in the origin’s filesystem, or the origin’s origin, etc.

-n, --dryrun
Do a dry-run ("No-op") send. Do not generate any actual send data. This is useful in conjunction

with the -v or -P flags to determine what data will be sent. In this case, the verbose output will be

written to standard output (contrast with a non-dry-run, where the stream is written to standard

output and the verbose output goes to standard error).

-v, --verbose
Print verbose information about the stream package generated. This information includes a per-

second report of how much data has been sent. The same report can be requested by sending

SIGINFO or SIGUSR1, regardless of -v.

zfs send --redact redaction_bookmark [-DLPVcenpv] [-i snapshot|bookmark] snapshot

Generate a redacted send stream. This send stream contains all blocks from the snapshot being sent

that aren’t included in the redaction list contained in the bookmark specified by the --redact (or -d) flag.

The resulting send stream is said to be redacted with respect to the snapshots the bookmark specified

by the --redact flag was created with. The bookmark must have been created by running zfs redact on

ZFS-SEND(8) FreeBSD System Manager’s Manual ZFS-SEND(8)

FreeBSD 14.0-RELEASE-p6 July 27, 2023 FreeBSD 14.0-RELEASE-p6

the snapshot being sent.

This feature can be used to allow clones of a filesystem to be made available on a remote system, in the

case where their parent need not (or needs to not) be usable. For example, if a filesystem contains

sensitive data, and it has clones where that sensitive data has been secured or replaced with dummy

data, redacted sends can be used to replicate the secured data without replicating the original sensitive

data, while still sharing all possible blocks. A snapshot that has been redacted with respect to a set of

snapshots will contain all blocks referenced by at least one snapshot in the set, but will contain none of

the blocks referenced by none of the snapshots in the set. In other words, if all snapshots in the set

have modified a given block in the parent, that block will not be sent; but if one or more snapshots have

not modified a block in the parent, they will still reference the parent’s block, so that block will be sent.

Note that only user data will be redacted.

When the redacted send stream is received, we will generate a redacted snapshot. Due to the nature of

redaction, a redacted dataset can only be used in the following ways:

1. To receive, as a clone, an incremental send from the original snapshot to one of the snapshots it was

redacted with respect to. In this case, the stream will produce a valid dataset when received because

all blocks that were redacted in the parent are guaranteed to be present in the child’s send stream.

This use case will produce a normal snapshot, which can be used just like other snapshots.

2. To receive an incremental send from the original snapshot to something redacted with respect to a

subset of the set of snapshots the initial snapshot was redacted with respect to. In this case, each

block that was redacted in the original is still redacted (redacting with respect to additional

snapshots causes less data to be redacted (because the snapshots define what is permitted, and

everything else is redacted)). This use case will produce a new redacted snapshot.

3. To receive an incremental send from a redaction bookmark of the original snapshot that was created

when redacting with respect to a subset of the set of snapshots the initial snapshot was created with

respect to anything else. A send stream from such a redaction bookmark will contain all of the

blocks necessary to fill in any redacted data, should it be needed, because the sending system is

aware of what blocks were originally redacted. This will either produce a normal snapshot or a

redacted one, depending on whether the new send stream is redacted.

4. To receive an incremental send from a redacted version of the initial snapshot that is redacted with

respect to a subject of the set of snapshots the initial snapshot was created with respect to. A send

stream from a compatible redacted dataset will contain all of the blocks necessary to fill in any

redacted data. This will either produce a normal snapshot or a redacted one, depending on whether

the new send stream is redacted.

ZFS-SEND(8) FreeBSD System Manager’s Manual ZFS-SEND(8)

FreeBSD 14.0-RELEASE-p6 July 27, 2023 FreeBSD 14.0-RELEASE-p6

5. To receive a full send as a clone of the redacted snapshot. Since the stream is a full send, it

definitionally contains all the data needed to create a new dataset. This use case will either produce

a normal snapshot or a redacted one, depending on whether the full send stream was redacted.

These restrictions are detected and enforced by zfs receive; a redacted send stream will contain the list

of snapshots that the stream is redacted with respect to. These are stored with the redacted snapshot,

and are used to detect and correctly handle the cases above. Note that for technical reasons, raw sends

and redacted sends cannot be combined at this time.

zfs send [-PVenv] -t receive_resume_token

Creates a send stream which resumes an interrupted receive. The receive_resume_token is the value of

this property on the filesystem or volume that was being received into. See the documentation for zfs
receive -s for more details.

zfs send [-PVnv] [-i snapshot|bookmark] -S filesystem

Generate a send stream from a dataset that has been partially received.

-S, --saved
This flag requires that the specified filesystem previously received a resumable send that did not

finish and was interrupted. In such scenarios this flag enables the user to send this partially

received state. Using this flag will always use the last fully received snapshot as the incremental

source if it exists.

zfs redact snapshot redaction_bookmark redaction_snapshot<?>

Generate a new redaction bookmark. In addition to the typical bookmark information, a redaction

bookmark contains the list of redacted blocks and the list of redaction snapshots specified. The

redacted blocks are blocks in the snapshot which are not referenced by any of the redaction snapshots.

These blocks are found by iterating over the metadata in each redaction snapshot to determine what has

been changed since the target snapshot. Redaction is designed to support redacted zfs sends; see the

entry for zfs send for more information on the purpose of this operation. If a redact operation fails

partway through (due to an error or a system failure), the redaction can be resumed by rerunning the

same command.

Redaction
ZFS has support for a limited version of data subsetting, in the form of redaction. Using the zfs redact
command, a redaction bookmark can be created that stores a list of blocks containing sensitive

information. When provided to zfs send, this causes a redacted send to occur. Redacted sends omit the

blocks containing sensitive information, replacing them with REDACT records. When these send

streams are received, a redacted dataset is created. A redacted dataset cannot be mounted by default,

since it is incomplete. It can be used to receive other send streams. In this way datasets can be used for

ZFS-SEND(8) FreeBSD System Manager’s Manual ZFS-SEND(8)

FreeBSD 14.0-RELEASE-p6 July 27, 2023 FreeBSD 14.0-RELEASE-p6

data backup and replication, with all the benefits that zfs send and receive have to offer, while protecting

sensitive information from being stored on less-trusted machines or services.

For the purposes of redaction, there are two steps to the process. A redact step, and a send/receive step.

First, a redaction bookmark is created. This is done by providing the zfs redact command with a parent

snapshot, a bookmark to be created, and a number of redaction snapshots. These redaction snapshots

must be descendants of the parent snapshot, and they should modify data that is considered sensitive in

some way. Any blocks of data modified by all of the redaction snapshots will be listed in the redaction

bookmark, because it represents the truly sensitive information. When it comes to the send step, the

send process will not send the blocks listed in the redaction bookmark, instead replacing them with

REDACT records. When received on the target system, this will create a redacted dataset, missing the

data that corresponds to the blocks in the redaction bookmark on the sending system. The incremental

send streams from the original parent to the redaction snapshots can then also be received on the target

system, and this will produce a complete snapshot that can be used normally. Incrementals from one

snapshot on the parent filesystem and another can also be done by sending from the redaction bookmark,

rather than the snapshots themselves.

In order to make the purpose of the feature more clear, an example is provided. Consider a zfs

filesystem containing four files. These files represent information for an online shopping service. One

file contains a list of usernames and passwords, another contains purchase histories, a third contains

click tracking data, and a fourth contains user preferences. The owner of this data wants to make it

available for their development teams to test against, and their market research teams to do analysis on.

The development teams need information about user preferences and the click tracking data, while the

market research teams need information about purchase histories and user preferences. Neither needs

access to the usernames and passwords. However, because all of this data is stored in one ZFS

filesystem, it must all be sent and received together. In addition, the owner of the data wants to take

advantage of features like compression, checksumming, and snapshots, so they do want to continue to

use ZFS to store and transmit their data. Redaction can help them do so. First, they would make two

clones of a snapshot of the data on the source. In one clone, they create the setup they want their market

research team to see; they delete the usernames and passwords file, and overwrite the click tracking data

with dummy information. In another, they create the setup they want the development teams to see, by

replacing the passwords with fake information and replacing the purchase histories with randomly

generated ones. They would then create a redaction bookmark on the parent snapshot, using snapshots

on the two clones as redaction snapshots. The parent can then be sent, redacted, to the target server

where the research and development teams have access. Finally, incremental sends from the parent

snapshot to each of the clones can be sent to and received on the target server; these snapshots are

identical to the ones on the source, and are ready to be used, while the parent snapshot on the target

contains none of the username and password data present on the source, because it was removed by the

redacted send operation.

ZFS-SEND(8) FreeBSD System Manager’s Manual ZFS-SEND(8)

FreeBSD 14.0-RELEASE-p6 July 27, 2023 FreeBSD 14.0-RELEASE-p6

SIGNALS
See -v.

EXAMPLES
Example 1: Remotely Replicating ZFS Data

The following commands send a full stream and then an incremental stream to a remote machine,

restoring them into poolB/received/fs@a and poolB/received/fs@b, respectively. poolB must contain

the file system poolB/received, and must not initially contain poolB/received/fs.

zfs send pool/fs@a |

ssh host zfs receive poolB/received/fs@a

zfs send -i a pool/fs@b |

ssh host zfs receive poolB/received/fs

Example 2: Using the zfs receive -d Option

The following command sends a full stream of poolA/fsA/fsB@snap to a remote machine, receiving it

into poolB/received/fsA/fsB@snap. The fsA/fsB@snap portion of the received snapshot’s name is

determined from the name of the sent snapshot. poolB must contain the file system poolB/received. If

poolB/received/fsA does not exist, it is created as an empty file system.

zfs send poolA/fsA/fsB@snap |

ssh host zfs receive -d poolB/received

SEE ALSO
zfs-bookmark(8), zfs-receive(8), zfs-redact(8), zfs-snapshot(8)

ZFS-SEND(8) FreeBSD System Manager’s Manual ZFS-SEND(8)

FreeBSD 14.0-RELEASE-p6 July 27, 2023 FreeBSD 14.0-RELEASE-p6

