
NAME
zfs - tuning of the ZFS kernel module

DESCRIPTION
The ZFS module supports these parameters:

dbuf_cache_max_bytes=UINT64_MAXB (u64)

Maximum size in bytes of the dbuf cache. The target size is determined by the MIN versus

1/2^dbuf_cache_shift (1/32nd) of the target ARC size. The behavior of the dbuf cache and its

associated settings can be observed via the /proc/spl/kstat/zfs/dbufstats kstat.

dbuf_metadata_cache_max_bytes=UINT64_MAXB (u64)

Maximum size in bytes of the metadata dbuf cache. The target size is determined by the MIN

versus 1/2^dbuf_metadata_cache_shift (1/64th) of the target ARC size. The behavior of the

metadata dbuf cache and its associated settings can be observed via the

/proc/spl/kstat/zfs/dbufstats kstat.

dbuf_cache_hiwater_pct=10% (uint)

The percentage over dbuf_cache_max_bytes when dbufs must be evicted directly.

dbuf_cache_lowater_pct=10% (uint)

The percentage below dbuf_cache_max_bytes when the evict thread stops evicting dbufs.

dbuf_cache_shift=5 (uint)

Set the size of the dbuf cache (dbuf_cache_max_bytes) to a log2 fraction of the target ARC

size.

dbuf_metadata_cache_shift=6 (uint)

Set the size of the dbuf metadata cache (dbuf_metadata_cache_max_bytes) to a log2 fraction of

the target ARC size.

dbuf_mutex_cache_shift=0 (uint)

Set the size of the mutex array for the dbuf cache. When set to 0 the array is dynamically sized

based on total system memory.

dmu_object_alloc_chunk_shift=7 (128) (uint)

dnode slots allocated in a single operation as a power of 2. The default value minimizes lock

contention for the bulk operation performed.

dmu_prefetch_max=134217728B (128 MiB) (uint)

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

Limit the amount we can prefetch with one call to this amount in bytes. This helps to limit the

amount of memory that can be used by prefetching.

ignore_hole_birth (int)

Alias for send_holes_without_birth_time.

l2arc_feed_again=1|0 (int)

Turbo L2ARC warm-up. When the L2ARC is cold the fill interval will be set as fast as

possible.

l2arc_feed_min_ms=200 (u64)

Min feed interval in milliseconds. Requires l2arc_feed_again=1 and only applicable in related

situations.

l2arc_feed_secs=1 (u64)

Seconds between L2ARC writing.

l2arc_headroom=2 (u64)

How far through the ARC lists to search for L2ARC cacheable content, expressed as a

multiplier of l2arc_write_max. ARC persistence across reboots can be achieved with persistent

L2ARC by setting this parameter to 0, allowing the full length of ARC lists to be searched for

cacheable content.

l2arc_headroom_boost=200% (u64)

Scales l2arc_headroom by this percentage when L2ARC contents are being successfully

compressed before writing. A value of 100 disables this feature.

l2arc_exclude_special=0|1 (int)

Controls whether buffers present on special vdevs are eligible for caching into L2ARC. If set to

1, exclude dbufs on special vdevs from being cached to L2ARC.

l2arc_mfuonly=0|1|2 (int)

Controls whether only MFU metadata and data are cached from ARC into L2ARC. This may

be desired to avoid wasting space on L2ARC when reading/writing large amounts of data that

are not expected to be accessed more than once.

The default is 0, meaning both MRU and MFU data and metadata are cached. When turning off

this feature (setting it to 0), some MRU buffers will still be present in ARC and eventually

cached on L2ARC. If l2arc_noprefetch=0, some prefetched buffers will be cached to L2ARC,

and those might later transition to MRU, in which case the l2arc_mru_asize arcstat will not be

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

0.

Setting it to 1 means to L2 cache only MFU data and metadata.

Setting it to 2 means to L2 cache all metadata (MRU+MFU) but only MFU data (ie: MRU data

are not cached). This can be the right setting to cache as much metadata as possible even when

having high data turnover.

Regardless of l2arc_noprefetch, some MFU buffers might be evicted from ARC, accessed later

on as prefetches and transition to MRU as prefetches. If accessed again they are counted as

MRU and the l2arc_mru_asize arcstat will not be 0.

The ARC status of L2ARC buffers when they were first cached in L2ARC can be seen in the

l2arc_mru_asize, l2arc_mfu_asize, and l2arc_prefetch_asize arcstats when importing the pool

or onlining a cache device if persistent L2ARC is enabled.

The evict_l2_eligible_mru arcstat does not take into account if this option is enabled as the

information provided by the evict_l2_eligible_m[rf]u arcstats can be used to decide if toggling

this option is appropriate for the current workload.

l2arc_meta_percent=33% (uint)

Percent of ARC size allowed for L2ARC-only headers. Since L2ARC buffers are not evicted

on memory pressure, too many headers on a system with an irrationally large L2ARC can

render it slow or unusable. This parameter limits L2ARC writes and rebuilds to achieve the

target.

l2arc_trim_ahead=0% (u64)

Trims ahead of the current write size (l2arc_write_max) on L2ARC devices by this percentage

of write size if we have filled the device. If set to 100 we TRIM twice the space required to

accommodate upcoming writes. A minimum of 64 MiB will be trimmed. It also enables TRIM

of the whole L2ARC device upon creation or addition to an existing pool or if the header of the

device is invalid upon importing a pool or onlining a cache device. A value of 0 disables TRIM

on L2ARC altogether and is the default as it can put significant stress on the underlying storage

devices. This will vary depending of how well the specific device handles these commands.

l2arc_noprefetch=1|0 (int)

Do not write buffers to L2ARC if they were prefetched but not used by applications. In case

there are prefetched buffers in L2ARC and this option is later set, we do not read the prefetched

buffers from L2ARC. Unsetting this option is useful for caching sequential reads from the

disks to L2ARC and serve those reads from L2ARC later on. This may be beneficial in case the

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

L2ARC device is significantly faster in sequential reads than the disks of the pool.

Use 1 to disable and 0 to enable caching/reading prefetches to/from L2ARC.

l2arc_norw=0|1 (int)

No reads during writes.

l2arc_write_boost=8388608B (8 MiB) (u64)

Cold L2ARC devices will have l2arc_write_max increased by this amount while they remain

cold.

l2arc_write_max=8388608B (8 MiB) (u64)

Max write bytes per interval.

l2arc_rebuild_enabled=1|0 (int)

Rebuild the L2ARC when importing a pool (persistent L2ARC). This can be disabled if there

are problems importing a pool or attaching an L2ARC device (e.g. the L2ARC device is slow in

reading stored log metadata, or the metadata has become somehow fragmented/unusable).

l2arc_rebuild_blocks_min_l2size=1073741824B (1 GiB) (u64)

Mininum size of an L2ARC device required in order to write log blocks in it. The log blocks

are used upon importing the pool to rebuild the persistent L2ARC.

For L2ARC devices less than 1 GiB, the amount of data l2arc_evict() evicts is significant

compared to the amount of restored L2ARC data. In this case, do not write log blocks in

L2ARC in order not to waste space.

metaslab_aliquot=1048576B (1 MiB) (u64)

Metaslab granularity, in bytes. This is roughly similar to what would be referred to as the

"stripe size" in traditional RAID arrays. In normal operation, ZFS will try to write this amount

of data to each disk before moving on to the next top-level vdev.

metaslab_bias_enabled=1|0 (int)

Enable metaslab group biasing based on their vdevs’ over- or under-utilization relative to the

pool.

metaslab_force_ganging=16777217B (16 MiB + 1 B) (u64)

Make some blocks above a certain size be gang blocks. This option is used by the test suite to

facilitate testing.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

metaslab_force_ganging_pct=3% (uint)

For blocks that could be forced to be a gang block (due to metaslab_force_ganging), force this

many of them to be gang blocks.

brt_zap_prefetch=1|0 (int)

Controls prefetching BRT records for blocks which are going to be cloned.

brt_zap_default_bs=12 (4 KiB) (int)

Default BRT ZAP data block size as a power of 2. Note that changing this after creating a BRT

on the pool will not affect existing BRTs, only newly created ones.

brt_zap_default_ibs=12 (4 KiB) (int)

Default BRT ZAP indirect block size as a power of 2. Note that changing this after creating a

BRT on the pool will not affect existing BRTs, only newly created ones.

ddt_zap_default_bs=15 (32 KiB) (int)

Default DDT ZAP data block size as a power of 2. Note that changing this after creating a DDT

on the pool will not affect existing DDTs, only newly created ones.

ddt_zap_default_ibs=15 (32 KiB) (int)

Default DDT ZAP indirect block size as a power of 2. Note that changing this after creating a

DDT on the pool will not affect existing DDTs, only newly created ones.

zfs_default_bs=9 (512 B) (int)

Default dnode block size as a power of 2.

zfs_default_ibs=17 (128 KiB) (int)

Default dnode indirect block size as a power of 2.

zfs_history_output_max=1048576B (1 MiB) (u64)

When attempting to log an output nvlist of an ioctl in the on-disk history, the output will not be

stored if it is larger than this size (in bytes). This must be less than DMU_MAX_ACCESS (64

MiB). This applies primarily to zfs_ioc_channel_program() (cf. zfs-program(8)).

zfs_keep_log_spacemaps_at_export=0|1 (int)

Prevent log spacemaps from being destroyed during pool exports and destroys.

zfs_metaslab_segment_weight_enabled=1|0 (int)

Enable/disable segment-based metaslab selection.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_metaslab_switch_threshold=2 (int)

When using segment-based metaslab selection, continue allocating from the active metaslab

until this option’s worth of buckets have been exhausted.

metaslab_debug_load=0|1 (int)

Load all metaslabs during pool import.

metaslab_debug_unload=0|1 (int)

Prevent metaslabs from being unloaded.

metaslab_fragmentation_factor_enabled=1|0 (int)

Enable use of the fragmentation metric in computing metaslab weights.

metaslab_df_max_search=16777216B (16 MiB) (uint)

Maximum distance to search forward from the last offset. Without this limit, fragmented pools

can see >100‘000 iterations and metaslab_block_picker() becomes the performance limiting

factor on high-performance storage.

With the default setting of 16 MiB, we typically see less than 500 iterations, even with very

fragmented ashift=9 pools. The maximum number of iterations possible is

metaslab_df_max_search / 2^(ashift+1). With the default setting of 16 MiB this is 16*1024

(with ashift=9) or 2*1024 (with ashift=12).

metaslab_df_use_largest_segment=0|1 (int)

If not searching forward (due to metaslab_df_max_search, metaslab_df_free_pct, or

metaslab_df_alloc_threshold), this tunable controls which segment is used. If set, we will use

the largest free segment. If unset, we will use a segment of at least the requested size.

zfs_metaslab_max_size_cache_sec=3600s (1 hour) (u64)

When we unload a metaslab, we cache the size of the largest free chunk. We use that cached

size to determine whether or not to load a metaslab for a given allocation. As more frees

accumulate in that metaslab while it’s unloaded, the cached max size becomes less and less

accurate. After a number of seconds controlled by this tunable, we stop considering the cached

max size and start considering only the histogram instead.

zfs_metaslab_mem_limit=25% (uint)

When we are loading a new metaslab, we check the amount of memory being used to store

metaslab range trees. If it is over a threshold, we attempt to unload the least recently used

metaslab to prevent the system from clogging all of its memory with range trees. This tunable

sets the percentage of total system memory that is the threshold.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_metaslab_try_hard_before_gang=0|1 (int)

If unset, we will first try normal allocation.

If that fails then we will do a gang allocation.

If that fails then we will do a "try hard" gang allocation.

If that fails then we will have a multi-layer gang block.

If set, we will first try normal allocation.

If that fails then we will do a "try hard" allocation.

If that fails we will do a gang allocation.

If that fails we will do a "try hard" gang allocation.

If that fails then we will have a multi-layer gang block.

zfs_metaslab_find_max_tries=100 (uint)

When not trying hard, we only consider this number of the best metaslabs. This improves

performance, especially when there are many metaslabs per vdev and the allocation can’t

actually be satisfied (so we would otherwise iterate all metaslabs).

zfs_vdev_default_ms_count=200 (uint)

When a vdev is added, target this number of metaslabs per top-level vdev.

zfs_vdev_default_ms_shift=29 (512 MiB) (uint)

Default lower limit for metaslab size.

zfs_vdev_max_ms_shift=34 (16 GiB) (uint)

Default upper limit for metaslab size.

zfs_vdev_max_auto_ashift=14 (uint)

Maximum ashift used when optimizing for logical -> physical sector size on new top-level

vdevs. May be increased up to ASHIFT_MAX (16), but this may negatively impact pool space

efficiency.

zfs_vdev_min_auto_ashift=ASHIFT_MIN (9) (uint)

Minimum ashift used when creating new top-level vdevs.

zfs_vdev_min_ms_count=16 (uint)

Minimum number of metaslabs to create in a top-level vdev.

vdev_validate_skip=0|1 (int)

Skip label validation steps during pool import. Changing is not recommended unless you know

what you’re doing and are recovering a damaged label.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_vdev_ms_count_limit=131072 (128k) (uint)

Practical upper limit of total metaslabs per top-level vdev.

metaslab_preload_enabled=1|0 (int)

Enable metaslab group preloading.

metaslab_preload_limit=10 (uint)

Maximum number of metaslabs per group to preload

metaslab_preload_pct=50 (uint)

Percentage of CPUs to run a metaslab preload taskq

metaslab_lba_weighting_enabled=1|0 (int)

Give more weight to metaslabs with lower LBAs, assuming they have greater bandwidth, as is

typically the case on a modern constant angular velocity disk drive.

metaslab_unload_delay=32 (uint)

After a metaslab is used, we keep it loaded for this many TXGs, to attempt to reduce

unnecessary reloading. Note that both this many TXGs and metaslab_unload_delay_ms
milliseconds must pass before unloading will occur.

metaslab_unload_delay_ms=600000ms (10 min) (uint)

After a metaslab is used, we keep it loaded for this many milliseconds, to attempt to reduce

unnecessary reloading. Note, that both this many milliseconds and metaslab_unload_delay
TXGs must pass before unloading will occur.

reference_history=3 (uint)

Maximum reference holders being tracked when reference_tracking_enable is active.

reference_tracking_enable=0|1 (int)

Track reference holders to refcount_t objects (debug builds only).

send_holes_without_birth_time=1|0 (int)

When set, the hole_birth optimization will not be used, and all holes will always be sent during

a zfs send. This is useful if you suspect your datasets are affected by a bug in hole_birth.

spa_config_path=/etc/zfs/zpool.cache (charp)

SPA config file.

spa_asize_inflation=24 (uint)

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

Multiplication factor used to estimate actual disk consumption from the size of data being

written. The default value is a worst case estimate, but lower values may be valid for a given

pool depending on its configuration. Pool administrators who understand the factors involved

may wish to specify a more realistic inflation factor, particularly if they operate close to quota

or capacity limits.

spa_load_print_vdev_tree=0|1 (int)

Whether to print the vdev tree in the debugging message buffer during pool import.

spa_load_verify_data=1|0 (int)

Whether to traverse data blocks during an "extreme rewind" (-X) import.

An extreme rewind import normally performs a full traversal of all blocks in the pool for

verification. If this parameter is unset, the traversal skips non-metadata blocks. It can be

toggled once the import has started to stop or start the traversal of non-metadata blocks.

spa_load_verify_metadata=1|0 (int)

Whether to traverse blocks during an "extreme rewind" (-X) pool import.

An extreme rewind import normally performs a full traversal of all blocks in the pool for

verification. If this parameter is unset, the traversal is not performed. It can be toggled once

the import has started to stop or start the traversal.

spa_load_verify_shift=4 (1/16th) (uint)

Sets the maximum number of bytes to consume during pool import to the log2 fraction of the

target ARC size.

spa_slop_shift=5 (1/32nd) (int)

Normally, we don’t allow the last 3.2% (1/2^spa_slop_shift) of space in the pool to be

consumed. This ensures that we don’t run the pool completely out of space, due to unaccounted

changes (e.g. to the MOS). It also limits the worst-case time to allocate space. If we have less

than this amount of free space, most ZPL operations (e.g. write, create) will return ENOSPC.

spa_upgrade_errlog_limit=0 (uint)

Limits the number of on-disk error log entries that will be converted to the new format when

enabling the head_errlog feature. The default is to convert all log entries.

vdev_removal_max_span=32768B (32 KiB) (uint)

During top-level vdev removal, chunks of data are copied from the vdev which may include

free space in order to trade bandwidth for IOPS. This parameter determines the maximum span

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

of free space, in bytes, which will be included as "unnecessary" data in a chunk of copied data.

The default value here was chosen to align with zfs_vdev_read_gap_limit, which is a similar

concept when doing regular reads (but there’s no reason it has to be the same).

vdev_file_logical_ashift=9 (512 B) (u64)

Logical ashift for file-based devices.

vdev_file_physical_ashift=9 (512 B) (u64)

Physical ashift for file-based devices.

zap_iterate_prefetch=1|0 (int)

If set, when we start iterating over a ZAP object, prefetch the entire object (all leaf blocks).

However, this is limited by dmu_prefetch_max.

zap_micro_max_size=131072B (128 KiB) (int)

Maximum micro ZAP size. A micro ZAP is upgraded to a fat ZAP, once it grows beyond the

specified size.

zfetch_hole_shift=2 (uint)

Log2 fraction of holes in speculative prefetch stream allowed for it to proceed.

zfetch_min_distance=4194304B (4 MiB) (uint)

Min bytes to prefetch per stream. Prefetch distance starts from the demand access size and

quickly grows to this value, doubling on each hit. After that it may grow further by 1/8 per hit,

but only if some prefetch since last time haven’t completed in time to satisfy demand request,

i.e. prefetch depth didn’t cover the read latency or the pool got saturated.

zfetch_max_distance=67108864B (64 MiB) (uint)

Max bytes to prefetch per stream.

zfetch_max_idistance=67108864B (64 MiB) (uint)

Max bytes to prefetch indirects for per stream.

zfetch_max_reorder=16777216B (16 MiB) (uint)

Requests within this byte distance from the current prefetch stream position are considered parts

of the stream, reordered due to parallel processing. Such requests do not advance the stream

position immediately unless zfetch_hole_shift fill threshold is reached, but saved to fill holes in

the stream later.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfetch_max_streams=8 (uint)

Max number of streams per zfetch (prefetch streams per file).

zfetch_min_sec_reap=1 (uint)

Min time before inactive prefetch stream can be reclaimed

zfetch_max_sec_reap=2 (uint)

Max time before inactive prefetch stream can be deleted

zfs_abd_scatter_enabled=1|0 (int)

Enables ARC from using scatter/gather lists and forces all allocations to be linear in kernel

memory. Disabling can improve performance in some code paths at the expense of fragmented

kernel memory.

zfs_abd_scatter_max_order=MAX_ORDER-1 (uint)

Maximum number of consecutive memory pages allocated in a single block for scatter/gather

lists.

The value of MAX_ORDER depends on kernel configuration.

zfs_abd_scatter_min_size=1536B (1.5 KiB) (uint)

This is the minimum allocation size that will use scatter (page-based) ABDs. Smaller

allocations will use linear ABDs.

zfs_arc_dnode_limit=0B (u64)

When the number of bytes consumed by dnodes in the ARC exceeds this number of bytes, try

to unpin some of it in response to demand for non-metadata. This value acts as a ceiling to the

amount of dnode metadata, and defaults to 0, which indicates that a percent which is based on

zfs_arc_dnode_limit_percent of the ARC meta buffers that may be used for dnodes.

zfs_arc_dnode_limit_percent=10% (u64)

Percentage that can be consumed by dnodes of ARC meta buffers.

See also zfs_arc_dnode_limit, which serves a similar purpose but has a higher priority if

nonzero.

zfs_arc_dnode_reduce_percent=10% (u64)

Percentage of ARC dnodes to try to scan in response to demand for non-metadata when the

number of bytes consumed by dnodes exceeds zfs_arc_dnode_limit.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_arc_average_blocksize=8192B (8 KiB) (uint)

The ARC’s buffer hash table is sized based on the assumption of an average block size of this

value. This works out to roughly 1 MiB of hash table per 1 GiB of physical memory with

8-byte pointers. For configurations with a known larger average block size, this value can be

increased to reduce the memory footprint.

zfs_arc_eviction_pct=200% (uint)

When arc_is_overflowing(), arc_get_data_impl() waits for this percent of the requested amount

of data to be evicted. For example, by default, for every 2 KiB that’s evicted, 1 KiB of it may

be "reused" by a new allocation. Since this is above 100%, it ensures that progress is made

towards getting arc_size under arc_c. Since this is finite, it ensures that allocations can still

happen, even during the potentially long time that arc_size is more than arc_c.

zfs_arc_evict_batch_limit=10 (uint)

Number ARC headers to evict per sub-list before proceeding to another sub-list. This batch-

style operation prevents entire sub-lists from being evicted at once but comes at a cost of

additional unlocking and locking.

zfs_arc_grow_retry=0s (uint)

If set to a non zero value, it will replace the arc_grow_retry value with this value. The

arc_grow_retry value (default 5s) is the number of seconds the ARC will wait before trying to

resume growth after a memory pressure event.

zfs_arc_lotsfree_percent=10% (int)

Throttle I/O when free system memory drops below this percentage of total system memory.

Setting this value to 0 will disable the throttle.

zfs_arc_max=0B (u64)

Max size of ARC in bytes. If 0, then the max size of ARC is determined by the amount of

system memory installed. Under Linux, half of system memory will be used as the limit.

Under FreeBSD, the larger of all_system_memory - 1 GiB and 5/8 x all_system_memory will

be used as the limit. This value must be at least 67108864B (64 MiB).

This value can be changed dynamically, with some caveats. It cannot be set back to 0 while

running, and reducing it below the current ARC size will not cause the ARC to shrink without

memory pressure to induce shrinking.

zfs_arc_meta_balance=500 (uint)

Balance between metadata and data on ghost hits. Values above 100 increase metadata caching

by proportionally reducing effect of ghost data hits on target data/metadata rate.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_arc_min=0B (u64)

Min size of ARC in bytes. If set to 0, arc_c_min will default to consuming the larger of 32 MiB
and all_system_memory / 32.

zfs_arc_min_prefetch_ms=0ms(==1s) (uint)

Minimum time prefetched blocks are locked in the ARC.

zfs_arc_min_prescient_prefetch_ms=0ms(==6s) (uint)

Minimum time "prescient prefetched" blocks are locked in the ARC. These blocks are meant to

be prefetched fairly aggressively ahead of the code that may use them.

zfs_arc_prune_task_threads=1 (int)

Number of arc_prune threads. FreeBSD does not need more than one. Linux may theoretically

use one per mount point up to number of CPUs, but that was not proven to be useful.

zfs_max_missing_tvds=0 (int)

Number of missing top-level vdevs which will be allowed during pool import (only in read-only

mode).

zfs_max_nvlist_src_size= 0 (u64)

Maximum size in bytes allowed to be passed as zc_nvlist_src_size for ioctls on /dev/zfs. This

prevents a user from causing the kernel to allocate an excessive amount of memory. When the

limit is exceeded, the ioctl fails with EINVAL and a description of the error is sent to the

zfs-dbgmsg log. This parameter should not need to be touched under normal circumstances. If

0, equivalent to a quarter of the user-wired memory limit under FreeBSD and to 134217728B

(128 MiB) under Linux.

zfs_multilist_num_sublists=0 (uint)

To allow more fine-grained locking, each ARC state contains a series of lists for both data and

metadata objects. Locking is performed at the level of these "sub-lists". This parameters

controls the number of sub-lists per ARC state, and also applies to other uses of the multilist

data structure.

If 0, equivalent to the greater of the number of online CPUs and 4.

zfs_arc_overflow_shift=8 (int)

The ARC size is considered to be overflowing if it exceeds the current ARC target size (arc_c)

by thresholds determined by this parameter. Exceeding by (arc_c >> zfs_arc_overflow_shift) /

2 starts ARC reclamation process. If that appears insufficient, exceeding by (arc_c >>

zfs_arc_overflow_shift) x 1.5 blocks new buffer allocation until the reclaim thread catches up.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

Started reclamation process continues till ARC size returns below the target size.

The default value of 8 causes the ARC to start reclamation if it exceeds the target size by 0.2%

of the target size, and block allocations by 0.6%.

zfs_arc_shrink_shift=0 (uint)

If nonzero, this will update arc_shrink_shift (default 7) with the new value.

zfs_arc_pc_percent=0% (off) (uint)

Percent of pagecache to reclaim ARC to.

This tunable allows the ZFS ARC to play more nicely with the kernel’s LRU pagecache. It can

guarantee that the ARC size won’t collapse under scanning pressure on the pagecache, yet still

allows the ARC to be reclaimed down to zfs_arc_min if necessary. This value is specified as

percent of pagecache size (as measured by NR_FILE_PAGES), where that percent may exceed

100. This only operates during memory pressure/reclaim.

zfs_arc_shrinker_limit=10000 (int)

This is a limit on how many pages the ARC shrinker makes available for eviction in response to

one page allocation attempt. Note that in practice, the kernel’s shrinker can ask us to evict up to

about four times this for one allocation attempt.

The default limit of 10000 (in practice, 160 MiB per allocation attempt with 4 KiB pages) limits

the amount of time spent attempting to reclaim ARC memory to less than 100 ms per allocation

attempt, even with a small average compressed block size of ~8 KiB.

The parameter can be set to 0 (zero) to disable the limit, and only applies on Linux.

zfs_arc_sys_free=0B (u64)

The target number of bytes the ARC should leave as free memory on the system. If zero,

equivalent to the bigger of 512 KiB and all_system_memory/64.

zfs_autoimport_disable=1|0 (int)

Disable pool import at module load by ignoring the cache file (spa_config_path).

zfs_checksum_events_per_second=20/s (uint)

Rate limit checksum events to this many per second. Note that this should not be set below the

ZED thresholds (currently 10 checksums over 10 seconds) or else the daemon may not trigger

any action.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_commit_timeout_pct=10% (uint)

This controls the amount of time that a ZIL block (lwb) will remain "open" when it isn’t "full",

and it has a thread waiting for it to be committed to stable storage. The timeout is scaled based

on a percentage of the last lwb latency to avoid significantly impacting the latency of each

individual transaction record (itx).

zfs_condense_indirect_commit_entry_delay_ms=0ms (int)

Vdev indirection layer (used for device removal) sleeps for this many milliseconds during

mapping generation. Intended for use with the test suite to throttle vdev removal speed.

zfs_condense_indirect_obsolete_pct=25% (uint)

Minimum percent of obsolete bytes in vdev mapping required to attempt to condense (see

zfs_condense_indirect_vdevs_enable). Intended for use with the test suite to facilitate

triggering condensing as needed.

zfs_condense_indirect_vdevs_enable=1|0 (int)

Enable condensing indirect vdev mappings. When set, attempt to condense indirect vdev

mappings if the mapping uses more than zfs_condense_min_mapping_bytes bytes of memory

and if the obsolete space map object uses more than zfs_condense_max_obsolete_bytes bytes

on-disk. The condensing process is an attempt to save memory by removing obsolete

mappings.

zfs_condense_max_obsolete_bytes=1073741824B (1 GiB) (u64)

Only attempt to condense indirect vdev mappings if the on-disk size of the obsolete space map

object is greater than this number of bytes (see zfs_condense_indirect_vdevs_enable).

zfs_condense_min_mapping_bytes=131072B (128 KiB) (u64)

Minimum size vdev mapping to attempt to condense (see

zfs_condense_indirect_vdevs_enable).

zfs_dbgmsg_enable=1|0 (int)

Internally ZFS keeps a small log to facilitate debugging. The log is enabled by default, and can

be disabled by unsetting this option. The contents of the log can be accessed by reading

/proc/spl/kstat/zfs/dbgmsg. Writing 0 to the file clears the log.

This setting does not influence debug prints due to zfs_flags.

zfs_dbgmsg_maxsize=4194304B (4 MiB) (uint)

Maximum size of the internal ZFS debug log.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_dbuf_state_index=0 (int)

Historically used for controlling what reporting was available under /proc/spl/kstat/zfs. No

effect.

zfs_deadman_enabled=1|0 (int)

When a pool sync operation takes longer than zfs_deadman_synctime_ms, or when an

individual I/O operation takes longer than zfs_deadman_ziotime_ms, then the operation is

considered to be "hung". If zfs_deadman_enabled is set, then the deadman behavior is invoked

as described by zfs_deadman_failmode. By default, the deadman is enabled and set to wait
which results in "hung" I/O operations only being logged. The deadman is automatically

disabled when a pool gets suspended.

zfs_deadman_failmode=wait (charp)

Controls the failure behavior when the deadman detects a "hung" I/O operation. Valid values

are:

wait Wait for a "hung" operation to complete. For each "hung" operation a

"deadman" event will be posted describing that operation.

continue Attempt to recover from a "hung" operation by re-dispatching it to the I/O

pipeline if possible.

panic Panic the system. This can be used to facilitate automatic fail-over to a properly

configured fail-over partner.

zfs_deadman_checktime_ms=60000ms (1 min) (u64)

Check time in milliseconds. This defines the frequency at which we check for hung I/O

requests and potentially invoke the zfs_deadman_failmode behavior.

zfs_deadman_synctime_ms=600000ms (10 min) (u64)

Interval in milliseconds after which the deadman is triggered and also the interval after which a

pool sync operation is considered to be "hung". Once this limit is exceeded the deadman will

be invoked every zfs_deadman_checktime_ms milliseconds until the pool sync completes.

zfs_deadman_ziotime_ms=300000ms (5 min) (u64)

Interval in milliseconds after which the deadman is triggered and an individual I/O operation is

considered to be "hung". As long as the operation remains "hung", the deadman will be

invoked every zfs_deadman_checktime_ms milliseconds until the operation completes.

zfs_dedup_prefetch=0|1 (int)

Enable prefetching dedup-ed blocks which are going to be freed.

zfs_delay_min_dirty_percent=60% (uint)

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

Start to delay each transaction once there is this amount of dirty data, expressed as a percentage

of zfs_dirty_data_max. This value should be at least

zfs_vdev_async_write_active_max_dirty_percent. See ZFS TRANSACTION DELAY.

zfs_delay_scale=500000 (int)

This controls how quickly the transaction delay approaches infinity. Larger values cause longer

delays for a given amount of dirty data.

For the smoothest delay, this value should be about 1 billion divided by the maximum number

of operations per second. This will smoothly handle between ten times and a tenth of this

number. See ZFS TRANSACTION DELAY.

zfs_delay_scale x zfs_dirty_data_max must be smaller than 2^64.

zfs_disable_ivset_guid_check=0|1 (int)

Disables requirement for IVset GUIDs to be present and match when doing a raw receive of

encrypted datasets. Intended for users whose pools were created with OpenZFS pre-release

versions and now have compatibility issues.

zfs_key_max_salt_uses=400000000 (4*10^8) (ulong)

Maximum number of uses of a single salt value before generating a new one for encrypted

datasets. The default value is also the maximum.

zfs_object_mutex_size=64 (uint)

Size of the znode hashtable used for holds.

Due to the need to hold locks on objects that may not exist yet, kernel mutexes are not created

per-object and instead a hashtable is used where collisions will result in objects waiting when

there is not actually contention on the same object.

zfs_slow_io_events_per_second=20/s (int)

Rate limit delay and deadman zevents (which report slow I/O operations) to this many per

second.

zfs_unflushed_max_mem_amt=1073741824B (1 GiB) (u64)

Upper-bound limit for unflushed metadata changes to be held by the log spacemap in memory,

in bytes.

zfs_unflushed_max_mem_ppm=1000ppm (0.1%) (u64)

Part of overall system memory that ZFS allows to be used for unflushed metadata changes by

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

the log spacemap, in millionths.

zfs_unflushed_log_block_max=131072 (128k) (u64)

Describes the maximum number of log spacemap blocks allowed for each pool. The default

value means that the space in all the log spacemaps can add up to no more than 131072 blocks

(which means 16 GiB of logical space before compression and ditto blocks, assuming that

blocksize is 128 KiB).

This tunable is important because it involves a trade-off between import time after an unclean

export and the frequency of flushing metaslabs. The higher this number is, the more log blocks

we allow when the pool is active which means that we flush metaslabs less often and thus

decrease the number of I/O operations for spacemap updates per TXG. At the same time

though, that means that in the event of an unclean export, there will be more log spacemap

blocks for us to read, inducing overhead in the import time of the pool. The lower the number,

the amount of flushing increases, destroying log blocks quicker as they become obsolete faster,

which leaves less blocks to be read during import time after a crash.

Each log spacemap block existing during pool import leads to approximately one extra logical

I/O issued. This is the reason why this tunable is exposed in terms of blocks rather than space

used.

zfs_unflushed_log_block_min=1000 (u64)

If the number of metaslabs is small and our incoming rate is high, we could get into a situation

that we are flushing all our metaslabs every TXG. Thus we always allow at least this many log

blocks.

zfs_unflushed_log_block_pct=400% (u64)

Tunable used to determine the number of blocks that can be used for the spacemap log,

expressed as a percentage of the total number of unflushed metaslabs in the pool.

zfs_unflushed_log_txg_max=1000 (u64)

Tunable limiting maximum time in TXGs any metaslab may remain unflushed. It effectively

limits maximum number of unflushed per-TXG spacemap logs that need to be read after

unclean pool export.

zfs_unlink_suspend_progress=0|1 (uint)

When enabled, files will not be asynchronously removed from the list of pending unlinks and

the space they consume will be leaked. Once this option has been disabled and the dataset is

remounted, the pending unlinks will be processed and the freed space returned to the pool. This

option is used by the test suite.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_delete_blocks=20480 (ulong)

This is the used to define a large file for the purposes of deletion. Files containing more than

zfs_delete_blocks will be deleted asynchronously, while smaller files are deleted

synchronously. Decreasing this value will reduce the time spent in an unlink(2) system call, at

the expense of a longer delay before the freed space is available. This only applies on Linux.

zfs_dirty_data_max= (int)

Determines the dirty space limit in bytes. Once this limit is exceeded, new writes are halted

until space frees up. This parameter takes precedence over zfs_dirty_data_max_percent. See

ZFS TRANSACTION DELAY.

Defaults to physical_ram/10, capped at zfs_dirty_data_max_max.

zfs_dirty_data_max_max= (int)

Maximum allowable value of zfs_dirty_data_max, expressed in bytes. This limit is only

enforced at module load time, and will be ignored if zfs_dirty_data_max is later changed. This

parameter takes precedence over zfs_dirty_data_max_max_percent. See ZFS TRANSACTION

DELAY.

Defaults to min(physical_ram/4, 4GiB), or min(physical_ram/4, 1GiB) for 32-bit systems.

zfs_dirty_data_max_max_percent=25% (uint)

Maximum allowable value of zfs_dirty_data_max, expressed as a percentage of physical RAM.

This limit is only enforced at module load time, and will be ignored if zfs_dirty_data_max is

later changed. The parameter zfs_dirty_data_max_max takes precedence over this one. See

ZFS TRANSACTION DELAY.

zfs_dirty_data_max_percent=10% (uint)

Determines the dirty space limit, expressed as a percentage of all memory. Once this limit is

exceeded, new writes are halted until space frees up. The parameter zfs_dirty_data_max takes

precedence over this one. See ZFS TRANSACTION DELAY.

Subject to zfs_dirty_data_max_max.

zfs_dirty_data_sync_percent=20% (uint)

Start syncing out a transaction group if there’s at least this much dirty data (as a percentage of

zfs_dirty_data_max). This should be less than

zfs_vdev_async_write_active_min_dirty_percent.

zfs_wrlog_data_max= (int)

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

The upper limit of write-transaction zil log data size in bytes. Write operations are throttled

when approaching the limit until log data is cleared out after transaction group sync. Because

of some overhead, it should be set at least 2 times the size of zfs_dirty_data_max to prevent

harming normal write throughput. It also should be smaller than the size of the slog device if

slog is present.

Defaults to zfs_dirty_data_max*2

zfs_fallocate_reserve_percent=110% (uint)

Since ZFS is a copy-on-write filesystem with snapshots, blocks cannot be preallocated for a file

in order to guarantee that later writes will not run out of space. Instead, fallocate(2) space

preallocation only checks that sufficient space is currently available in the pool or the user’s

project quota allocation, and then creates a sparse file of the requested size. The requested

space is multiplied by zfs_fallocate_reserve_percent to allow additional space for indirect

blocks and other internal metadata. Setting this to 0 disables support for fallocate(2) and causes

it to return EOPNOTSUPP.

zfs_fletcher_4_impl=fastest (string)

Select a fletcher 4 implementation.

Supported selectors are: fastest, scalar, sse2, ssse3, avx2, avx512f, avx512bw, and

aarch64_neon. All except fastest and scalar require instruction set extensions to be available,

and will only appear if ZFS detects that they are present at runtime. If multiple

implementations of fletcher 4 are available, the fastest will be chosen using a micro benchmark.

Selecting scalar results in the original CPU-based calculation being used. Selecting any option

other than fastest or scalar results in vector instructions from the respective CPU instruction set

being used.

zfs_bclone_enabled=1|0 (int)

Enable the experimental block cloning feature. If this setting is 0, then even if

feature@block_cloning is enabled, attempts to clone blocks will act as though the feature is

disabled.

zfs_bclone_wait_dirty=0|1 (int)

When set to 1 the FICLONE and FICLONERANGE ioctls wait for dirty data to be written to

disk. This allows the clone operation to reliably succeed when a file is modified and then

immediately cloned. For small files this may be slower than making a copy of the file.

Therefore, this setting defaults to 0 which causes a clone operation to immediately fail when

encountering a dirty block.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_blake3_impl=fastest (string)

Select a BLAKE3 implementation.

Supported selectors are: cycle, fastest, generic, sse2, sse41, avx2, avx512. All except cycle,

fastest and generic require instruction set extensions to be available, and will only appear if ZFS

detects that they are present at runtime. If multiple implementations of BLAKE3 are available,

the fastest will be chosen using a micro benchmark. You can see the benchmark results by

reading this kstat file: /proc/spl/kstat/zfs/chksum_bench.

zfs_free_bpobj_enabled=1|0 (int)

Enable/disable the processing of the free_bpobj object.

zfs_async_block_max_blocks=UINT64_MAX (unlimited) (u64)

Maximum number of blocks freed in a single TXG.

zfs_max_async_dedup_frees=100000 (10^5) (u64)

Maximum number of dedup blocks freed in a single TXG.

zfs_vdev_async_read_max_active=3 (uint)

Maximum asynchronous read I/O operations active to each device. See ZFS I/O

SCHEDULER.

zfs_vdev_async_read_min_active=1 (uint)

Minimum asynchronous read I/O operation active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_async_write_active_max_dirty_percent=60% (uint)

When the pool has more than this much dirty data, use zfs_vdev_async_write_max_active to

limit active async writes. If the dirty data is between the minimum and maximum, the active

I/O limit is linearly interpolated. See ZFS I/O SCHEDULER.

zfs_vdev_async_write_active_min_dirty_percent=30% (uint)

When the pool has less than this much dirty data, use zfs_vdev_async_write_min_active to

limit active async writes. If the dirty data is between the minimum and maximum, the active

I/O limit is linearly interpolated. See ZFS I/O SCHEDULER.

zfs_vdev_async_write_max_active=10 (uint)

Maximum asynchronous write I/O operations active to each device. See ZFS I/O

SCHEDULER.

zfs_vdev_async_write_min_active=2 (uint)

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

Minimum asynchronous write I/O operations active to each device. See ZFS I/O

SCHEDULER.

Lower values are associated with better latency on rotational media but poorer resilver

performance. The default value of 2 was chosen as a compromise. A value of 3 has been

shown to improve resilver performance further at a cost of further increasing latency.

zfs_vdev_initializing_max_active=1 (uint)

Maximum initializing I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_initializing_min_active=1 (uint)

Minimum initializing I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_max_active=1000 (uint)

The maximum number of I/O operations active to each device. Ideally, this will be at least the

sum of each queue’s max_active. See ZFS I/O SCHEDULER.

zfs_vdev_open_timeout_ms=1000 (uint)

Timeout value to wait before determining a device is missing during import. This is helpful for

transient missing paths due to links being briefly removed and recreated in response to udev

events.

zfs_vdev_rebuild_max_active=3 (uint)

Maximum sequential resilver I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_rebuild_min_active=1 (uint)

Minimum sequential resilver I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_removal_max_active=2 (uint)

Maximum removal I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_removal_min_active=1 (uint)

Minimum removal I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_scrub_max_active=2 (uint)

Maximum scrub I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_scrub_min_active=1 (uint)

Minimum scrub I/O operations active to each device. See ZFS I/O SCHEDULER.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_vdev_sync_read_max_active=10 (uint)

Maximum synchronous read I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_sync_read_min_active=10 (uint)

Minimum synchronous read I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_sync_write_max_active=10 (uint)

Maximum synchronous write I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_sync_write_min_active=10 (uint)

Minimum synchronous write I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_trim_max_active=2 (uint)

Maximum trim/discard I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_trim_min_active=1 (uint)

Minimum trim/discard I/O operations active to each device. See ZFS I/O SCHEDULER.

zfs_vdev_nia_delay=5 (uint)

For non-interactive I/O (scrub, resilver, removal, initialize and rebuild), the number of

concurrently-active I/O operations is limited to zfs_*_min_active, unless the vdev is "idle".

When there are no interactive I/O operations active (synchronous or otherwise), and

zfs_vdev_nia_delay operations have completed since the last interactive operation, then the

vdev is considered to be "idle", and the number of concurrently-active non-interactive

operations is increased to zfs_*_max_active. See ZFS I/O SCHEDULER.

zfs_vdev_nia_credit=5 (uint)

Some HDDs tend to prioritize sequential I/O so strongly, that concurrent random I/O latency

reaches several seconds. On some HDDs this happens even if sequential I/O operations are

submitted one at a time, and so setting zfs_*_max_active= 1 does not help. To prevent non-

interactive I/O, like scrub, from monopolizing the device, no more than zfs_vdev_nia_credit
operations can be sent while there are outstanding incomplete interactive operations. This

enforced wait ensures the HDD services the interactive I/O within a reasonable amount of time.

See ZFS I/O SCHEDULER.

zfs_vdev_queue_depth_pct=1000% (uint)

Maximum number of queued allocations per top-level vdev expressed as a percentage of

zfs_vdev_async_write_max_active, which allows the system to detect devices that are more

capable of handling allocations and to allocate more blocks to those devices. This allows for

dynamic allocation distribution when devices are imbalanced, as fuller devices will tend to be

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

slower than empty devices.

Also see zio_dva_throttle_enabled.

zfs_vdev_def_queue_depth=32 (uint)

Default queue depth for each vdev IO allocator. Higher values allow for better coalescing of

sequential writes before sending them to the disk, but can increase transaction commit times.

zfs_vdev_failfast_mask=1 (uint)

Defines if the driver should retire on a given error type. The following options may be bitwise-

ored together:

+---+

|ValueName Description |

+---+

| 1Device No driver retries on device |

| errors |

| 2TransportNo driver retries on transport |

| errors. |

| 4Driver No driver retries on driver |

| errors. |

+---+

zfs_vdev_disk_max_segs=0 (uint)

Maximum number of segments to add to a BIO (min 4). If this is higher than the maximum

allowed by the device queue or the kernel itself, it will be clamped. Setting it to zero will cause

the kernel’s ideal size to be used. This parameter only applies on Linux. This parameter is

ignored if zfs_vdev_disk_classic=1.

zfs_vdev_disk_classic=0|1 (uint)

Controls the method used to submit IO to the Linux block layer (default 1 classic)

If set to 1, the "classic" method is used. This is the method that has been in use since the

earliest versions of ZFS-on-Linux. It has known issues with highly fragmented IO requests and

is less efficient on many workloads, but it well known and well understood.

If set to 0, the "new" method is used. This method is available since 2.2.4 and should resolve

all known issues and be far more efficient, but has not had as much testing. In the 2.2.x series,

this parameter defaults to 1, to use the "classic" method.

It is not recommended that you change it except on advice from the OpenZFS developers. If

you do change it, please also open a bug report describing why you did so, including the

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

workload involved and any error messages.

This parameter and the "classic" submission method will be removed in a future release of

OpenZFS once we have total confidence in the new method.

This parameter only applies on Linux, and can only be set at module load time.

zfs_expire_snapshot=300s (int)

Time before expiring .zfs/snapshot.

zfs_admin_snapshot=0|1 (int)

Allow the creation, removal, or renaming of entries in the .zfs/snapshot directory to cause the

creation, destruction, or renaming of snapshots. When enabled, this functionality works both

locally and over NFS exports which have the no_root_squash option set.

zfs_flags=0 (int)

Set additional debugging flags. The following flags may be bitwise-ored together:

+---+

|ValueName Description |

+---+

| 1ZFS_DEBUG_DPRINTF Enable dprintf entries in the debug |

| log. |

|* 2ZFS_DEBUG_DBUF_VERIFY Enable extra dbuf |

| verifications. |

|* 4ZFS_DEBUG_DNODE_VERIFY Enable extra dnode |

| verifications. |

| 8ZFS_DEBUG_SNAPNAMES Enable snapshot name |

| verification. |

|* 16ZFS_DEBUG_MODIFY Check for illegally modified ARC |

| buffers. |

| 64ZFS_DEBUG_ZIO_FREE Enable verification of block |

| frees. |

| 128ZFS_DEBUG_HISTOGRAM_VERIFYEnable extra spacemap histogram |

| verifications. |

| 256ZFS_DEBUG_METASLAB_VERIFY Verify space accounting on disk matches in-memory range_trees
| 512ZFS_DEBUG_SET_ERROR Enable SET_ERROR and dprintf entries in the debug |

| log. |

| 1024ZFS_DEBUG_INDIRECT_REMAP Verify split blocks created by device |

| removal. |

| 2048ZFS_DEBUG_TRIM Verify TRIM ranges are always within the allocatable range |

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

| tree. |

| 4096ZFS_DEBUG_LOG_SPACEMAP Verify that the log summary is consistent with the spacemap |

| log |

| and enable zfs_dbgmsgs for metaslab loading and |

| flushing. |

+---+

* Requires debug build.

zfs_btree_verify_intensity=0 (uint)

Enables btree verification. The following settings are culminative:

+--+

|ValueDescription |

| |

| 1Verify |

| height. |

| 2Verify pointers from children to |

| parent. |

| 3Verify element |

| counts. |

| 4Verify element order. |

| (expensive) |

|* 5Verify unused memory is poisoned. |

| (expensive) |

+--+

* Requires debug build.

zfs_free_leak_on_eio=0|1 (int)

If destroy encounters an EIO while reading metadata (e.g. indirect blocks), space referenced by

the missing metadata can not be freed. Normally this causes the background destroy to become

"stalled", as it is unable to make forward progress. While in this stalled state, all remaining

space to free from the error-encountering filesystem is "temporarily leaked". Set this flag to

cause it to ignore the EIO, permanently leak the space from indirect blocks that can not be read,

and continue to free everything else that it can.

The default "stalling" behavior is useful if the storage partially fails (i.e. some but not all I/O

operations fail), and then later recovers. In this case, we will be able to continue pool

operations while it is partially failed, and when it recovers, we can continue to free the space,

with no leaks. Note, however, that this case is actually fairly rare.

Typically pools either

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

1. fail completely (but perhaps temporarily, e.g. due to a top-level vdev going offline), or

2. have localized, permanent errors (e.g. disk returns the wrong data due to bit flip or

firmware bug).

In the former case, this setting does not matter because the pool will be suspended and the sync

thread will not be able to make forward progress regardless. In the latter, because the error is

permanent, the best we can do is leak the minimum amount of space, which is what setting this

flag will do. It is therefore reasonable for this flag to normally be set, but we chose the more

conservative approach of not setting it, so that there is no possibility of leaking space in the

"partial temporary" failure case.

zfs_free_min_time_ms=1000ms (1s) (uint)

During a zfs destroy operation using the async_destroy feature, a minimum of this much time

will be spent working on freeing blocks per TXG.

zfs_obsolete_min_time_ms=500ms (uint)

Similar to zfs_free_min_time_ms, but for cleanup of old indirection records for removed vdevs.

zfs_immediate_write_sz=32768B (32 KiB) (s64)

Largest data block to write to the ZIL. Larger blocks will be treated as if the dataset being

written to had the logbias=throughput property set.

zfs_initialize_value=16045690984833335022 (0xDEADBEEFDEADBEEE) (u64)

Pattern written to vdev free space by zpool-initialize(8).

zfs_initialize_chunk_size=1048576B (1 MiB) (u64)

Size of writes used by zpool-initialize(8). This option is used by the test suite.

zfs_livelist_max_entries=500000 (5*10^5) (u64)

The threshold size (in block pointers) at which we create a new sub-livelist. Larger sublists are

more costly from a memory perspective but the fewer sublists there are, the lower the cost of

insertion.

zfs_livelist_min_percent_shared=75% (int)

If the amount of shared space between a snapshot and its clone drops below this threshold, the

clone turns off the livelist and reverts to the old deletion method. This is in place because

livelists no long give us a benefit once a clone has been overwritten enough.

zfs_livelist_condense_new_alloc=0 (int)

Incremented each time an extra ALLOC blkptr is added to a livelist entry while it is being

condensed. This option is used by the test suite to track race conditions.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_livelist_condense_sync_cancel=0 (int)

Incremented each time livelist condensing is canceled while in spa_livelist_condense_sync().

This option is used by the test suite to track race conditions.

zfs_livelist_condense_sync_pause=0|1 (int)

When set, the livelist condense process pauses indefinitely before executing the synctask --

spa_livelist_condense_sync(). This option is used by the test suite to trigger race conditions.

zfs_livelist_condense_zthr_cancel=0 (int)

Incremented each time livelist condensing is canceled while in spa_livelist_condense_cb().

This option is used by the test suite to track race conditions.

zfs_livelist_condense_zthr_pause=0|1 (int)

When set, the livelist condense process pauses indefinitely before executing the open context

condensing work in spa_livelist_condense_cb(). This option is used by the test suite to trigger

race conditions.

zfs_lua_max_instrlimit=100000000 (10^8) (u64)

The maximum execution time limit that can be set for a ZFS channel program, specified as a

number of Lua instructions.

zfs_lua_max_memlimit=104857600 (100 MiB) (u64)

The maximum memory limit that can be set for a ZFS channel program, specified in bytes.

zfs_max_dataset_nesting=50 (int)

The maximum depth of nested datasets. This value can be tuned temporarily to fix existing

datasets that exceed the predefined limit.

zfs_max_log_walking=5 (u64)

The number of past TXGs that the flushing algorithm of the log spacemap feature uses to

estimate incoming log blocks.

zfs_max_logsm_summary_length=10 (u64)

Maximum number of rows allowed in the summary of the spacemap log.

zfs_max_recordsize=16777216 (16 MiB) (uint)

We currently support block sizes from 512 (512 B) to 16777216 (16 MiB). The benefits of

larger blocks, and thus larger I/O, need to be weighed against the cost of COWing a giant block

to modify one byte. Additionally, very large blocks can have an impact on I/O latency, and also

potentially on the memory allocator. Therefore, we formerly forbade creating blocks larger

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

than 1M. Larger blocks could be created by changing it, and pools with larger blocks can

always be imported and used, regardless of this setting.

zfs_allow_redacted_dataset_mount=0|1 (int)

Allow datasets received with redacted send/receive to be mounted. Normally disabled because

these datasets may be missing key data.

zfs_min_metaslabs_to_flush=1 (u64)

Minimum number of metaslabs to flush per dirty TXG.

zfs_metaslab_fragmentation_threshold=70% (uint)

Allow metaslabs to keep their active state as long as their fragmentation percentage is no more

than this value. An active metaslab that exceeds this threshold will no longer keep its active

status allowing better metaslabs to be selected.

zfs_mg_fragmentation_threshold=95% (uint)

Metaslab groups are considered eligible for allocations if their fragmentation metric (measured

as a percentage) is less than or equal to this value. If a metaslab group exceeds this threshold

then it will be skipped unless all metaslab groups within the metaslab class have also crossed

this threshold.

zfs_mg_noalloc_threshold=0% (uint)

Defines a threshold at which metaslab groups should be eligible for allocations. The value is

expressed as a percentage of free space beyond which a metaslab group is always eligible for

allocations. If a metaslab group’s free space is less than or equal to the threshold, the allocator

will avoid allocating to that group unless all groups in the pool have reached the threshold.

Once all groups have reached the threshold, all groups are allowed to accept allocations. The

default value of 0 disables the feature and causes all metaslab groups to be eligible for

allocations.

This parameter allows one to deal with pools having heavily imbalanced vdevs such as would

be the case when a new vdev has been added. Setting the threshold to a non-zero percentage

will stop allocations from being made to vdevs that aren’t filled to the specified percentage and

allow lesser filled vdevs to acquire more allocations than they otherwise would under the old

zfs_mg_alloc_failures facility.

zfs_ddt_data_is_special=1|0 (int)

If enabled, ZFS will place DDT data into the special allocation class.

zfs_user_indirect_is_special=1|0 (int)

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

If enabled, ZFS will place user data indirect blocks into the special allocation class.

zfs_multihost_history=0 (uint)

Historical statistics for this many latest multihost updates will be available in

/proc/spl/kstat/zfs/<pool>/multihost.

zfs_multihost_interval=1000ms (1 s) (u64)

Used to control the frequency of multihost writes which are performed when the multihost pool

property is on. This is one of the factors used to determine the length of the activity check

during import.

The multihost write period is zfs_multihost_interval / leaf-vdevs. On average a multihost write

will be issued for each leaf vdev every zfs_multihost_interval milliseconds. In practice, the

observed period can vary with the I/O load and this observed value is the delay which is stored

in the uberblock.

zfs_multihost_import_intervals=20 (uint)

Used to control the duration of the activity test on import. Smaller values of

zfs_multihost_import_intervals will reduce the import time but increase the risk of failing to

detect an active pool. The total activity check time is never allowed to drop below one second.

On import the activity check waits a minimum amount of time determined by

zfs_multihost_interval x zfs_multihost_import_intervals, or the same product computed on the

host which last had the pool imported, whichever is greater. The activity check time may be

further extended if the value of MMP delay found in the best uberblock indicates actual

multihost updates happened at longer intervals than zfs_multihost_interval. A minimum of 100

ms is enforced.

0 is equivalent to 1.

zfs_multihost_fail_intervals=10 (uint)

Controls the behavior of the pool when multihost write failures or delays are detected.

When 0, multihost write failures or delays are ignored. The failures will still be reported to the

ZED which depending on its configuration may take action such as suspending the pool or

offlining a device.

Otherwise, the pool will be suspended if zfs_multihost_fail_intervals x zfs_multihost_interval
milliseconds pass without a successful MMP write. This guarantees the activity test will see

MMP writes if the pool is imported. 1 is equivalent to 2; this is necessary to prevent the pool

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

from being suspended due to normal, small I/O latency variations.

zfs_no_scrub_io=0|1 (int)

Set to disable scrub I/O. This results in scrubs not actually scrubbing data and simply doing a

metadata crawl of the pool instead.

zfs_no_scrub_prefetch=0|1 (int)

Set to disable block prefetching for scrubs.

zfs_nocacheflush=0|1 (int)

Disable cache flush operations on disks when writing. Setting this will cause pool corruption

on power loss if a volatile out-of-order write cache is enabled.

zfs_nopwrite_enabled=1|0 (int)

Allow no-operation writes. The occurrence of nopwrites will further depend on other pool

properties (i.a. the checksumming and compression algorithms).

zfs_dmu_offset_next_sync=1|0 (int)

Enable forcing TXG sync to find holes. When enabled forces ZFS to sync data when

SEEK_HOLE or SEEK_DATA flags are used allowing holes in a file to be accurately reported.

When disabled holes will not be reported in recently dirtied files.

zfs_pd_bytes_max=52428800B (50 MiB) (int)

The number of bytes which should be prefetched during a pool traversal, like zfs send or other

data crawling operations.

zfs_traverse_indirect_prefetch_limit=32 (uint)

The number of blocks pointed by indirect (non-L0) block which should be prefetched during a

pool traversal, like zfs send or other data crawling operations.

zfs_per_txg_dirty_frees_percent=30% (u64)

Control percentage of dirtied indirect blocks from frees allowed into one TXG. After this

threshold is crossed, additional frees will wait until the next TXG. 0 disables this throttle.

zfs_prefetch_disable=0|1 (int)

Disable predictive prefetch. Note that it leaves "prescient" prefetch (for, e.g., zfs send) intact.

Unlike predictive prefetch, prescient prefetch never issues I/O that ends up not being needed, so

it can’t hurt performance.

zfs_qat_checksum_disable=0|1 (int)

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

Disable QAT hardware acceleration for SHA256 checksums. May be unset after the ZFS

modules have been loaded to initialize the QAT hardware as long as support is compiled in and

the QAT driver is present.

zfs_qat_compress_disable=0|1 (int)

Disable QAT hardware acceleration for gzip compression. May be unset after the ZFS modules

have been loaded to initialize the QAT hardware as long as support is compiled in and the QAT

driver is present.

zfs_qat_encrypt_disable=0|1 (int)

Disable QAT hardware acceleration for AES-GCM encryption. May be unset after the ZFS

modules have been loaded to initialize the QAT hardware as long as support is compiled in and

the QAT driver is present.

zfs_vnops_read_chunk_size=1048576B (1 MiB) (u64)

Bytes to read per chunk.

zfs_read_history=0 (uint)

Historical statistics for this many latest reads will be available in

/proc/spl/kstat/zfs/<pool>/reads.

zfs_read_history_hits=0|1 (int)

Include cache hits in read history

zfs_rebuild_max_segment=1048576B (1 MiB) (u64)

Maximum read segment size to issue when sequentially resilvering a top-level vdev.

zfs_rebuild_scrub_enabled=1|0 (int)

Automatically start a pool scrub when the last active sequential resilver completes in order to

verify the checksums of all blocks which have been resilvered. This is enabled by default and

strongly recommended.

zfs_rebuild_vdev_limit=67108864B (64 MiB) (u64)

Maximum amount of I/O that can be concurrently issued for a sequential resilver per leaf

device, given in bytes.

zfs_reconstruct_indirect_combinations_max=4096 (int)

If an indirect split block contains more than this many possible unique combinations when

being reconstructed, consider it too computationally expensive to check them all. Instead, try at

most this many randomly selected combinations each time the block is accessed. This allows

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

all segment copies to participate fairly in the reconstruction when all combinations cannot be

checked and prevents repeated use of one bad copy.

zfs_recover=0|1 (int)

Set to attempt to recover from fatal errors. This should only be used as a last resort, as it

typically results in leaked space, or worse.

zfs_removal_ignore_errors=0|1 (int)

Ignore hard I/O errors during device removal. When set, if a device encounters a hard I/O error

during the removal process the removal will not be cancelled. This can result in a normally

recoverable block becoming permanently damaged and is hence not recommended. This should

only be used as a last resort when the pool cannot be returned to a healthy state prior to

removing the device.

zfs_removal_suspend_progress=0|1 (uint)

This is used by the test suite so that it can ensure that certain actions happen while in the middle

of a removal.

zfs_remove_max_segment=16777216B (16 MiB) (uint)

The largest contiguous segment that we will attempt to allocate when removing a device. If

there is a performance problem with attempting to allocate large blocks, consider decreasing

this. The default value is also the maximum.

zfs_resilver_disable_defer=0|1 (int)

Ignore the resilver_defer feature, causing an operation that would start a resilver to immediately

restart the one in progress.

zfs_resilver_min_time_ms=3000ms (3 s) (uint)

Resilvers are processed by the sync thread. While resilvering, it will spend at least this much

time working on a resilver between TXG flushes.

zfs_scan_ignore_errors=0|1 (int)

If set, remove the DTL (dirty time list) upon completion of a pool scan (scrub), even if there

were unrepairable errors. Intended to be used during pool repair or recovery to stop resilvering

when the pool is next imported.

zfs_scrub_min_time_ms=1000ms (1 s) (uint)

Scrubs are processed by the sync thread. While scrubbing, it will spend at least this much time

working on a scrub between TXG flushes.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_scrub_error_blocks_per_txg=4096 (uint)

Error blocks to be scrubbed in one txg.

zfs_scan_checkpoint_intval=7200s (2 hour) (uint)

To preserve progress across reboots, the sequential scan algorithm periodically needs to stop

metadata scanning and issue all the verification I/O to disk. The frequency of this flushing is

determined by this tunable.

zfs_scan_fill_weight=3 (uint)

This tunable affects how scrub and resilver I/O segments are ordered. A higher number

indicates that we care more about how filled in a segment is, while a lower number indicates we

care more about the size of the extent without considering the gaps within a segment. This

value is only tunable upon module insertion. Changing the value afterwards will have no effect

on scrub or resilver performance.

zfs_scan_issue_strategy=0 (uint)

Determines the order that data will be verified while scrubbing or resilvering:

1
Data will be verified as sequentially as possible, given the amount of memory reserved

for scrubbing (see zfs_scan_mem_lim_fact). This may improve scrub performance if

the pool’s data is very fragmented.

2
The largest mostly-contiguous chunk of found data will be verified first. By deferring

scrubbing of small segments, we may later find adjacent data to coalesce and increase

the segment size.

0
Use strategy 1 during normal verification and strategy 2 while taking a checkpoint.

zfs_scan_legacy=0|1 (int)

If unset, indicates that scrubs and resilvers will gather metadata in memory before issuing

sequential I/O. Otherwise indicates that the legacy algorithm will be used, where I/O is

initiated as soon as it is discovered. Unsetting will not affect scrubs or resilvers that are already

in progress.

zfs_scan_max_ext_gap=2097152B (2 MiB) (int)

Sets the largest gap in bytes between scrub/resilver I/O operations that will still be considered

sequential for sorting purposes. Changing this value will not affect scrubs or resilvers that are

already in progress.

zfs_scan_mem_lim_fact=20^-1 (uint)

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

Maximum fraction of RAM used for I/O sorting by sequential scan algorithm. This tunable

determines the hard limit for I/O sorting memory usage. When the hard limit is reached we

stop scanning metadata and start issuing data verification I/O. This is done until we get below

the soft limit.

zfs_scan_mem_lim_soft_fact=20^-1 (uint)

The fraction of the hard limit used to determined the soft limit for I/O sorting by the sequential

scan algorithm. When we cross this limit from below no action is taken. When we cross this

limit from above it is because we are issuing verification I/O. In this case (unless the metadata

scan is done) we stop issuing verification I/O and start scanning metadata again until we get to

the hard limit.

zfs_scan_report_txgs=0|1 (uint)

When reporting resilver throughput and estimated completion time use the performance

observed over roughly the last zfs_scan_report_txgs TXGs. When set to zero performance is

calculated over the time between checkpoints.

zfs_scan_strict_mem_lim=0|1 (int)

Enforce tight memory limits on pool scans when a sequential scan is in progress. When

disabled, the memory limit may be exceeded by fast disks.

zfs_scan_suspend_progress=0|1 (int)

Freezes a scrub/resilver in progress without actually pausing it. Intended for testing/debugging.

zfs_scan_vdev_limit=16777216B (16 MiB) (int)

Maximum amount of data that can be concurrently issued at once for scrubs and resilvers per

leaf device, given in bytes.

zfs_send_corrupt_data=0|1 (int)

Allow sending of corrupt data (ignore read/checksum errors when sending).

zfs_send_unmodified_spill_blocks=1|0 (int)

Include unmodified spill blocks in the send stream. Under certain circumstances, previous

versions of ZFS could incorrectly remove the spill block from an existing object. Including

unmodified copies of the spill blocks creates a backwards-compatible stream which will

recreate a spill block if it was incorrectly removed.

zfs_send_no_prefetch_queue_ff=20^-1 (uint)

The fill fraction of the zfs send internal queues. The fill fraction controls the timing with which

internal threads are woken up.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zfs_send_no_prefetch_queue_length=1048576B (1 MiB) (uint)

The maximum number of bytes allowed in zfs send’s internal queues.

zfs_send_queue_ff=20^-1 (uint)

The fill fraction of the zfs send prefetch queue. The fill fraction controls the timing with which

internal threads are woken up.

zfs_send_queue_length=16777216B (16 MiB) (uint)

The maximum number of bytes allowed that will be prefetched by zfs send. This value must be

at least twice the maximum block size in use.

zfs_recv_queue_ff=20^-1 (uint)

The fill fraction of the zfs receive queue. The fill fraction controls the timing with which

internal threads are woken up.

zfs_recv_queue_length=16777216B (16 MiB) (uint)

The maximum number of bytes allowed in the zfs receive queue. This value must be at least

twice the maximum block size in use.

zfs_recv_write_batch_size=1048576B (1 MiB) (uint)

The maximum amount of data, in bytes, that zfs receive will write in one DMU transaction.

This is the uncompressed size, even when receiving a compressed send stream. This setting

will not reduce the write size below a single block. Capped at a maximum of 32 MiB.

zfs_recv_best_effort_corrective=0 (int)

When this variable is set to non-zero a corrective receive:

1. Does not enforce the restriction of source & destination snapshot GUIDs matching.

2. If there is an error during healing, the healing receive is not terminated instead it moves

on to the next record.

zfs_override_estimate_recordsize=0|1 (uint)

Setting this variable overrides the default logic for estimating block sizes when doing a zfs
send. The default heuristic is that the average block size will be the current recordsize.

Override this value if most data in your dataset is not of that size and you require accurate zfs

send size estimates.

zfs_sync_pass_deferred_free=2 (uint)

Flushing of data to disk is done in passes. Defer frees starting in this pass.

zfs_spa_discard_memory_limit=16777216B (16 MiB) (int)

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

Maximum memory used for prefetching a checkpoint’s space map on each vdev while

discarding the checkpoint.

zfs_special_class_metadata_reserve_pct=25% (uint)

Only allow small data blocks to be allocated on the special and dedup vdev types when the

available free space percentage on these vdevs exceeds this value. This ensures reserved space

is available for pool metadata as the special vdevs approach capacity.

zfs_sync_pass_dont_compress=8 (uint)

Starting in this sync pass, disable compression (including of metadata). With the default

setting, in practice, we don’t have this many sync passes, so this has no effect.

The original intent was that disabling compression would help the sync passes to converge.

However, in practice, disabling compression increases the average number of sync passes;

because when we turn compression off, many blocks’ size will change, and thus we have to re-

allocate (not overwrite) them. It also increases the number of 128 KiB allocations (e.g. for

indirect blocks and spacemaps) because these will not be compressed. The 128 KiB allocations

are especially detrimental to performance on highly fragmented systems, which may have very

few free segments of this size, and may need to load new metaslabs to satisfy these allocations.

zfs_sync_pass_rewrite=2 (uint)

Rewrite new block pointers starting in this pass.

zfs_sync_taskq_batch_pct=75% (int)

This controls the number of threads used by dp_sync_taskq. The default value of 75% will

create a maximum of one thread per CPU.

zfs_trim_extent_bytes_max=134217728B (128 MiB) (uint)

Maximum size of TRIM command. Larger ranges will be split into chunks no larger than this

value before issuing.

zfs_trim_extent_bytes_min=32768B (32 KiB) (uint)

Minimum size of TRIM commands. TRIM ranges smaller than this will be skipped, unless

they’re part of a larger range which was chunked. This is done because it’s common for these

small TRIMs to negatively impact overall performance.

zfs_trim_metaslab_skip=0|1 (uint)

Skip uninitialized metaslabs during the TRIM process. This option is useful for pools

constructed from large thinly-provisioned devices where TRIM operations are slow. As a pool

ages, an increasing fraction of the pool’s metaslabs will be initialized, progressively degrading

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

the usefulness of this option. This setting is stored when starting a manual TRIM and will

persist for the duration of the requested TRIM.

zfs_trim_queue_limit=10 (uint)

Maximum number of queued TRIMs outstanding per leaf vdev. The number of concurrent

TRIM commands issued to the device is controlled by zfs_vdev_trim_min_active and

zfs_vdev_trim_max_active.

zfs_trim_txg_batch=32 (uint)

The number of transaction groups’ worth of frees which should be aggregated before TRIM

operations are issued to the device. This setting represents a trade-off between issuing larger,

more efficient TRIM operations and the delay before the recently trimmed space is available for

use by the device.

Increasing this value will allow frees to be aggregated for a longer time. This will result is

larger TRIM operations and potentially increased memory usage. Decreasing this value will

have the opposite effect. The default of 32 was determined to be a reasonable compromise.

zfs_txg_history=0 (uint)

Historical statistics for this many latest TXGs will be available in

/proc/spl/kstat/zfs/<pool>/TXGs.

zfs_txg_timeout=5s (uint)

Flush dirty data to disk at least every this many seconds (maximum TXG duration).

zfs_vdev_aggregation_limit=1048576B (1 MiB) (uint)

Max vdev I/O aggregation size.

zfs_vdev_aggregation_limit_non_rotating=131072B (128 KiB) (uint)

Max vdev I/O aggregation size for non-rotating media.

zfs_vdev_mirror_rotating_inc=0 (int)

A number by which the balancing algorithm increments the load calculation for the purpose of

selecting the least busy mirror member when an I/O operation immediately follows its

predecessor on rotational vdevs for the purpose of making decisions based on load.

zfs_vdev_mirror_rotating_seek_inc=5 (int)

A number by which the balancing algorithm increments the load calculation for the purpose of

selecting the least busy mirror member when an I/O operation lacks locality as defined by

zfs_vdev_mirror_rotating_seek_offset. Operations within this that are not immediately

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

following the previous operation are incremented by half.

zfs_vdev_mirror_rotating_seek_offset=1048576B (1 MiB) (int)

The maximum distance for the last queued I/O operation in which the balancing algorithm

considers an operation to have locality. See ZFS I/O SCHEDULER.

zfs_vdev_mirror_non_rotating_inc=0 (int)

A number by which the balancing algorithm increments the load calculation for the purpose of

selecting the least busy mirror member on non-rotational vdevs when I/O operations do not

immediately follow one another.

zfs_vdev_mirror_non_rotating_seek_inc=1 (int)

A number by which the balancing algorithm increments the load calculation for the purpose of

selecting the least busy mirror member when an I/O operation lacks locality as defined by the

zfs_vdev_mirror_rotating_seek_offset. Operations within this that are not immediately

following the previous operation are incremented by half.

zfs_vdev_read_gap_limit=32768B (32 KiB) (uint)

Aggregate read I/O operations if the on-disk gap between them is within this threshold.

zfs_vdev_write_gap_limit=4096B (4 KiB) (uint)

Aggregate write I/O operations if the on-disk gap between them is within this threshold.

zfs_vdev_raidz_impl=fastest (string)

Select the raidz parity implementation to use.

Variants that don’t depend on CPU-specific features may be selected on module load, as they

are supported on all systems. The remaining options may only be set after the module is

loaded, as they are available only if the implementations are compiled in and supported on the

running system.

Once the module is loaded, /sys/module/zfs/parameters/zfs_vdev_raidz_impl will show the

available options, with the currently selected one enclosed in square brackets.

fastest selected by built-in

benchmark

original original

implementation

scalar scalar

implementation

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

sse2 SSE2 instruction 64-bit

set x86

ssse3 SSSE3 instruction 64-bit

set x86

avx2 AVX2 instruction set 64-bit

x86

avx512f AVX512F instruction 64-bit

set x86

avx512bw AVX512F & AVX512BW instruction sets64-bit

x86

aarch64_neon NEON Aarch64/64-bit ARMv8

aarch64_neonx2NEON with more Aarch64/64-bit ARMv8

unrolling

powerpc_altivecAltivec PowerPC

zfs_vdev_scheduler (charp)

DEPRECATED. Prints warning to kernel log for compatibility.

zfs_zevent_len_max=512 (uint)

Max event queue length. Events in the queue can be viewed with zpool-events(8).

zfs_zevent_retain_max=2000 (int)

Maximum recent zevent records to retain for duplicate checking. Setting this to 0 disables

duplicate detection.

zfs_zevent_retain_expire_secs=900s (15 min) (int)

Lifespan for a recent ereport that was retained for duplicate checking.

zfs_zil_clean_taskq_maxalloc=1048576 (int)

The maximum number of taskq entries that are allowed to be cached. When this limit is

exceeded transaction records (itxs) will be cleaned synchronously.

zfs_zil_clean_taskq_minalloc=1024 (int)

The number of taskq entries that are pre-populated when the taskq is first created and are

immediately available for use.

zfs_zil_clean_taskq_nthr_pct=100% (int)

This controls the number of threads used by dp_zil_clean_taskq. The default value of 100%
will create a maximum of one thread per cpu.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

zil_maxblocksize=131072B (128 KiB) (uint)

This sets the maximum block size used by the ZIL. On very fragmented pools, lowering this

(typically to 36 KiB) can improve performance.

zil_maxcopied=7680B (7.5 KiB) (uint)

This sets the maximum number of write bytes logged via WR_COPIED. It tunes a tradeoff

between additional memory copy and possibly worse log space efficiency vs additional range

lock/unlock.

zil_nocacheflush=0|1 (int)

Disable the cache flush commands that are normally sent to disk by the ZIL after an LWB write

has completed. Setting this will cause ZIL corruption on power loss if a volatile out-of-order

write cache is enabled.

zil_replay_disable=0|1 (int)

Disable intent logging replay. Can be disabled for recovery from corrupted ZIL.

zil_slog_bulk=67108864B (64 MiB) (u64)

Limit SLOG write size per commit executed with synchronous priority. Any writes above that

will be executed with lower (asynchronous) priority to limit potential SLOG device abuse by

single active ZIL writer.

zfs_zil_saxattr=1|0 (int)

Setting this tunable to zero disables ZIL logging of new xattr=sa records if the

org.openzfs:zilsaxattr feature is enabled on the pool. This would only be necessary to work

around bugs in the ZIL logging or replay code for this record type. The tunable has no effect if

the feature is disabled.

zfs_embedded_slog_min_ms=64 (uint)

Usually, one metaslab from each normal-class vdev is dedicated for use by the ZIL to log

synchronous writes. However, if there are fewer than zfs_embedded_slog_min_ms metaslabs

in the vdev, this functionality is disabled. This ensures that we don’t set aside an unreasonable

amount of space for the ZIL.

zstd_earlyabort_pass=1 (uint)

Whether heuristic for detection of incompressible data with zstd levels >= 3 using LZ4 and

zstd-1 passes is enabled.

zstd_abort_size=131072 (uint)

Minimal uncompressed size (inclusive) of a record before the early abort heuristic will be

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

attempted.

zio_deadman_log_all=0|1 (int)

If non-zero, the zio deadman will produce debugging messages (see zfs_dbgmsg_enable) for all

zios, rather than only for leaf zios possessing a vdev. This is meant to be used by developers to

gain diagnostic information for hang conditions which don’t involve a mutex or other locking

primitive: typically conditions in which a thread in the zio pipeline is looping indefinitely.

zio_slow_io_ms=30000ms (30 s) (int)

When an I/O operation takes more than this much time to complete, it’s marked as slow. Each

slow operation causes a delay zevent. Slow I/O counters can be seen with zpool status -s.

zio_dva_throttle_enabled=1|0 (int)

Throttle block allocations in the I/O pipeline. This allows for dynamic allocation distribution

when devices are imbalanced. When enabled, the maximum number of pending allocations per

top-level vdev is limited by zfs_vdev_queue_depth_pct.

zfs_xattr_compat=0|1 (int)

Control the naming scheme used when setting new xattrs in the user namespace. If 0 (the

default on Linux), user namespace xattr names are prefixed with the namespace, to be

backwards compatible with previous versions of ZFS on Linux. If 1 (the default on FreeBSD),

user namespace xattr names are not prefixed, to be backwards compatible with previous

versions of ZFS on illumos and FreeBSD.

Either naming scheme can be read on this and future versions of ZFS, regardless of this tunable,

but legacy ZFS on illumos or FreeBSD are unable to read user namespace xattrs written in the

Linux format, and legacy versions of ZFS on Linux are unable to read user namespace xattrs

written in the legacy ZFS format.

An existing xattr with the alternate naming scheme is removed when overwriting the xattr so as

to not accumulate duplicates.

zio_requeue_io_start_cut_in_line=0|1 (int)

Prioritize requeued I/O.

zio_taskq_batch_pct=80% (uint)

Percentage of online CPUs which will run a worker thread for I/O. These workers are

responsible for I/O work such as compression, encryption, checksum and parity calculations.

Fractional number of CPUs will be rounded down.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

The default value of 80% was chosen to avoid using all CPUs which can result in latency issues

and inconsistent application performance, especially when slower compression and/or

checksumming is enabled. Set value only applies to pools imported/created after that.

zio_taskq_batch_tpq=0 (uint)

Number of worker threads per taskq. Lower values improve I/O ordering and CPU utilization,

while higher reduces lock contention.

If 0, generate a system-dependent value close to 6 threads per taskq. Set value only applies to

pools imported/created after that.

zio_taskq_read=fixed,1,8 null scale null (charp)

Set the queue and thread configuration for the IO read queues. This is an advanced debugging

parameter. Don’t change this unless you understand what it does. Set values only apply to

pools imported/created after that.

zio_taskq_write=batch fixed,1,5 scale fixed,1,5 (charp)

Set the queue and thread configuration for the IO write queues. This is an advanced debugging

parameter. Don’t change this unless you understand what it does. Set values only apply to

pools imported/created after that.

zvol_inhibit_dev=0|1 (uint)

Do not create zvol device nodes. This may slightly improve startup time on systems with a

very large number of zvols.

zvol_major=230 (uint)

Major number for zvol block devices.

zvol_max_discard_blocks=16384 (long)

Discard (TRIM) operations done on zvols will be done in batches of this many blocks, where

block size is determined by the volblocksize property of a zvol.

zvol_prefetch_bytes=131072B (128 KiB) (uint)

When adding a zvol to the system, prefetch this many bytes from the start and end of the

volume. Prefetching these regions of the volume is desirable, because they are likely to be

accessed immediately by blkid(8) or the kernel partitioner.

zvol_request_sync=0|1 (uint)

When processing I/O requests for a zvol, submit them synchronously. This effectively limits

the queue depth to 1 for each I/O submitter. When unset, requests are handled asynchronously

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

by a thread pool. The number of requests which can be handled concurrently is controlled by

zvol_threads. zvol_request_sync is ignored when running on a kernel that supports block

multiqueue (blk-mq).

zvol_num_taskqs=0 (uint)

Number of zvol taskqs. If 0 (the default) then scaling is done internally to prefer 6 threads per

taskq. This only applies on Linux.

zvol_threads=0 (uint)

The number of system wide threads to use for processing zvol block IOs. If 0 (the default) then

internally set zvol_threads to the number of CPUs present or 32 (whichever is greater).

zvol_blk_mq_threads=0 (uint)

The number of threads per zvol to use for queuing IO requests. This parameter will only appear

if your kernel supports blk-mq and is only read and assigned to a zvol at zvol load time. If 0
(the default) then internally set zvol_blk_mq_threads to the number of CPUs present.

zvol_use_blk_mq=0|1 (uint)

Set to 1 to use the blk-mq API for zvols. Set to 0 (the default) to use the legacy zvol APIs.

This setting can give better or worse zvol performance depending on the workload. This

parameter will only appear if your kernel supports blk-mq and is only read and assigned to a

zvol at zvol load time.

zvol_blk_mq_blocks_per_thread=8 (uint)

If zvol_use_blk_mq is enabled, then process this number of volblocksize-sized blocks per zvol

thread. This tunable can be use to favor better performance for zvol reads (lower values) or

writes (higher values). If set to 0, then the zvol layer will process the maximum number of

blocks per thread that it can. This parameter will only appear if your kernel supports blk-mq

and is only applied at each zvol’s load time.

zvol_blk_mq_queue_depth=0 (uint)

The queue_depth value for the zvol blk-mq interface. This parameter will only appear if your

kernel supports blk-mq and is only applied at each zvol’s load time. If 0 (the default) then use

the kernel’s default queue depth. Values are clamped to the kernel’s BLKDEV_MIN_RQ and

BLKDEV_MAX_RQ/BLKDEV_DEFAULT_RQ limits.

zvol_volmode=1 (uint)

Defines zvol block devices behaviour when volmode=default:
1

equivalent to full

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

2
equivalent to dev

3
equivalent to none

zvol_enforce_quotas=0|1 (uint)

Enable strict ZVOL quota enforcement. The strict quota enforcement may have a performance

impact.

ZFS I/O SCHEDULER
ZFS issues I/O operations to leaf vdevs to satisfy and complete I/O operations. The scheduler

determines when and in what order those operations are issued. The scheduler divides operations into

five I/O classes, prioritized in the following order: sync read, sync write, async read, async write, and

scrub/resilver. Each queue defines the minimum and maximum number of concurrent operations that

may be issued to the device. In addition, the device has an aggregate maximum, zfs_vdev_max_active.

Note that the sum of the per-queue minima must not exceed the aggregate maximum. If the sum of the

per-queue maxima exceeds the aggregate maximum, then the number of active operations may reach

zfs_vdev_max_active, in which case no further operations will be issued, regardless of whether all per-

queue minima have been met.

For many physical devices, throughput increases with the number of concurrent operations, but latency

typically suffers. Furthermore, physical devices typically have a limit at which more concurrent

operations have no effect on throughput or can actually cause it to decrease.

The scheduler selects the next operation to issue by first looking for an I/O class whose minimum has

not been satisfied. Once all are satisfied and the aggregate maximum has not been hit, the scheduler

looks for classes whose maximum has not been satisfied. Iteration through the I/O classes is done in the

order specified above. No further operations are issued if the aggregate maximum number of concurrent

operations has been hit, or if there are no operations queued for an I/O class that has not hit its

maximum. Every time an I/O operation is queued or an operation completes, the scheduler looks for

new operations to issue.

In general, smaller max_actives will lead to lower latency of synchronous operations. Larger

max_actives may lead to higher overall throughput, depending on underlying storage.

The ratio of the queues’ max_actives determines the balance of performance between reads, writes, and

scrubs. For example, increasing zfs_vdev_scrub_max_active will cause the scrub or resilver to complete

more quickly, but reads and writes to have higher latency and lower throughput.

All I/O classes have a fixed maximum number of outstanding operations, except for the async write

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

class. Asynchronous writes represent the data that is committed to stable storage during the syncing

stage for transaction groups. Transaction groups enter the syncing state periodically, so the number of

queued async writes will quickly burst up and then bleed down to zero. Rather than servicing them as

quickly as possible, the I/O scheduler changes the maximum number of active async write operations

according to the amount of dirty data in the pool. Since both throughput and latency typically increase

with the number of concurrent operations issued to physical devices, reducing the burstiness in the

number of simultaneous operations also stabilizes the response time of operations from other queues, in

particular synchronous ones. In broad strokes, the I/O scheduler will issue more concurrent operations

from the async write queue as there is more dirty data in the pool.

Async Writes
The number of concurrent operations issued for the async write I/O class follows a piece-wise linear

function defined by a few adjustable points:

| o---------| <-- zfs_vdev_async_write_max_active
^ | /^ |

| | / | |

active | / | |

I/O | / | |

count | / | |

| / | |

|-------o | | <-- zfs_vdev_async_write_min_active
0|_______^______|_________|

0% | | 100% of zfs_dirty_data_max
| |

| ‘-- zfs_vdev_async_write_active_max_dirty_percent
‘--------- zfs_vdev_async_write_active_min_dirty_percent

Until the amount of dirty data exceeds a minimum percentage of the dirty data allowed in the pool, the

I/O scheduler will limit the number of concurrent operations to the minimum. As that threshold is

crossed, the number of concurrent operations issued increases linearly to the maximum at the specified

maximum percentage of the dirty data allowed in the pool.

Ideally, the amount of dirty data on a busy pool will stay in the sloped part of the function between

zfs_vdev_async_write_active_min_dirty_percent and zfs_vdev_async_write_active_max_dirty_percent.
If it exceeds the maximum percentage, this indicates that the rate of incoming data is greater than the

rate that the backend storage can handle. In this case, we must further throttle incoming writes, as

described in the next section.

ZFS TRANSACTION DELAY

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

We delay transactions when we’ve determined that the backend storage isn’t able to accommodate the

rate of incoming writes.

If there is already a transaction waiting, we delay relative to when that transaction will finish waiting.

This way the calculated delay time is independent of the number of threads concurrently executing

transactions.

If we are the only waiter, wait relative to when the transaction started, rather than the current time. This

credits the transaction for "time already served", e.g. reading indirect blocks.

The minimum time for a transaction to take is calculated as

min_time = min(zfs_delay_scale x (dirty - min) / (max - dirty), 100ms)

The delay has two degrees of freedom that can be adjusted via tunables. The percentage of dirty data at

which we start to delay is defined by zfs_delay_min_dirty_percent. This should typically be at or above

zfs_vdev_async_write_active_max_dirty_percent, so that we only start to delay after writing at full

speed has failed to keep up with the incoming write rate. The scale of the curve is defined by

zfs_delay_scale. Roughly speaking, this variable determines the amount of delay at the midpoint of the

curve.

delay

10ms +---*+

| *|

9ms + *+

| *|

8ms + *+

| * |

7ms + * +

| * |

6ms + * +

| * |

5ms + * +

| * |

4ms + * +

| * |

3ms + * +

| * |

2ms + (midpoint) * +

| | ** |

1ms + v *** +

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

| zfs_delay_scale ----------> ******** |

0 +-------------------------------------*********----------------+

0% <- zfs_dirty_data_max -> 100%

Note, that since the delay is added to the outstanding time remaining on the most recent transaction it’s

effectively the inverse of IOPS. Here, the midpoint of 500 us translates to 2000 IOPS. The shape of the

curve was chosen such that small changes in the amount of accumulated dirty data in the first three

quarters of the curve yield relatively small differences in the amount of delay.

The effects can be easier to understand when the amount of delay is represented on a logarithmic scale:

delay

100ms +---++

+ +

| |

+ *+

10ms + *+

+ ** +

| (midpoint) ** |

+ | ** +

1ms + v **** +

+ zfs_delay_scale ----------> ***** +

| **** |

+ **** +

100us + ** +

+ * +

| * |

+ * +

10us + * +

+ +

| |

+ +

+--+

0% <- zfs_dirty_data_max -> 100%

Note here that only as the amount of dirty data approaches its limit does the delay start to increase

rapidly. The goal of a properly tuned system should be to keep the amount of dirty data out of that range

by first ensuring that the appropriate limits are set for the I/O scheduler to reach optimal throughput on

the back-end storage, and then by changing the value of zfs_delay_scale to increase the steepness of the

curve.

ZFS(4) FreeBSD Kernel Interfaces Manual ZFS(4)

FreeBSD 14.2-RELEASE January 9, 2024 FreeBSD 14.2-RELEASE

