
NAME
zipinfo - list detailed information about a ZIP archive

SYNOPSIS
zipinfo [-12smlvhMtTz] file[.zip] [file(s) ...] [-x xfile(s) ...]

unzip -Z [-12smlvhMtTz] file[.zip] [file(s) ...] [-x xfile(s) ...]

DESCRIPTION
zipinfo lists technical information about files in a ZIP archive, most commonly found on MS-DOS

systems. Such information includes file access permissions, encryption status, type of compression,

version and operating system or file system of compressing program, and the like. The default

behavior (with no options) is to list single-line entries for each file in the archive, with header and

trailer lines providing summary information for the entire archive. The format is a cross between Unix

‘‘ls -l’’ and ‘‘unzip -v’’ output. See DETAILED DESCRIPTION below. Note that zipinfo is the same

program as unzip (under Unix, a link to it); on some systems, however, zipinfo support may have been

omitted when unzip was compiled.

ARGUMENTS
file[.zip]

Path of the ZIP archive(s). If the file specification is a wildcard, each matching file is processed in

an order determined by the operating system (or file system). Only the filename can be a wildcard;

the path itself cannot. Wildcard expressions are similar to Unix egrep(1) (regular) expressions and

may contain:

* matches a sequence of 0 or more characters

? matches exactly 1 character

[...] matches any single character found inside the brackets; ranges are specified by a beginning

character, a hyphen, and an ending character. If an exclamation point or a caret (‘!’ or ‘^’)

follows the left bracket, then the range of characters within the brackets is complemented (that

is, anything except the characters inside the brackets is considered a match). To specify a

verbatim left bracket, the three-character sequence ‘‘[[]’’ has to be used.

(Be sure to quote any character that might otherwise be interpreted or modified by the operating

system, particularly under Unix and VMS.) If no matches are found, the specification is assumed

to be a literal filename; and if that also fails, the suffix .zip is appended. Note that self-extracting

ZIP files are supported, as with any other ZIP archive; just specify the .exe suffix (if any)

explicitly.

ZIPINFO(1L) ZIPINFO(1L)

Info-ZIP 20 April 2009 (v3.0) ZIPINFO(1L)

[file(s)]

An optional list of archive members to be processed, separated by spaces. (VMS versions

compiled with VMSCLI defined must delimit files with commas instead.) Regular expressions

(wildcards) may be used to match multiple members; see above. Again, be sure to quote

expressions that would otherwise be expanded or modified by the operating system.

[-x xfile(s)]

An optional list of archive members to be excluded from processing.

OPTIONS
-1 list filenames only, one per line. This option excludes all others; headers, trailers and zipfile

comments are never printed. It is intended for use in Unix shell scripts.

-2 list filenames only, one per line, but allow headers (-h), trailers (-t) and zipfile comments (-z), as

well. This option may be useful in cases where the stored filenames are particularly long.

-s list zipfile info in short Unix ‘‘ls -l’’ format. This is the default behavior; see below.

-m list zipfile info in medium Unix ‘‘ls -l’’ format. Identical to the -s output, except that the

compression factor, expressed as a percentage, is also listed.

-l list zipfile info in long Unix ‘‘ls -l’’ format. As with -m except that the compressed size (in bytes)

is printed instead of the compression ratio.

-v list zipfile information in verbose, multi-page format.

-h list header line. The archive name, actual size (in bytes) and total number of files is printed.

-M pipe all output through an internal pager similar to the Unix more(1) command. At the end of a

screenful of output, zipinfo pauses with a ‘‘--More--’’ prompt; the next screenful may be viewed

by pressing the Enter (Return) key or the space bar. zipinfo can be terminated by pressing the ‘‘q’’

key and, on some systems, the Enter/Return key. Unlike Unix more(1), there is no forward-

searching or editing capability. Also, zipinfo doesn’t notice if long lines wrap at the edge of the

screen, effectively resulting in the printing of two or more lines and the likelihood that some text

will scroll off the top of the screen before being viewed. On some systems the number of available

lines on the screen is not detected, in which case zipinfo assumes the height is 24 lines.

-t list totals for files listed or for all files. The number of files listed, their uncompressed and

compressed total sizes , and their overall compression factor is printed; or, if only the totals line is

being printed, the values for the entire archive are given. The compressed total size does not

ZIPINFO(1L) ZIPINFO(1L)

Info-ZIP 20 April 2009 (v3.0) ZIPINFO(1L)

include the 12 additional header bytes of each encrypted entry. Note that the total compressed

(data) size will never match the actual zipfile size, since the latter includes all of the internal zipfile

headers in addition to the compressed data.

-T print the file dates and times in a sortable decimal format (yymmdd.hhmmss). The default date

format is a more standard, human-readable version with abbreviated month names (see examples

below).

-U [UNICODE_SUPPORT only] modify or disable UTF-8 handling. When UNICODE_SUPPORT

is available, the option -U forces unzip to escape all non-ASCII characters from UTF-8 coded

filenames as ‘‘#Uxxxx’’. This option is mainly provided for debugging purpose when the fairly

new UTF-8 support is suspected to mangle up extracted filenames.

The option -UU allows to entirely disable the recognition of UTF-8 encoded filenames. The

handling of filename codings within unzip falls back to the behaviour of previous versions.

-z include the archive comment (if any) in the listing.

DETAILED DESCRIPTION
zipinfo has a number of modes, and its behavior can be rather difficult to fathom if one isn’t familiar

with Unix ls(1) (or even if one is). The default behavior is to list files in the following format:

-rw-rws--- 1.9 unx 2802 t- defX 11-Aug-91 13:48 perms.2660

The last three fields are the modification date and time of the file, and its name. The case of the

filename is respected; thus files that come from MS-DOS PKZIP are always capitalized. If the file was

zipped with a stored directory name, that is also displayed as part of the filename.

The second and third fields indicate that the file was zipped under Unix with version 1.9 of zip. Since

it comes from Unix, the file permissions at the beginning of the line are printed in Unix format. The

uncompressed file-size (2802 in this example) is the fourth field.

The fifth field consists of two characters, either of which may take on several values. The first

character may be either ‘t’ or ‘b’, indicating that zip believes the file to be text or binary, respectively;

but if the file is encrypted, zipinfo notes this fact by capitalizing the character (‘T’ or ‘B’). The second

character may also take on four values, depending on whether there is an extended local header and/or

an ‘‘extra field’’ associated with the file (fully explained in PKWare’s APPNOTE.TXT, but basically

analogous to pragmas in ANSI C--i.e., they provide a standard way to include non-standard

information in the archive). If neither exists, the character will be a hyphen (‘-’); if there is an extended

local header but no extra field, ‘l’; if the reverse, ‘x’; and if both exist, ‘X’. Thus the file in this

ZIPINFO(1L) ZIPINFO(1L)

Info-ZIP 20 April 2009 (v3.0) ZIPINFO(1L)

example is (probably) a text file, is not encrypted, and has neither an extra field nor an extended local

header associated with it. The example below, on the other hand, is an encrypted binary file with an

extra field:

RWD,R,R 0.9 vms 168 Bx shrk 9-Aug-91 19:15 perms.0644

Extra fields are used for various purposes (see discussion of the -v option below) including the storage

of VMS file attributes, which is presumably the case here. Note that the file attributes are listed in

VMS format. Some other possibilities for the host operating system (which is actually a

misnomer--host file system is more correct) include OS/2 or NT with High Performance File System

(HPFS), MS-DOS, OS/2 or NT with File Allocation Table (FAT) file system, and Macintosh. These

are denoted as follows:

-rw-a-- 1.0 hpf 5358 Tl i4:3 4-Dec-91 11:33 longfilename.hpfs

-r--ahs 1.1 fat 4096 b- i4:2 14-Jul-91 12:58 EA DATA. SF

--w------- 1.0 mac 17357 bx i8:2 4-May-92 04:02 unzip.macr

File attributes in the first two cases are indicated in a Unix-like format, where the seven subfields

indicate whether the file: (1) is a directory, (2) is readable (always true), (3) is writable, (4) is

executable (guessed on the basis of the extension--.exe, .com, .bat, .cmd and .btm files are assumed to

be so), (5) has its archive bit set, (6) is hidden, and (7) is a system file. Interpretation of Macintosh file

attributes is unreliable because some Macintosh archivers don’t store any attributes in the archive.

Finally, the sixth field indicates the compression method and possible sub-method used. There are six

methods known at present: storing (no compression), reducing, shrinking, imploding, tokenizing

(never publicly released), and deflating. In addition, there are four levels of reducing (1 through 4);

four types of imploding (4K or 8K sliding dictionary, and 2 or 3 Shannon-Fano trees); and four levels

of deflating (superfast, fast, normal, maximum compression). zipinfo represents these methods and

their sub-methods as follows: stor; re:1, re:2, etc.; shrk; i4:2, i8:3, etc.; tokn; and defS, defF, defN, and

defX.

The medium and long listings are almost identical to the short format except that they add information

on the file’s compression. The medium format lists the file’s compression factor as a percentage

indicating the amount of space that has been ‘‘removed’’:

-rw-rws--- 1.5 unx 2802 t- 81% defX 11-Aug-91 13:48 perms.2660

In this example, the file has been compressed by more than a factor of five; the compressed data are

only 19% of the original size. The long format gives the compressed file’s size in bytes, instead:

ZIPINFO(1L) ZIPINFO(1L)

Info-ZIP 20 April 2009 (v3.0) ZIPINFO(1L)

-rw-rws--- 1.5 unx 2802 t- 538 defX 11-Aug-91 13:48 perms.2660

In contrast to the unzip listings, the compressed size figures in this listing format denote the complete

size of compressed data, including the 12 extra header bytes in case of encrypted entries.

Adding the -T option changes the file date and time to decimal format:

-rw-rws--- 1.5 unx 2802 t- 538 defX 910811.134804 perms.2660

Note that because of limitations in the MS-DOS format used to store file times, the seconds field is

always rounded to the nearest even second. For Unix files this is expected to change in the next major

releases of zip(1L) and unzip.

In addition to individual file information, a default zipfile listing also includes header and trailer lines:

Archive: OS2.zip 5453 bytes 5 files

,,rw, 1.0 hpf 730 b- i4:3 26-Jun-92 23:40 Contents

,,rw, 1.0 hpf 3710 b- i4:3 26-Jun-92 23:33 makefile.os2

,,rw, 1.0 hpf 8753 b- i8:3 26-Jun-92 15:29 os2unzip.c

,,rw, 1.0 hpf 98 b- stor 21-Aug-91 15:34 unzip.def

,,rw, 1.0 hpf 95 b- stor 21-Aug-91 17:51 zipinfo.def

5 files, 13386 bytes uncompressed, 4951 bytes compressed: 63.0%

The header line gives the name of the archive, its total size, and the total number of files; the trailer

gives the number of files listed, their total uncompressed size, and their total compressed size (not

including any of zip’s internal overhead). If, however, one or more file(s) are provided, the header and

trailer lines are not listed. This behavior is also similar to that of Unix’s ‘‘ls -l’’; it may be overridden

by specifying the -h and -t options explicitly. In such a case the listing format must also be specified

explicitly, since -h or -t (or both) in the absence of other options implies that ONLY the header or

trailer line (or both) is listed. See the EXAMPLES section below for a semi-intelligible translation of

this nonsense.

The verbose listing is mostly self-explanatory. It also lists file comments and the zipfile comment, if

any, and the type and number of bytes in any stored extra fields. Currently known types of extra fields

include PKWARE’s authentication (‘‘AV’’) info; OS/2 extended attributes; VMS filesystem info, both

PKWARE and Info-ZIP versions; Macintosh resource forks; Acorn/Archimedes SparkFS info; and so

on. (Note that in the case of OS/2 extended attributes--perhaps the most common use of zipfile extra

fields--the size of the stored EAs as reported by zipinfo may not match the number given by OS/2’s dir

command: OS/2 always reports the number of bytes required in 16-bit format, whereas zipinfo always

reports the 32-bit storage.)

ZIPINFO(1L) ZIPINFO(1L)

Info-ZIP 20 April 2009 (v3.0) ZIPINFO(1L)

Again, the compressed size figures of the individual entries include the 12 extra header bytes for

encrypted entries. In contrast, the archive total compressed size and the average compression ratio

shown in the summary bottom line are calculated without the extra 12 header bytes of encrypted

entries.

ENVIRONMENT OPTIONS
Modifying zipinfo’s default behavior via options placed in an environment variable can be a bit

complicated to explain, due to zipinfo’s attempts to handle various defaults in an intuitive, yet Unix-

like, manner. (Try not to laugh.) Nevertheless, there is some underlying logic. In brief, there are three

‘‘priority levels’’ of options: the default options; environment options, which can override or add to

the defaults; and explicit options given by the user, which can override or add to either of the above.

The default listing format, as noted above, corresponds roughly to the "zipinfo -hst" command (except

when individual zipfile members are specified). A user who prefers the long-listing format (-l) can

make use of the zipinfo’s environment variable to change this default:

Unix Bourne shell:

ZIPINFO=-l; export ZIPINFO

Unix C shell:

setenv ZIPINFO -l

OS/2 or MS-DOS:

set ZIPINFO=-l

VMS (quotes for lowercase):

define ZIPINFO_OPTS "-l"

If, in addition, the user dislikes the trailer line, zipinfo’s concept of ‘‘negative options’’ may be used to

override the default inclusion of the line. This is accomplished by preceding the undesired option with

one or more minuses: e.g., ‘‘-l-t’’ or ‘‘--tl’’, in this example. The first hyphen is the regular switch

character, but the one before the ‘t’ is a minus sign. The dual use of hyphens may seem a little

awkward, but it’s reasonably intuitive nonetheless: simply ignore the first hyphen and go from there.

It is also consistent with the behavior of the Unix command nice(1).

As suggested above, the default variable names are ZIPINFO_OPTS for VMS (where the symbol used

to install zipinfo as a foreign command would otherwise be confused with the environment variable),

and ZIPINFO for all other operating systems. For compatibility with zip(1L), ZIPINFOOPT is also

accepted (don’t ask). If both ZIPINFO and ZIPINFOOPT are defined, however, ZIPINFO takes

precedence. unzip’s diagnostic option (-v with no zipfile name) can be used to check the values of all

ZIPINFO(1L) ZIPINFO(1L)

Info-ZIP 20 April 2009 (v3.0) ZIPINFO(1L)

four possible unzip and zipinfo environment variables.

EXAMPLES
To get a basic, short-format listing of the complete contents of a ZIP archive storage.zip, with both

header and totals lines, use only the archive name as an argument to zipinfo:

zipinfo storage

To produce a basic, long-format listing (not verbose), including header and totals lines, use -l:

zipinfo -l storage

To list the complete contents of the archive without header and totals lines, either negate the -h and -t
options or else specify the contents explicitly:

zipinfo --h-t storage

zipinfo storage *

(where the backslash is required only if the shell would otherwise expand the ‘*’ wildcard, as in Unix

when globbing is turned on--double quotes around the asterisk would have worked as well). To turn

off the totals line by default, use the environment variable (C shell is assumed here):

setenv ZIPINFO --t

zipinfo storage

To get the full, short-format listing of the first example again, given that the environment variable is set

as in the previous example, it is necessary to specify the -s option explicitly, since the -t option by itself

implies that ONLY the footer line is to be printed:

setenv ZIPINFO --t

zipinfo -t storage [only totals line]

zipinfo -st storage [full listing]

The -s option, like -m and -l, includes headers and footers by default, unless otherwise specified. Since

the environment variable specified no footers and that has a higher precedence than the default

behavior of -s, an explicit -t option was necessary to produce the full listing. Nothing was indicated

about the header, however, so the -s option was sufficient. Note that both the -h and -t options, when

used by themselves or with each other, override any default listing of member files; only the header

and/or footer are printed. This behavior is useful when zipinfo is used with a wildcard zipfile

specification; the contents of all zipfiles are then summarized with a single command.

ZIPINFO(1L) ZIPINFO(1L)

Info-ZIP 20 April 2009 (v3.0) ZIPINFO(1L)

To list information on a single file within the archive, in medium format, specify the filename

explicitly:

zipinfo -m storage unshrink.c

The specification of any member file, as in this example, will override the default header and totals

lines; only the single line of information about the requested file will be printed. This is intuitively

what one would expect when requesting information about a single file. For multiple files, it is often

useful to know the total compressed and uncompressed size; in such cases -t may be specified

explicitly:

zipinfo -mt storage "*.[ch]" Mak*

To get maximal information about the ZIP archive, use the verbose option. It is usually wise to pipe

the output into a filter such as Unix more(1) if the operating system allows it:

zipinfo -v storage | more

Finally, to see the most recently modified files in the archive, use the -T option in conjunction with an

external sorting utility such as Unix sort(1) (and sed(1) as well, in this example):

zipinfo -T storage | sort -nr -k 7 | sed 15q

The -nr option to sort(1) tells it to sort numerically in reverse order rather than in textual order, and the

-k 7 option tells it to sort on the seventh field. This assumes the default short-listing format; if -m or -l
is used, the proper sort(1) option would be -k 8. Older versions of sort(1) do not support the -k option,

but you can use the traditional + option instead, e.g., +6 instead of -k 7. The sed(1) command filters

out all but the first 15 lines of the listing. Future releases of zipinfo may incorporate date/time and

filename sorting as built-in options.

TIPS
The author finds it convenient to define an alias ii for zipinfo on systems that allow aliases (or, on other

systems, copy/rename the executable, create a link or create a command file with the name ii). The ii

usage parallels the common ll alias for long listings in Unix, and the similarity between the outputs of

the two commands was intentional.

BUGS
As with unzip, zipinfo’s -M (‘‘more’’) option is overly simplistic in its handling of screen output; as

noted above, it fails to detect the wrapping of long lines and may thereby cause lines at the top of the

screen to be scrolled off before being read. zipinfo should detect and treat each occurrence of line-

ZIPINFO(1L) ZIPINFO(1L)

Info-ZIP 20 April 2009 (v3.0) ZIPINFO(1L)

wrap as one additional line printed. This requires knowledge of the screen’s width as well as its height.

In addition, zipinfo should detect the true screen geometry on all systems.

zipinfo’s listing-format behavior is unnecessarily complex and should be simplified. (This is not to say

that it will be.)

SEE ALSO
ls(1), funzip(1L), unzip(1L), unzipsfx(1L), zip(1L), zipcloak(1L), zipnote(1L), zipsplit(1L)

URL
The Info-ZIP home page is currently at

http://www.info-zip.org/pub/infozip/

or

ftp://ftp.info-zip.org/pub/infozip/ .

AUTHOR
Greg ‘‘Cave Newt’’ Roelofs. ZipInfo contains pattern-matching code by Mark Adler and

fixes/improvements by many others. Please refer to the CONTRIBS file in the UnZip source

distribution for a more complete list.

ZIPINFO(1L) ZIPINFO(1L)

Info-ZIP 20 April 2009 (v3.0) ZIPINFO(1L)

