
NAME
zpool-features - description of ZFS pool features

DESCRIPTION
ZFS pool on-disk format versions are specified via "features" which replace the old on-disk format

numbers (the last supported on-disk format number is 28). To enable a feature on a pool use the zpool
upgrade, or set the feature@feature-name property to enabled. Please also see the Compatibility feature

sets section for information on how sets of features may be enabled together.

The pool format does not affect file system version compatibility or the ability to send file systems

between pools.

Since most features can be enabled independently of each other, the on-disk format of the pool is

specified by the set of all features marked as active on the pool. If the pool was created by another

software version this set may include unsupported features.

Identifying features
Every feature has a GUID of the form com.example:feature-name. The reversed DNS name ensures that

the feature’s GUID is unique across all ZFS implementations. When unsupported features are

encountered on a pool they will be identified by their GUIDs. Refer to the documentation for the ZFS

implementation that created the pool for information about those features.

Each supported feature also has a short name. By convention a feature’s short name is the portion of its

GUID which follows the ‘:’ (i.e. com.example:feature-name would have the short name feature-name),

however a feature’s short name may differ across ZFS implementations if following the convention

would result in name conflicts.

Feature states
Features can be in one of three states:

active This feature’s on-disk format changes are in effect on the pool. Support for this feature is

required to import the pool in read-write mode. If this feature is not read-only compatible,

support is also required to import the pool in read-only mode (see Read-only compatibility).

enabled An administrator has marked this feature as enabled on the pool, but the feature’s on-disk

format changes have not been made yet. The pool can still be imported by software that does

not support this feature, but changes may be made to the on-disk format at any time which will

move the feature to the active state. Some features may support returning to the enabled state

after becoming active. See feature-specific documentation for details.

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

disabled This feature’s on-disk format changes have not been made and will not be made unless an

administrator moves the feature to the enabled state. Features cannot be disabled once they

have been enabled.

The state of supported features is exposed through pool properties of the form feature@short-name.

Read-only compatibility
Some features may make on-disk format changes that do not interfere with other software’s ability to

read from the pool. These features are referred to as "read-only compatible". If all unsupported features

on a pool are read-only compatible, the pool can be imported in read-only mode by setting the readonly
property during import (see zpool-import(8) for details on importing pools).

Unsupported features
For each unsupported feature enabled on an imported pool, a pool property named

unsupported@feature-name will indicate why the import was allowed despite the unsupported feature.

Possible values for this property are:

inactive The feature is in the enabled state and therefore the pool’s on-disk format is still compatible

with software that does not support this feature.

readonly The feature is read-only compatible and the pool has been imported in read-only mode.

Feature dependencies
Some features depend on other features being enabled in order to function. Enabling a feature will

automatically enable any features it depends on.

Compatibility feature sets
It is sometimes necessary for a pool to maintain compatibility with a specific on-disk format, by

enabling and disabling particular features. The compatibility feature facilitates this by allowing feature

sets to be read from text files. When set to off (the default), compatibility feature sets are disabled (i.e.

all features are enabled); when set to legacy, no features are enabled. When set to a comma-separated

list of filenames (each filename may either be an absolute path, or relative to /etc/zfs/compatibility.d or

/usr/share/zfs/compatibility.d), the lists of requested features are read from those files, separated by

whitespace and/or commas. Only features present in all files are enabled.

Simple sanity checks are applied to the files: they must be between 1 B and 16 KiB in size, and must end

with a newline character.

The requested features are applied when a pool is created using zpool create -o compatibility=<?> and

controls which features are enabled when using zpool upgrade. zpool status will not show a warning

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

about disabled features which are not part of the requested feature set.

The special value legacy prevents any features from being enabled, either via zpool upgrade or zpool set
feature@feature-name=enabled. This setting also prevents pools from being upgraded to newer on-disk

versions. This is a safety measure to prevent new features from being accidentally enabled, breaking

compatibility.

By convention, compatibility files in /usr/share/zfs/compatibility.d are provided by the distribution, and

include feature sets supported by important versions of popular distributions, and feature sets commonly

supported at the start of each year. Compatibility files in /etc/zfs/compatibility.d, if present, will take

precedence over files with the same name in /usr/share/zfs/compatibility.d.

If an unrecognized feature is found in these files, an error message will be shown. If the unrecognized

feature is in a file in /etc/zfs/compatibility.d, this is treated as an error and processing will stop. If the

unrecognized feature is under /usr/share/zfs/compatibility.d, this is treated as a warning and processing

will continue. This difference is to allow distributions to include features which might not be recognized

by the currently-installed binaries.

Compatibility files may include comments: any text from ‘#’ to the end of the line is ignored.

Example:

example# cat /usr/share/zfs/compatibility.d/grub2

Features which are supported by GRUB2

async_destroy

bookmarks

embedded_data

empty_bpobj

enabled_txg

extensible_dataset

filesystem_limits

hole_birth

large_blocks

livelist

lz4_compress

spacemap_histogram

zpool_checkpoint

example# zpool create -o compatibility=grub2 bootpool vdev

See zpool-create(8) and zpool-upgrade(8) for more information on how these commands are affected by

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

feature sets.

FEATURES
The following features are supported on this system:

allocation_classes
GUID org.zfsonlinux:allocation_classes
READ-ONLY COMPATIBLE yes

This feature enables support for separate allocation classes.

This feature becomes active when a dedicated allocation class vdev (dedup or special) is created

with the zpool create or zpool add commands. With device removal, it can be returned to the

enabled state if all the dedicated allocation class vdevs are removed.

async_destroy
GUID com.delphix:async_destroy
READ-ONLY COMPATIBLE yes

Destroying a file system requires traversing all of its data in order to return its used space to the

pool. Without async_destroy, the file system is not fully removed until all space has been

reclaimed. If the destroy operation is interrupted by a reboot or power outage, the next attempt

to open the pool will need to complete the destroy operation synchronously.

When async_destroy is enabled, the file system’s data will be reclaimed by a background

process, allowing the destroy operation to complete without traversing the entire file system.

The background process is able to resume interrupted destroys after the pool has been opened,

eliminating the need to finish interrupted destroys as part of the open operation. The amount of

space remaining to be reclaimed by the background process is available through the freeing
property.

This feature is only active while freeing is non-zero.

blake3
GUID org.openzfs:blake3
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE no

This feature enables the use of the BLAKE3 hash algorithm for checksum and dedup.

BLAKE3 is a secure hash algorithm focused on high performance.

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

When the blake3 feature is set to enabled, the administrator can turn on the blake3 checksum on

any dataset using zfs set checksum=blake3 dset (see zfs-set(8)). This feature becomes active
once a checksum property has been set to blake3, and will return to being enabled once all

filesystems that have ever had their checksum set to blake3 are destroyed.

block_cloning
GUID com.fudosecurity:block_cloning
READ-ONLY COMPATIBLE yes

When this feature is enabled ZFS will use block cloning for operations like copy_file_range(2).

Block cloning allows to create multiple references to a single block. It is much faster than

copying the data (as the actual data is neither read nor written) and takes no additional space.

Blocks can be cloned across datasets under some conditions (like disabled encryption and equal

recordsize).

This feature becomes active when first block is cloned. When the last cloned block is freed, it

goes back to the enabled state.

bookmarks
GUID com.delphix:bookmarks
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE yes

This feature enables use of the zfs bookmark command.

This feature is active while any bookmarks exist in the pool. All bookmarks in the pool can be

listed by running zfs list -t bookmark -r poolname.

bookmark_v2
GUID com.datto:bookmark_v2
DEPENDENCIES bookmark, extensible_dataset
READ-ONLY COMPATIBLE no

This feature enables the creation and management of larger bookmarks which are needed for

other features in ZFS.

This feature becomes active when a v2 bookmark is created and will be returned to the enabled
state when all v2 bookmarks are destroyed.

bookmark_written

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

GUID com.delphix:bookmark_written
DEPENDENCIES bookmark, extensible_dataset, bookmark_v2
READ-ONLY COMPATIBLE no

This feature enables additional bookmark accounting fields, enabling the written#bookmark

property (space written since a bookmark) and estimates of send stream sizes for incrementals

from bookmarks.

This feature becomes active when a bookmark is created and will be returned to the enabled
state when all bookmarks with these fields are destroyed.

device_rebuild
GUID org.openzfs:device_rebuild
READ-ONLY COMPATIBLE yes

This feature enables the ability for the zpool attach and zpool replace commands to perform

sequential reconstruction (instead of healing reconstruction) when resilvering.

Sequential reconstruction resilvers a device in LBA order without immediately verifying the

checksums. Once complete, a scrub is started, which then verifies the checksums. This

approach allows full redundancy to be restored to the pool in the minimum amount of time.

This two-phase approach will take longer than a healing resilver when the time to verify the

checksums is included. However, unless there is additional pool damage, no checksum errors

should be reported by the scrub. This feature is incompatible with raidz configurations. This

feature becomes active while a sequential resilver is in progress, and returns to enabled when

the resilver completes.

device_removal
GUID com.delphix:device_removal
READ-ONLY COMPATIBLE no

This feature enables the zpool remove command to remove top-level vdevs, evacuating them to

reduce the total size of the pool.

This feature becomes active when the zpool remove command is used on a top-level vdev, and

will never return to being enabled.

draid
GUID org.openzfs:draid
READ-ONLY COMPATIBLE no

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

This feature enables use of the draid vdev type. dRAID is a variant of RAID-Z which provides

integrated distributed hot spares that allow faster resilvering while retaining the benefits of

RAID-Z. Data, parity, and spare space are organized in redundancy groups and distributed

evenly over all of the devices.

This feature becomes active when creating a pool which uses the draid vdev type, or when

adding a new draid vdev to an existing pool.

edonr
GUID org.illumos:edonr
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE no

This feature enables the use of the Edon-R hash algorithm for checksum, including for nopwrite

(if compression is also enabled, an overwrite of a block whose checksum matches the data

being written will be ignored). In an abundance of caution, Edon-R requires verification when

used with dedup: zfs set dedup=edonr,verify (see zfs-set(8)).

Edon-R is a very high-performance hash algorithm that was part of the NIST SHA-3

competition. It provides extremely high hash performance (over 350% faster than SHA-256),

but was not selected because of its unsuitability as a general purpose secure hash algorithm.

This implementation utilizes the new salted checksumming functionality in ZFS, which means

that the checksum is pre-seeded with a secret 256-bit random key (stored on the pool) before

being fed the data block to be checksummed. Thus the produced checksums are unique to a

given pool, preventing hash collision attacks on systems with dedup.

When the edonr feature is set to enabled, the administrator can turn on the edonr checksum on

any dataset using zfs set checksum=edonr dset (see zfs-set(8)). This feature becomes active
once a checksum property has been set to edonr, and will return to being enabled once all

filesystems that have ever had their checksum set to edonr are destroyed.

embedded_data
GUID com.delphix:embedded_data
READ-ONLY COMPATIBLE no

This feature improves the performance and compression ratio of highly-compressible blocks.

Blocks whose contents can compress to 112 bytes or smaller can take advantage of this feature.

When this feature is enabled, the contents of highly-compressible blocks are stored in the block

"pointer" itself (a misnomer in this case, as it contains the compressed data, rather than a pointer

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

to its location on disk). Thus the space of the block (one sector, typically 512 B or 4 KiB) is

saved, and no additional I/O is needed to read and write the data block. This feature becomes

active as soon as it is enabled and will never return to being enabled.

empty_bpobj
GUID com.delphix:empty_bpobj
READ-ONLY COMPATIBLE yes

This feature increases the performance of creating and using a large number of snapshots of a

single filesystem or volume, and also reduces the disk space required.

When there are many snapshots, each snapshot uses many Block Pointer Objects (bpobjs) to

track blocks associated with that snapshot. However, in common use cases, most of these

bpobjs are empty. This feature allows us to create each bpobj on-demand, thus eliminating the

empty bpobjs.

This feature is active while there are any filesystems, volumes, or snapshots which were created

after enabling this feature.

enabled_txg
GUID com.delphix:enabled_txg
READ-ONLY COMPATIBLE yes

Once this feature is enabled, ZFS records the transaction group number in which new features

are enabled. This has no user-visible impact, but other features may depend on this feature.

This feature becomes active as soon as it is enabled and will never return to being enabled.

encryption
GUID com.datto:encryption
DEPENDENCIES bookmark_v2, extensible_dataset
READ-ONLY COMPATIBLE no

This feature enables the creation and management of natively encrypted datasets.

This feature becomes active when an encrypted dataset is created and will be returned to the

enabled state when all datasets that use this feature are destroyed.

extensible_dataset
GUID com.delphix:extensible_dataset

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

READ-ONLY COMPATIBLE no

This feature allows more flexible use of internal ZFS data structures, and exists for other

features to depend on.

This feature will be active when the first dependent feature uses it, and will be returned to the

enabled state when all datasets that use this feature are destroyed.

filesystem_limits
GUID com.joyent:filesystem_limits
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE yes

This feature enables filesystem and snapshot limits. These limits can be used to control how

many filesystems and/or snapshots can be created at the point in the tree on which the limits are

set.

This feature is active once either of the limit properties has been set on a dataset and will never

return to being enabled.

head_errlog
GUID com.delphix:head_errlog
READ-ONLY COMPATIBLE no

This feature enables the upgraded version of errlog, which required an on-disk error log format

change. Now the error log of each head dataset is stored separately in the zap object and keyed

by the head id. With this feature enabled, every dataset affected by an error block is listed in

the output of zpool status. In case of encrypted filesystems with unloaded keys we are unable

to check their snapshots or clones for errors and these will not be reported. An "access denied"

error will be reported.

This feature becomes active as soon as it is enabled and will never return to being enabled.

hole_birth
GUID com.delphix:hole_birth
DEPENDENCIES enabled_txg
READ-ONLY COMPATIBLE no

This feature has/had bugs, the result of which is that, if you do a zfs send -i (or -R, since it uses

-i) from an affected dataset, the receiving party will not see any checksum or other errors, but

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

the resulting destination snapshot will not match the source. Its use by zfs send -i has been

disabled by default (see send_holes_without_birth_time in zfs(4)).

This feature improves performance of incremental sends (zfs send -i) and receives for objects

with many holes. The most common case of hole-filled objects is zvols.

An incremental send stream from snapshot A to snapshot B contains information about every

block that changed between A and B. Blocks which did not change between those snapshots

can be identified and omitted from the stream using a piece of metadata called the "block birth

time", but birth times are not recorded for holes (blocks filled only with zeroes). Since holes

created after A cannot be distinguished from holes created before A, information about every

hole in the entire filesystem or zvol is included in the send stream.

For workloads where holes are rare this is not a problem. However, when incrementally

replicating filesystems or zvols with many holes (for example a zvol formatted with another

filesystem) a lot of time will be spent sending and receiving unnecessary information about

holes that already exist on the receiving side.

Once the hole_birth feature has been enabled the block birth times of all new holes will be

recorded. Incremental sends between snapshots created after this feature is enabled will use this

new metadata to avoid sending information about holes that already exist on the receiving side.

This feature becomes active as soon as it is enabled and will never return to being enabled.

large_blocks
GUID org.open-zfs:large_blocks
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE no

This feature allows the record size on a dataset to be set larger than 128 KiB.

This feature becomes active once a dataset contains a file with a block size larger than 128 KiB,

and will return to being enabled once all filesystems that have ever had their recordsize larger

than 128 KiB are destroyed.

large_dnode
GUID org.zfsonlinux:large_dnode
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE no

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

This feature allows the size of dnodes in a dataset to be set larger than 512 B. This feature

becomes active once a dataset contains an object with a dnode larger than 512 B, which occurs

as a result of setting the dnodesize dataset property to a value other than legacy. The feature

will return to being enabled once all filesystems that have ever contained a dnode larger than

512 B are destroyed. Large dnodes allow more data to be stored in the bonus buffer, thus

potentially improving performance by avoiding the use of spill blocks.

livelist
GUID com.delphix:livelist
READ-ONLY COMPATIBLE yes

This feature allows clones to be deleted faster than the traditional method when a large number

of random/sparse writes have been made to the clone. All blocks allocated and freed after a

clone is created are tracked by the the clone’s livelist which is referenced during the deletion of

the clone. The feature is activated when a clone is created and remains active until all clones

have been destroyed.

log_spacemap
GUID com.delphix:log_spacemap
DEPENDENCIES com.delphix:spacemap_v2
READ-ONLY COMPATIBLE yes

This feature improves performance for heavily-fragmented pools, especially when workloads

are heavy in random-writes. It does so by logging all the metaslab changes on a single

spacemap every TXG instead of scattering multiple writes to all the metaslab spacemaps.

This feature becomes active as soon as it is enabled and will never return to being enabled.

lz4_compress
GUID org.illumos:lz4_compress
READ-ONLY COMPATIBLE no

lz4 is a high-performance real-time compression algorithm that features significantly faster

compression and decompression as well as a higher compression ratio than the older lzjb
compression. Typically, lz4 compression is approximately 50% faster on compressible data

and 200% faster on incompressible data than lzjb. It is also approximately 80% faster on

decompression, while giving approximately a 10% better compression ratio.

When the lz4_compress feature is set to enabled, the administrator can turn on lz4 compression

on any dataset on the pool using the zfs-set(8) command. All newly written metadata will be

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

compressed with the lz4 algorithm.

This feature becomes active as soon as it is enabled and will never return to being enabled.

multi_vdev_crash_dump
GUID com.joyent:multi_vdev_crash_dump
READ-ONLY COMPATIBLE no

This feature allows a dump device to be configured with a pool comprised of multiple vdevs.

Those vdevs may be arranged in any mirrored or raidz configuration.

When the multi_vdev_crash_dump feature is set to enabled, the administrator can use

dumpadm(8) to configure a dump device on a pool comprised of multiple vdevs.

Under FreeBSD and Linux this feature is unused, but registered for compatibility. New pools

created on these systems will have the feature enabled but will never transition to active, as this

functionality is not required for crash dump support. Existing pools where this feature is active
can be imported.

obsolete_counts
GUID com.delphix:obsolete_counts
DEPENDENCIES device_removal
READ-ONLY COMPATIBLE yes

This feature is an enhancement of device_removal, which will over time reduce the memory

used to track removed devices. When indirect blocks are freed or remapped, we note that their

part of the indirect mapping is "obsolete" - no longer needed.

This feature becomes active when the zpool remove command is used on a top-level vdev, and

will never return to being enabled.

project_quota
GUID org.zfsonlinux:project_quota
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE yes

This feature allows administrators to account the spaces and objects usage information against

the project identifier (ID).

The project ID is an object-based attribute. When upgrading an existing filesystem, objects

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

without a project ID will be assigned a zero project ID. When this feature is enabled, newly

created objects inherit their parent directories’ project ID if the parent’s inherit flag is set (via

chattr [+-]P or zfs project -s|-C). Otherwise, the new object’s project ID will be zero. An

object’s project ID can be changed at any time by the owner (or privileged user) via chattr -p
prjid or zfs project -p prjid.

This feature will become active as soon as it is enabled and will never return to being disabled.

Each filesystem will be upgraded automatically when remounted, or when a new file is created

under that filesystem. The upgrade can also be triggered on filesystems via zfs set
version=current fs. The upgrade process runs in the background and may take a while to

complete for filesystems containing large amounts of files.

redaction_bookmarks
GUID com.delphix:redaction_bookmarks
DEPENDENCIES bookmarks, extensible_dataset
READ-ONLY COMPATIBLE no

This feature enables the use of redacted zfs sends, which create redaction bookmarks storing the

list of blocks redacted by the send that created them. For more information about redacted

sends, see zfs-send(8).

redacted_datasets
GUID com.delphix:redacted_datasets
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE no

This feature enables the receiving of redacted zfs send streams, which create redacted datasets

when received. These datasets are missing some of their blocks, and so cannot be safely

mounted, and their contents cannot be safely read. For more information about redacted

receives, see zfs-send(8).

resilver_defer
GUID com.datto:resilver_defer
READ-ONLY COMPATIBLE yes

This feature allows ZFS to postpone new resilvers if an existing one is already in progress.

Without this feature, any new resilvers will cause the currently running one to be immediately

restarted from the beginning.

This feature becomes active once a resilver has been deferred, and returns to being enabled

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

when the deferred resilver begins.

sha512
GUID org.illumos:sha512
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE no

This feature enables the use of the SHA-512/256 truncated hash algorithm (FIPS 180-4) for

checksum and dedup. The native 64-bit arithmetic of SHA-512 provides an approximate 50%

performance boost over SHA-256 on 64-bit hardware and is thus a good minimum-change

replacement candidate for systems where hash performance is important, but these systems

cannot for whatever reason utilize the faster skein and edonr algorithms.

When the sha512 feature is set to enabled, the administrator can turn on the sha512 checksum

on any dataset using zfs set checksum=sha512 dset (see zfs-set(8)). This feature becomes

active once a checksum property has been set to sha512, and will return to being enabled once

all filesystems that have ever had their checksum set to sha512 are destroyed.

skein
GUID org.illumos:skein
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE no

This feature enables the use of the Skein hash algorithm for checksum and dedup. Skein is a

high-performance secure hash algorithm that was a finalist in the NIST SHA-3 competition. It

provides a very high security margin and high performance on 64-bit hardware (80% faster than

SHA-256). This implementation also utilizes the new salted checksumming functionality in

ZFS, which means that the checksum is pre-seeded with a secret 256-bit random key (stored on

the pool) before being fed the data block to be checksummed. Thus the produced checksums

are unique to a given pool, preventing hash collision attacks on systems with dedup.

When the skein feature is set to enabled, the administrator can turn on the skein checksum on

any dataset using zfs set checksum=skein dset (see zfs-set(8)). This feature becomes active
once a checksum property has been set to skein, and will return to being enabled once all

filesystems that have ever had their checksum set to skein are destroyed.

spacemap_histogram
GUID com.delphix:spacemap_histogram
READ-ONLY COMPATIBLE yes

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

This features allows ZFS to maintain more information about how free space is organized

within the pool. If this feature is enabled, it will be activated when a new space map object is

created, or an existing space map is upgraded to the new format, and never returns back to

being enabled.

spacemap_v2
GUID com.delphix:spacemap_v2
READ-ONLY COMPATIBLE yes

This feature enables the use of the new space map encoding which consists of two words

(instead of one) whenever it is advantageous. The new encoding allows space maps to

represent large regions of space more efficiently on-disk while also increasing their maximum

addressable offset.

This feature becomes active once it is enabled, and never returns back to being enabled.

userobj_accounting
GUID org.zfsonlinux:userobj_accounting
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE yes

This feature allows administrators to account the object usage information by user and group.

This feature becomes active as soon as it is enabled and will never return to being enabled.

Each filesystem will be upgraded automatically when remounted, or when a new file is created

under that filesystem. The upgrade can also be triggered on filesystems via zfs set
version=current fs. The upgrade process runs in the background and may take a while to

complete for filesystems containing large amounts of files.

vdev_zaps_v2
GUID com.klarasystems:vdev_zaps_v2
READ-ONLY COMPATIBLE no

This feature creates a ZAP object for the root vdev.

This feature becomes active after the next zpool import or zpool reguid. Properties can be

retrieved or set on the root vdev using zpool get and zpool set with root as the vdev name which

is an alias for root-0.

zilsaxattr

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

GUID org.openzfs:zilsaxattr
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE yes

This feature enables xattr=sa extended attribute logging in the ZIL. If enabled, extended

attribute changes (both xattrdir=dir and xattr=sa) are guaranteed to be durable if either the

dataset had sync=always set at the time the changes were made, or sync(2) is called on the

dataset after the changes were made.

This feature becomes active when a ZIL is created for at least one dataset and will be returned

to the enabled state when it is destroyed for all datasets that use this feature.

zpool_checkpoint
GUID com.delphix:zpool_checkpoint
READ-ONLY COMPATIBLE yes

This feature enables the zpool checkpoint command that can checkpoint the state of the pool at

the time it was issued and later rewind back to it or discard it.

This feature becomes active when the zpool checkpoint command is used to checkpoint the

pool. The feature will only return back to being enabled when the pool is rewound or the

checkpoint has been discarded.

zstd_compress
GUID org.freebsd:zstd_compress
DEPENDENCIES extensible_dataset
READ-ONLY COMPATIBLE no

zstd is a high-performance compression algorithm that features a combination of high

compression ratios and high speed. Compared to gzip, zstd offers slightly better compression at

much higher speeds. Compared to lz4, zstd offers much better compression while being only

modestly slower. Typically, zstd compression speed ranges from 250 to 500 MB/s per thread

and decompression speed is over 1 GB/s per thread.

When the zstd feature is set to enabled, the administrator can turn on zstd compression of any

dataset using zfs set compress=zstd dset (see zfs-set(8)). This feature becomes active once a

compress property has been set to zstd, and will return to being enabled once all filesystems that

have ever had their compress property set to zstd are destroyed.

SEE ALSO

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

zfs(8), zpool(8)

ZPOOL-FEATURES(7) FreeBSD Miscellaneous Information Manual ZPOOL-FEATURES(7)

FreeBSD 14.0-RELEASE-p11 June 23, 2022 FreeBSD 14.0-RELEASE-p11

