
NAME
zpoolprops - properties of ZFS storage pools

DESCRIPTION
Each pool has several properties associated with it. Some properties are read-only statistics while others

are configurable and change the behavior of the pool.

User properties have no effect on ZFS behavior. Use them to annotate pools in a way that is meaningful

in your environment. For more information about user properties, see the User Properties section.

The following are read-only properties:

allocated Amount of storage used within the pool. See fragmentation and free for more

information.

bcloneratio The ratio of the total amount of storage that would be required to store all the cloned

blocks without cloning to the actual storage used. The bcloneratio property is

calculated as:

((bclonesaved + bcloneused) * 100) / bcloneused

bclonesaved The amount of additional storage that would be required if block cloning was not

used.

bcloneused The amount of storage used by cloned blocks.

capacity Percentage of pool space used. This property can also be referred to by its

shortened column name, cap.

expandsize Amount of uninitialized space within the pool or device that can be used to increase

the total capacity of the pool. On whole-disk vdevs, this is the space beyond the end

of the GPT - typically occurring when a LUN is dynamically expanded or a disk

replaced with a larger one. On partition vdevs, this is the space appended to the

partition after it was added to the pool - most likely by resizing it in-place. The

space can be claimed for the pool by bringing it online with autoexpand=on or using

zpool online -e.

fragmentation The amount of fragmentation in the pool. As the amount of space allocated
increases, it becomes more difficult to locate free space. This may result in lower

write performance compared to pools with more unfragmented free space.

ZPOOLPROPS(7) FreeBSD Miscellaneous Information Manual ZPOOLPROPS(7)

FreeBSD 14.0-RELEASE-p6 April 18, 2023 FreeBSD 14.0-RELEASE-p6

free The amount of free space available in the pool. By contrast, the zfs(8) available
property describes how much new data can be written to ZFS filesystems/volumes.

The zpool free property is not generally useful for this purpose, and can be

substantially more than the zfs available space. This discrepancy is due to several

factors, including raidz parity; zfs reservation, quota, refreservation, and refquota

properties; and space set aside by spa_slop_shift (see zfs(4) for more information).

freeing After a file system or snapshot is destroyed, the space it was using is returned to the

pool asynchronously. freeing is the amount of space remaining to be reclaimed.

Over time freeing will decrease while free increases.

guid A unique identifier for the pool.

health The current health of the pool. Health can be one of ONLINE, DEGRADED,

FAULTED, OFFLINE, REMOVED, UNAVAIL.

leaked Space not released while freeing due to corruption, now permanently leaked into the

pool.

load_guid A unique identifier for the pool. Unlike the guid property, this identifier is

generated every time we load the pool (i.e. does not persist across imports/exports)

and never changes while the pool is loaded (even if a reguid operation takes place).

size Total size of the storage pool.

unsupported@guid Information about unsupported features that are enabled on the pool. See

zpool-features(7) for details.

The space usage properties report actual physical space available to the storage pool. The physical space

can be different from the total amount of space that any contained datasets can actually use. The amount

of space used in a raidz configuration depends on the characteristics of the data being written. In

addition, ZFS reserves some space for internal accounting that the zfs(8) command takes into account,

but the zpoolprops command does not. For non-full pools of a reasonable size, these effects should be

invisible. For small pools, or pools that are close to being completely full, these discrepancies may

become more noticeable.

The following property can be set at creation time and import time:

altroot Alternate root directory. If set, this directory is prepended to any mount points within the pool.

This can be used when examining an unknown pool where the mount points cannot be trusted,

ZPOOLPROPS(7) FreeBSD Miscellaneous Information Manual ZPOOLPROPS(7)

FreeBSD 14.0-RELEASE-p6 April 18, 2023 FreeBSD 14.0-RELEASE-p6

or in an alternate boot environment, where the typical paths are not valid. altroot is not a

persistent property. It is valid only while the system is up. Setting altroot defaults to using

cachefile=none, though this may be overridden using an explicit setting.

The following property can be set only at import time:

readonly=on|off
If set to on, the pool will be imported in read-only mode. This property can also be referred to

by its shortened column name, rdonly.

The following properties can be set at creation time and import time, and later changed with the zpool
set command:

ashift=ashift

Pool sector size exponent, to the power of 2 (internally referred to as ashift). Values from 9 to

16, inclusive, are valid; also, the value 0 (the default) means to auto-detect using the kernel’s

block layer and a ZFS internal exception list. I/O operations will be aligned to the specified

size boundaries. Additionally, the minimum (disk) write size will be set to the specified size, so

this represents a space/performance trade-off. For optimal performance, the pool sector size

should be greater than or equal to the sector size of the underlying disks. The typical case for

setting this property is when performance is important and the underlying disks use 4KiB

sectors but report 512B sectors to the OS (for compatibility reasons); in that case, set ashift=12
(which is 1<<12 = 4096). When set, this property is used as the default hint value in

subsequent vdev operations (add, attach and replace). Changing this value will not modify any

existing vdev, not even on disk replacement; however it can be used, for instance, to replace a

dying 512B sectors disk with a newer 4KiB sectors device: this will probably result in bad

performance but at the same time could prevent loss of data.

autoexpand=on|off
Controls automatic pool expansion when the underlying LUN is grown. If set to on, the pool

will be resized according to the size of the expanded device. If the device is part of a mirror or

raidz then all devices within that mirror/raidz group must be expanded before the new space is

made available to the pool. The default behavior is off. This property can also be referred to by

its shortened column name, expand.

autoreplace=on|off
Controls automatic device replacement. If set to off, device replacement must be initiated by

the administrator by using the zpool replace command. If set to on, any new device, found in

the same physical location as a device that previously belonged to the pool, is automatically

formatted and replaced. The default behavior is off. This property can also be referred to by its

ZPOOLPROPS(7) FreeBSD Miscellaneous Information Manual ZPOOLPROPS(7)

FreeBSD 14.0-RELEASE-p6 April 18, 2023 FreeBSD 14.0-RELEASE-p6

shortened column name, replace. Autoreplace can also be used with virtual disks (like device

mapper) provided that you use the /dev/disk/by-vdev paths setup by vdev_id.conf. See the

vdev_id(8) manual page for more details. Autoreplace and autoonline require the ZFS Event

Daemon be configured and running. See the zed(8) manual page for more details.

autotrim=on|off
When set to on space which has been recently freed, and is no longer allocated by the pool, will

be periodically trimmed. This allows block device vdevs which support BLKDISCARD, such

as SSDs, or file vdevs on which the underlying file system supports hole-punching, to reclaim

unused blocks. The default value for this property is off.

Automatic TRIM does not immediately reclaim blocks after a free. Instead, it will

optimistically delay allowing smaller ranges to be aggregated into a few larger ones. These can

then be issued more efficiently to the storage. TRIM on L2ARC devices is enabled by setting

l2arc_trim_ahead > 0.

Be aware that automatic trimming of recently freed data blocks can put significant stress on the

underlying storage devices. This will vary depending of how well the specific device handles

these commands. For lower-end devices it is often possible to achieve most of the benefits of

automatic trimming by running an on-demand (manual) TRIM periodically using the zpool trim
command.

bootfs=(unset)|pool[/dataset]

Identifies the default bootable dataset for the root pool. This property is expected to be set

mainly by the installation and upgrade programs. Not all Linux distribution boot processes use

the bootfs property.

cachefile=path|none
Controls the location of where the pool configuration is cached. Discovering all pools on

system startup requires a cached copy of the configuration data that is stored on the root file

system. All pools in this cache are automatically imported when the system boots. Some

environments, such as install and clustering, need to cache this information in a different

location so that pools are not automatically imported. Setting this property caches the pool

configuration in a different location that can later be imported with zpool import -c. Setting it

to the value none creates a temporary pool that is never cached, and the "" (empty string) uses

the default location.

Multiple pools can share the same cache file. Because the kernel destroys and recreates this file

when pools are added and removed, care should be taken when attempting to access this file.

When the last pool using a cachefile is exported or destroyed, the file will be empty.

ZPOOLPROPS(7) FreeBSD Miscellaneous Information Manual ZPOOLPROPS(7)

FreeBSD 14.0-RELEASE-p6 April 18, 2023 FreeBSD 14.0-RELEASE-p6

comment=text

A text string consisting of printable ASCII characters that will be stored such that it is available

even if the pool becomes faulted. An administrator can provide additional information about a

pool using this property.

compatibility=off|legacy|file[,file]<?>

Specifies that the pool maintain compatibility with specific feature sets. When set to off (or

unset) compatibility is disabled (all features may be enabled); when set to legacyno features

may be enabled. When set to a comma-separated list of filenames (each filename may either be

an absolute path, or relative to /etc/zfs/compatibility.d or /usr/share/zfs/compatibility.d) the lists

of requested features are read from those files, separated by whitespace and/or commas. Only

features present in all files may be enabled.

See zpool-features(7), zpool-create(8) and zpool-upgrade(8) for more information on the

operation of compatibility feature sets.

dedupditto=number

This property is deprecated and no longer has any effect.

delegation=on|off
Controls whether a non-privileged user is granted access based on the dataset permissions

defined on the dataset. See zfs(8) for more information on ZFS delegated administration.

failmode=wait|continue|panic
Controls the system behavior in the event of catastrophic pool failure. This condition is

typically a result of a loss of connectivity to the underlying storage device(s) or a failure of all

devices within the pool. The behavior of such an event is determined as follows:

wait Blocks all I/O access until the device connectivity is recovered and the errors are

cleared with zpool clear. This is the default behavior.

continue Returns EIO to any new write I/O requests but allows reads to any of the remaining

healthy devices. Any write requests that have yet to be committed to disk would be

blocked.

panic Prints out a message to the console and generates a system crash dump.

feature@feature_name=enabled
The value of this property is the current state of feature_name. The only valid value when

setting this property is enabled which moves feature_name to the enabled state. See

ZPOOLPROPS(7) FreeBSD Miscellaneous Information Manual ZPOOLPROPS(7)

FreeBSD 14.0-RELEASE-p6 April 18, 2023 FreeBSD 14.0-RELEASE-p6

zpool-features(7) for details on feature states.

listsnapshots=on|off
Controls whether information about snapshots associated with this pool is output when zfs list
is run without the -t option. The default value is off. This property can also be referred to by its

shortened name, listsnaps.

multihost=on|off
Controls whether a pool activity check should be performed during zpool import. When a pool

is determined to be active it cannot be imported, even with the -f option. This property is

intended to be used in failover configurations where multiple hosts have access to a pool on

shared storage.

Multihost provides protection on import only. It does not protect against an individual device

being used in multiple pools, regardless of the type of vdev. See the discussion under zpool
create.

When this property is on, periodic writes to storage occur to show the pool is in use. See

zfs_multihost_interval in the zfs(4) manual page. In order to enable this property each host

must set a unique hostid. See genhostid(1) zgenhostid(8) spl(4) for additional details. The

default value is off.

version=version

The current on-disk version of the pool. This can be increased, but never decreased. The

preferred method of updating pools is with the zpool upgrade command, though this property

can be used when a specific version is needed for backwards compatibility. Once feature flags

are enabled on a pool this property will no longer have a value.

User Properties
In addition to the standard native properties, ZFS supports arbitrary user properties. User properties

have no effect on ZFS behavior, but applications or administrators can use them to annotate pools.

User property names must contain a colon (":") character to distinguish them from native properties.

They may contain lowercase letters, numbers, and the following punctuation characters: colon (":"), dash

("-"), period ("."), and underscore ("_"). The expected convention is that the property name is divided

into two portions such as module:property, but this namespace is not enforced by ZFS. User property

names can be at most 256 characters, and cannot begin with a dash ("-").

When making programmatic use of user properties, it is strongly suggested to use a reversed DNS

domain name for the module component of property names to reduce the chance that two independently-

ZPOOLPROPS(7) FreeBSD Miscellaneous Information Manual ZPOOLPROPS(7)

FreeBSD 14.0-RELEASE-p6 April 18, 2023 FreeBSD 14.0-RELEASE-p6

developed packages use the same property name for different purposes.

The values of user properties are arbitrary strings and are never validated. All of the commands that

operate on properties (zpool list, zpool get, zpool set, and so forth) can be used to manipulate both native

properties and user properties. Use zpool set name= to clear a user property. Property values are limited

to 8192 bytes.

ZPOOLPROPS(7) FreeBSD Miscellaneous Information Manual ZPOOLPROPS(7)

FreeBSD 14.0-RELEASE-p6 April 18, 2023 FreeBSD 14.0-RELEASE-p6

