/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef _VMM_H_
#define _VMM_H_
#include <sys/cpuset.h>
#include <sys/sdt.h>
#include <x86/segments.h>
struct vcpu;
struct vm_snapshot_meta;
#ifdef _KERNEL
SDT_PROVIDER_DECLARE(vmm);
#endif
enum vm_suspend_how {
VM_SUSPEND_NONE,
VM_SUSPEND_RESET,
VM_SUSPEND_POWEROFF,
VM_SUSPEND_HALT,
VM_SUSPEND_TRIPLEFAULT,
VM_SUSPEND_LAST
};
/*
* Identifiers for architecturally defined registers.
*/
enum vm_reg_name {
VM_REG_GUEST_RAX,
VM_REG_GUEST_RBX,
VM_REG_GUEST_RCX,
VM_REG_GUEST_RDX,
VM_REG_GUEST_RSI,
VM_REG_GUEST_RDI,
VM_REG_GUEST_RBP,
VM_REG_GUEST_R8,
VM_REG_GUEST_R9,
VM_REG_GUEST_R10,
VM_REG_GUEST_R11,
VM_REG_GUEST_R12,
VM_REG_GUEST_R13,
VM_REG_GUEST_R14,
VM_REG_GUEST_R15,
VM_REG_GUEST_CR0,
VM_REG_GUEST_CR3,
VM_REG_GUEST_CR4,
VM_REG_GUEST_DR7,
VM_REG_GUEST_RSP,
VM_REG_GUEST_RIP,
VM_REG_GUEST_RFLAGS,
VM_REG_GUEST_ES,
VM_REG_GUEST_CS,
VM_REG_GUEST_SS,
VM_REG_GUEST_DS,
VM_REG_GUEST_FS,
VM_REG_GUEST_GS,
VM_REG_GUEST_LDTR,
VM_REG_GUEST_TR,
VM_REG_GUEST_IDTR,
VM_REG_GUEST_GDTR,
VM_REG_GUEST_EFER,
VM_REG_GUEST_CR2,
VM_REG_GUEST_PDPTE0,
VM_REG_GUEST_PDPTE1,
VM_REG_GUEST_PDPTE2,
VM_REG_GUEST_PDPTE3,
VM_REG_GUEST_INTR_SHADOW,
VM_REG_GUEST_DR0,
VM_REG_GUEST_DR1,
VM_REG_GUEST_DR2,
VM_REG_GUEST_DR3,
VM_REG_GUEST_DR6,
VM_REG_GUEST_ENTRY_INST_LENGTH,
VM_REG_LAST
};
enum x2apic_state {
X2APIC_DISABLED,
X2APIC_ENABLED,
X2APIC_STATE_LAST
};
#define VM_INTINFO_VECTOR(info) ((info) & 0xff)
#define VM_INTINFO_DEL_ERRCODE 0x800
#define VM_INTINFO_RSVD 0x7ffff000
#define VM_INTINFO_VALID 0x80000000
#define VM_INTINFO_TYPE 0x700
#define VM_INTINFO_HWINTR (0 << 8)
#define VM_INTINFO_NMI (2 << 8)
#define VM_INTINFO_HWEXCEPTION (3 << 8)
#define VM_INTINFO_SWINTR (4 << 8)
/*
* The VM name has to fit into the pathname length constraints of devfs,
* governed primarily by SPECNAMELEN. The length is the total number of
* characters in the full path, relative to the mount point and not
* including any leading '/' characters.
* A prefix and a suffix are added to the name specified by the user.
* The prefix is usually "vmm/" or "vmm.io/", but can be a few characters
* longer for future use.
* The suffix is a string that identifies a bootrom image or some similar
* image that is attached to the VM. A separator character gets added to
* the suffix automatically when generating the full path, so it must be
* accounted for, reducing the effective length by 1.
* The effective length of a VM name is 229 bytes for FreeBSD 13 and 37
* bytes for FreeBSD 12. A minimum length is set for safety and supports
* a SPECNAMELEN as small as 32 on old systems.
*/
#define VM_MAX_PREFIXLEN 10
#define VM_MAX_SUFFIXLEN 15
#define VM_MIN_NAMELEN 6
#define VM_MAX_NAMELEN \
(SPECNAMELEN - VM_MAX_PREFIXLEN - VM_MAX_SUFFIXLEN - 1)
#ifdef _KERNEL
CTASSERT(VM_MAX_NAMELEN >= VM_MIN_NAMELEN);
struct vm;
struct vm_exception;
struct seg_desc;
struct vm_exit;
struct vm_run;
struct vhpet;
struct vioapic;
struct vlapic;
struct vmspace;
struct vm_object;
struct vm_guest_paging;
struct pmap;
enum snapshot_req;
struct vm_eventinfo {
cpuset_t *rptr; /* rendezvous cookie */
int *sptr; /* suspend cookie */
int *iptr; /* reqidle cookie */
};
typedef int (*vmm_init_func_t)(int ipinum);
typedef int (*vmm_cleanup_func_t)(void);
typedef void (*vmm_resume_func_t)(void);
typedef void * (*vmi_init_func_t)(struct vm *vm, struct pmap *pmap);
typedef int (*vmi_run_func_t)(void *vcpui, register_t rip,
struct pmap *pmap, struct vm_eventinfo *info);
typedef void (*vmi_cleanup_func_t)(void *vmi);
typedef void * (*vmi_vcpu_init_func_t)(void *vmi, struct vcpu *vcpu,
int vcpu_id);
typedef void (*vmi_vcpu_cleanup_func_t)(void *vcpui);
typedef int (*vmi_get_register_t)(void *vcpui, int num, uint64_t *retval);
typedef int (*vmi_set_register_t)(void *vcpui, int num, uint64_t val);
typedef int (*vmi_get_desc_t)(void *vcpui, int num, struct seg_desc *desc);
typedef int (*vmi_set_desc_t)(void *vcpui, int num, struct seg_desc *desc);
typedef int (*vmi_get_cap_t)(void *vcpui, int num, int *retval);
typedef int (*vmi_set_cap_t)(void *vcpui, int num, int val);
typedef struct vmspace * (*vmi_vmspace_alloc)(vm_offset_t min, vm_offset_t max);
typedef void (*vmi_vmspace_free)(struct vmspace *vmspace);
typedef struct vlapic * (*vmi_vlapic_init)(void *vcpui);
typedef void (*vmi_vlapic_cleanup)(struct vlapic *vlapic);
typedef int (*vmi_snapshot_vcpu_t)(void *vcpui, struct vm_snapshot_meta *meta);
typedef int (*vmi_restore_tsc_t)(void *vcpui, uint64_t now);
struct vmm_ops {
vmm_init_func_t modinit; /* module wide initialization */
vmm_cleanup_func_t modcleanup;
vmm_resume_func_t modresume;
vmi_init_func_t init; /* vm-specific initialization */
vmi_run_func_t run;
vmi_cleanup_func_t cleanup;
vmi_vcpu_init_func_t vcpu_init;
vmi_vcpu_cleanup_func_t vcpu_cleanup;
vmi_get_register_t getreg;
vmi_set_register_t setreg;
vmi_get_desc_t getdesc;
vmi_set_desc_t setdesc;
vmi_get_cap_t getcap;
vmi_set_cap_t setcap;
vmi_vmspace_alloc vmspace_alloc;
vmi_vmspace_free vmspace_free;
vmi_vlapic_init vlapic_init;
vmi_vlapic_cleanup vlapic_cleanup;
/* checkpoint operations */
vmi_snapshot_vcpu_t vcpu_snapshot;
vmi_restore_tsc_t restore_tsc;
};
extern const struct vmm_ops vmm_ops_intel;
extern const struct vmm_ops vmm_ops_amd;
extern u_int vm_maxcpu; /* maximum virtual cpus */
int vm_create(const char *name, struct vm **retvm);
struct vcpu *vm_alloc_vcpu(struct vm *vm, int vcpuid);
void vm_disable_vcpu_creation(struct vm *vm);
void vm_slock_vcpus(struct vm *vm);
void vm_unlock_vcpus(struct vm *vm);
void vm_destroy(struct vm *vm);
int vm_reinit(struct vm *vm);
const char *vm_name(struct vm *vm);
uint16_t vm_get_maxcpus(struct vm *vm);
void vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
uint16_t *threads, uint16_t *maxcpus);
int vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
uint16_t threads, uint16_t maxcpus);
/*
* APIs that modify the guest memory map require all vcpus to be frozen.
*/
void vm_slock_memsegs(struct vm *vm);
void vm_xlock_memsegs(struct vm *vm);
void vm_unlock_memsegs(struct vm *vm);
int vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t off,
size_t len, int prot, int flags);
int vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len);
int vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem);
void vm_free_memseg(struct vm *vm, int ident);
int vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa);
int vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len);
int vm_assign_pptdev(struct vm *vm, int bus, int slot, int func);
int vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func);
/*
* APIs that inspect the guest memory map require only a *single* vcpu to
* be frozen. This acts like a read lock on the guest memory map since any
* modification requires *all* vcpus to be frozen.
*/
int vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
vm_ooffset_t *segoff, size_t *len, int *prot, int *flags);
int vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
struct vm_object **objptr);
vm_paddr_t vmm_sysmem_maxaddr(struct vm *vm);
void *vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len,
int prot, void **cookie);
void *vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len,
int prot, void **cookie);
void *vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len,
int prot, void **cookie);
void vm_gpa_release(void *cookie);
bool vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa);
int vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval);
int vm_set_register(struct vcpu *vcpu, int reg, uint64_t val);
int vm_get_seg_desc(struct vcpu *vcpu, int reg,
struct seg_desc *ret_desc);
int vm_set_seg_desc(struct vcpu *vcpu, int reg,
struct seg_desc *desc);
int vm_run(struct vcpu *vcpu);
int vm_suspend(struct vm *vm, enum vm_suspend_how how);
int vm_inject_nmi(struct vcpu *vcpu);
int vm_nmi_pending(struct vcpu *vcpu);
void vm_nmi_clear(struct vcpu *vcpu);
int vm_inject_extint(struct vcpu *vcpu);
int vm_extint_pending(struct vcpu *vcpu);
void vm_extint_clear(struct vcpu *vcpu);
int vcpu_vcpuid(struct vcpu *vcpu);
struct vm *vcpu_vm(struct vcpu *vcpu);
struct vcpu *vm_vcpu(struct vm *vm, int cpu);
struct vlapic *vm_lapic(struct vcpu *vcpu);
struct vioapic *vm_ioapic(struct vm *vm);
struct vhpet *vm_hpet(struct vm *vm);
int vm_get_capability(struct vcpu *vcpu, int type, int *val);
int vm_set_capability(struct vcpu *vcpu, int type, int val);
int vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state);
int vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state);
int vm_apicid2vcpuid(struct vm *vm, int apicid);
int vm_activate_cpu(struct vcpu *vcpu);
int vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu);
int vm_resume_cpu(struct vm *vm, struct vcpu *vcpu);
int vm_restart_instruction(struct vcpu *vcpu);
struct vm_exit *vm_exitinfo(struct vcpu *vcpu);
cpuset_t *vm_exitinfo_cpuset(struct vcpu *vcpu);
void vm_exit_suspended(struct vcpu *vcpu, uint64_t rip);
void vm_exit_debug(struct vcpu *vcpu, uint64_t rip);
void vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip);
void vm_exit_astpending(struct vcpu *vcpu, uint64_t rip);
void vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip);
int vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta);
int vm_restore_time(struct vm *vm);
#ifdef _SYS__CPUSET_H_
/*
* Rendezvous all vcpus specified in 'dest' and execute 'func(arg)'.
* The rendezvous 'func(arg)' is not allowed to do anything that will
* cause the thread to be put to sleep.
*
* The caller cannot hold any locks when initiating the rendezvous.
*
* The implementation of this API may cause vcpus other than those specified
* by 'dest' to be stalled. The caller should not rely on any vcpus making
* forward progress when the rendezvous is in progress.
*/
typedef void (*vm_rendezvous_func_t)(struct vcpu *vcpu, void *arg);
int vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
vm_rendezvous_func_t func, void *arg);
cpuset_t vm_active_cpus(struct vm *vm);
cpuset_t vm_debug_cpus(struct vm *vm);
cpuset_t vm_suspended_cpus(struct vm *vm);
cpuset_t vm_start_cpus(struct vm *vm, const cpuset_t *tostart);
void vm_await_start(struct vm *vm, const cpuset_t *waiting);
#endif /* _SYS__CPUSET_H_ */
static __inline int
vcpu_rendezvous_pending(struct vcpu *vcpu, struct vm_eventinfo *info)
{
/*
* This check isn't done with atomic operations or under a lock because
* there's no need to. If the vcpuid bit is set, the vcpu is part of a
* rendezvous and the bit won't be cleared until the vcpu enters the
* rendezvous. On rendezvous exit, the cpuset is cleared and the vcpu
* will see an empty cpuset. So, the races are harmless.
*/
return (CPU_ISSET(vcpu_vcpuid(vcpu), info->rptr));
}
static __inline int
vcpu_suspended(struct vm_eventinfo *info)
{
return (*info->sptr);
}
static __inline int
vcpu_reqidle(struct vm_eventinfo *info)
{
return (*info->iptr);
}
int vcpu_debugged(struct vcpu *vcpu);
/*
* Return true if device indicated by bus/slot/func is supposed to be a
* pci passthrough device.
*
* Return false otherwise.
*/
bool vmm_is_pptdev(int bus, int slot, int func);
void *vm_iommu_domain(struct vm *vm);
enum vcpu_state {
VCPU_IDLE,
VCPU_FROZEN,
VCPU_RUNNING,
VCPU_SLEEPING,
};
int vcpu_set_state(struct vcpu *vcpu, enum vcpu_state state, bool from_idle);
enum vcpu_state vcpu_get_state(struct vcpu *vcpu, int *hostcpu);
static int __inline
vcpu_is_running(struct vcpu *vcpu, int *hostcpu)
{
return (vcpu_get_state(vcpu, hostcpu) == VCPU_RUNNING);
}
#ifdef _SYS_PROC_H_
static int __inline
vcpu_should_yield(struct vcpu *vcpu)
{
struct thread *td;
td = curthread;
return (td->td_ast != 0 || td->td_owepreempt != 0);
}
#endif
void *vcpu_stats(struct vcpu *vcpu);
void vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr);
struct vmspace *vm_get_vmspace(struct vm *vm);
struct vatpic *vm_atpic(struct vm *vm);
struct vatpit *vm_atpit(struct vm *vm);
struct vpmtmr *vm_pmtmr(struct vm *vm);
struct vrtc *vm_rtc(struct vm *vm);
/*
* Inject exception 'vector' into the guest vcpu. This function returns 0 on
* success and non-zero on failure.
*
* Wrapper functions like 'vm_inject_gp()' should be preferred to calling
* this function directly because they enforce the trap-like or fault-like
* behavior of an exception.
*
* This function should only be called in the context of the thread that is
* executing this vcpu.
*/
int vm_inject_exception(struct vcpu *vcpu, int vector, int err_valid,
uint32_t errcode, int restart_instruction);
/*
* This function is called after a VM-exit that occurred during exception or
* interrupt delivery through the IDT. The format of 'intinfo' is described
* in Figure 15-1, "EXITINTINFO for All Intercepts", APM, Vol 2.
*
* If a VM-exit handler completes the event delivery successfully then it
* should call vm_exit_intinfo() to extinguish the pending event. For e.g.,
* if the task switch emulation is triggered via a task gate then it should
* call this function with 'intinfo=0' to indicate that the external event
* is not pending anymore.
*
* Return value is 0 on success and non-zero on failure.
*/
int vm_exit_intinfo(struct vcpu *vcpu, uint64_t intinfo);
/*
* This function is called before every VM-entry to retrieve a pending
* event that should be injected into the guest. This function combines
* nested events into a double or triple fault.
*
* Returns 0 if there are no events that need to be injected into the guest
* and non-zero otherwise.
*/
int vm_entry_intinfo(struct vcpu *vcpu, uint64_t *info);
int vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2);
/*
* Function used to keep track of the guest's TSC offset. The
* offset is used by the virutalization extensions to provide a consistent
* value for the Time Stamp Counter to the guest.
*/
void vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset);
enum vm_reg_name vm_segment_name(int seg_encoding);
struct vm_copyinfo {
uint64_t gpa;
size_t len;
void *hva;
void *cookie;
};
/*
* Set up 'copyinfo[]' to copy to/from guest linear address space starting
* at 'gla' and 'len' bytes long. The 'prot' should be set to PROT_READ for
* a copyin or PROT_WRITE for a copyout.
*
* retval is_fault Interpretation
* 0 0 Success
* 0 1 An exception was injected into the guest
* EFAULT N/A Unrecoverable error
*
* The 'copyinfo[]' can be passed to 'vm_copyin()' or 'vm_copyout()' only if
* the return value is 0. The 'copyinfo[]' resources should be freed by calling
* 'vm_copy_teardown()' after the copy is done.
*/
int vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
int num_copyinfo, int *is_fault);
void vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo);
void vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len);
void vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len);
int vcpu_trace_exceptions(struct vcpu *vcpu);
int vcpu_trap_wbinvd(struct vcpu *vcpu);
#endif /* KERNEL */
/*
* Identifiers for optional vmm capabilities
*/
enum vm_cap_type {
VM_CAP_HALT_EXIT,
VM_CAP_MTRAP_EXIT,
VM_CAP_PAUSE_EXIT,
VM_CAP_UNRESTRICTED_GUEST,
VM_CAP_ENABLE_INVPCID,
VM_CAP_BPT_EXIT,
VM_CAP_RDPID,
VM_CAP_RDTSCP,
VM_CAP_IPI_EXIT,
VM_CAP_MASK_HWINTR,
VM_CAP_MAX
};
enum vm_intr_trigger {
EDGE_TRIGGER,
LEVEL_TRIGGER
};
/*
* The 'access' field has the format specified in Table 21-2 of the Intel
* Architecture Manual vol 3b.
*
* XXX The contents of the 'access' field are architecturally defined except
* bit 16 - Segment Unusable.
*/
struct seg_desc {
uint64_t base;
uint32_t limit;
uint32_t access;
};
#define SEG_DESC_TYPE(access) ((access) & 0x001f)
#define SEG_DESC_DPL(access) (((access) >> 5) & 0x3)
#define SEG_DESC_PRESENT(access) (((access) & 0x0080) ? 1 : 0)
#define SEG_DESC_DEF32(access) (((access) & 0x4000) ? 1 : 0)
#define SEG_DESC_GRANULARITY(access) (((access) & 0x8000) ? 1 : 0)
#define SEG_DESC_UNUSABLE(access) (((access) & 0x10000) ? 1 : 0)
enum vm_cpu_mode {
CPU_MODE_REAL,
CPU_MODE_PROTECTED,
CPU_MODE_COMPATIBILITY, /* IA-32E mode (CS.L = 0) */
CPU_MODE_64BIT, /* IA-32E mode (CS.L = 1) */
};
enum vm_paging_mode {
PAGING_MODE_FLAT,
PAGING_MODE_32,
PAGING_MODE_PAE,
PAGING_MODE_64,
PAGING_MODE_64_LA57,
};
struct vm_guest_paging {
uint64_t cr3;
int cpl;
enum vm_cpu_mode cpu_mode;
enum vm_paging_mode paging_mode;
};
/*
* The data structures 'vie' and 'vie_op' are meant to be opaque to the
* consumers of instruction decoding. The only reason why their contents
* need to be exposed is because they are part of the 'vm_exit' structure.
*/
struct vie_op {
uint8_t op_byte; /* actual opcode byte */
uint8_t op_type; /* type of operation (e.g. MOV) */
uint16_t op_flags;
};
_Static_assert(sizeof(struct vie_op) == 4, "ABI");
_Static_assert(_Alignof(struct vie_op) == 2, "ABI");
#define VIE_INST_SIZE 15
struct vie {
uint8_t inst[VIE_INST_SIZE]; /* instruction bytes */
uint8_t num_valid; /* size of the instruction */
/* The following fields are all zeroed upon restart. */
#define vie_startzero num_processed
uint8_t num_processed;
uint8_t addrsize:4, opsize:4; /* address and operand sizes */
uint8_t rex_w:1, /* REX prefix */
rex_r:1,
rex_x:1,
rex_b:1,
rex_present:1,
repz_present:1, /* REP/REPE/REPZ prefix */
repnz_present:1, /* REPNE/REPNZ prefix */
opsize_override:1, /* Operand size override */
addrsize_override:1, /* Address size override */
segment_override:1; /* Segment override */
uint8_t mod:2, /* ModRM byte */
reg:4,
rm:4;
uint8_t ss:2, /* SIB byte */
vex_present:1, /* VEX prefixed */
vex_l:1, /* L bit */
index:4, /* SIB byte */
base:4; /* SIB byte */
uint8_t disp_bytes;
uint8_t imm_bytes;
uint8_t scale;
uint8_t vex_reg:4, /* vvvv: first source register specifier */
vex_pp:2, /* pp */
_sparebits:2;
uint8_t _sparebytes[2];
int base_register; /* VM_REG_GUEST_xyz */
int index_register; /* VM_REG_GUEST_xyz */
int segment_register; /* VM_REG_GUEST_xyz */
int64_t displacement; /* optional addr displacement */
int64_t immediate; /* optional immediate operand */
uint8_t decoded; /* set to 1 if successfully decoded */
uint8_t _sparebyte;
struct vie_op op; /* opcode description */
};
_Static_assert(sizeof(struct vie) == 64, "ABI");
_Static_assert(__offsetof(struct vie, disp_bytes) == 22, "ABI");
_Static_assert(__offsetof(struct vie, scale) == 24, "ABI");
_Static_assert(__offsetof(struct vie, base_register) == 28, "ABI");
enum vm_exitcode {
VM_EXITCODE_INOUT,
VM_EXITCODE_VMX,
VM_EXITCODE_BOGUS,
VM_EXITCODE_RDMSR,
VM_EXITCODE_WRMSR,
VM_EXITCODE_HLT,
VM_EXITCODE_MTRAP,
VM_EXITCODE_PAUSE,
VM_EXITCODE_PAGING,
VM_EXITCODE_INST_EMUL,
VM_EXITCODE_SPINUP_AP,
VM_EXITCODE_DEPRECATED1, /* used to be SPINDOWN_CPU */
VM_EXITCODE_RENDEZVOUS,
VM_EXITCODE_IOAPIC_EOI,
VM_EXITCODE_SUSPENDED,
VM_EXITCODE_INOUT_STR,
VM_EXITCODE_TASK_SWITCH,
VM_EXITCODE_MONITOR,
VM_EXITCODE_MWAIT,
VM_EXITCODE_SVM,
VM_EXITCODE_REQIDLE,
VM_EXITCODE_DEBUG,
VM_EXITCODE_VMINSN,
VM_EXITCODE_BPT,
VM_EXITCODE_IPI,
VM_EXITCODE_MAX
};
struct vm_inout {
uint16_t bytes:3; /* 1 or 2 or 4 */
uint16_t in:1;
uint16_t string:1;
uint16_t rep:1;
uint16_t port;
uint32_t eax; /* valid for out */
};
struct vm_inout_str {
struct vm_inout inout; /* must be the first element */
struct vm_guest_paging paging;
uint64_t rflags;
uint64_t cr0;
uint64_t index;
uint64_t count; /* rep=1 (%rcx), rep=0 (1) */
int addrsize;
enum vm_reg_name seg_name;
struct seg_desc seg_desc;
};
enum task_switch_reason {
TSR_CALL,
TSR_IRET,
TSR_JMP,
TSR_IDT_GATE, /* task gate in IDT */
};
struct vm_task_switch {
uint16_t tsssel; /* new TSS selector */
int ext; /* task switch due to external event */
uint32_t errcode;
int errcode_valid; /* push 'errcode' on the new stack */
enum task_switch_reason reason;
struct vm_guest_paging paging;
};
struct vm_exit {
enum vm_exitcode exitcode;
int inst_length; /* 0 means unknown */
uint64_t rip;
union {
struct vm_inout inout;
struct vm_inout_str inout_str;
struct {
uint64_t gpa;
int fault_type;
} paging;
struct {
uint64_t gpa;
uint64_t gla;
uint64_t cs_base;
int cs_d; /* CS.D */
struct vm_guest_paging paging;
struct vie vie;
} inst_emul;
/*
* VMX specific payload. Used when there is no "better"
* exitcode to represent the VM-exit.
*/
struct {
int status; /* vmx inst status */
/*
* 'exit_reason' and 'exit_qualification' are valid
* only if 'status' is zero.
*/
uint32_t exit_reason;
uint64_t exit_qualification;
/*
* 'inst_error' and 'inst_type' are valid
* only if 'status' is non-zero.
*/
int inst_type;
int inst_error;
} vmx;
/*
* SVM specific payload.
*/
struct {
uint64_t exitcode;
uint64_t exitinfo1;
uint64_t exitinfo2;
} svm;
struct {
int inst_length;
} bpt;
struct {
uint32_t code; /* ecx value */
uint64_t wval;
} msr;
struct {
int vcpu;
uint64_t rip;
} spinup_ap;
struct {
uint64_t rflags;
uint64_t intr_status;
} hlt;
struct {
int vector;
} ioapic_eoi;
struct {
enum vm_suspend_how how;
} suspended;
struct {
/*
* The destination vCPU mask is saved in vcpu->cpuset
* and is copied out to userspace separately to avoid
* ABI concerns.
*/
uint32_t mode;
uint8_t vector;
} ipi;
struct vm_task_switch task_switch;
} u;
};
/* APIs to inject faults into the guest */
void vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid,
int errcode);
static __inline void
vm_inject_ud(struct vcpu *vcpu)
{
vm_inject_fault(vcpu, IDT_UD, 0, 0);
}
static __inline void
vm_inject_gp(struct vcpu *vcpu)
{
vm_inject_fault(vcpu, IDT_GP, 1, 0);
}
static __inline void
vm_inject_ac(struct vcpu *vcpu, int errcode)
{
vm_inject_fault(vcpu, IDT_AC, 1, errcode);
}
static __inline void
vm_inject_ss(struct vcpu *vcpu, int errcode)
{
vm_inject_fault(vcpu, IDT_SS, 1, errcode);
}
void vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2);
#endif /* _VMM_H_ */