/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
* Copyright (c) 2018 Joyent, Inc.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_bhyve_snapshot.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/smp.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/pcpu.h>
#include <sys/proc.h>
#include <sys/reg.h>
#include <sys/smr.h>
#include <sys/sysctl.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/pmap.h>
#include <machine/psl.h>
#include <machine/cpufunc.h>
#include <machine/md_var.h>
#include <machine/segments.h>
#include <machine/smp.h>
#include <machine/specialreg.h>
#include <machine/vmparam.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include <machine/vmm_instruction_emul.h>
#include <machine/vmm_snapshot.h>
#include "vmm_lapic.h"
#include "vmm_host.h"
#include "vmm_ioport.h"
#include "vmm_ktr.h"
#include "vmm_stat.h"
#include "vatpic.h"
#include "vlapic.h"
#include "vlapic_priv.h"
#include "ept.h"
#include "vmx_cpufunc.h"
#include "vmx.h"
#include "vmx_msr.h"
#include "x86.h"
#include "vmx_controls.h"
#define PINBASED_CTLS_ONE_SETTING \
(PINBASED_EXTINT_EXITING | \
PINBASED_NMI_EXITING | \
PINBASED_VIRTUAL_NMI)
#define PINBASED_CTLS_ZERO_SETTING 0
#define PROCBASED_CTLS_WINDOW_SETTING \
(PROCBASED_INT_WINDOW_EXITING | \
PROCBASED_NMI_WINDOW_EXITING)
#define PROCBASED_CTLS_ONE_SETTING \
(PROCBASED_SECONDARY_CONTROLS | \
PROCBASED_MWAIT_EXITING | \
PROCBASED_MONITOR_EXITING | \
PROCBASED_IO_EXITING | \
PROCBASED_MSR_BITMAPS | \
PROCBASED_CTLS_WINDOW_SETTING | \
PROCBASED_CR8_LOAD_EXITING | \
PROCBASED_CR8_STORE_EXITING)
#define PROCBASED_CTLS_ZERO_SETTING \
(PROCBASED_CR3_LOAD_EXITING | \
PROCBASED_CR3_STORE_EXITING | \
PROCBASED_IO_BITMAPS)
#define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT
#define PROCBASED_CTLS2_ZERO_SETTING 0
#define VM_EXIT_CTLS_ONE_SETTING \
(VM_EXIT_SAVE_DEBUG_CONTROLS | \
VM_EXIT_HOST_LMA | \
VM_EXIT_SAVE_EFER | \
VM_EXIT_LOAD_EFER | \
VM_EXIT_ACKNOWLEDGE_INTERRUPT)
#define VM_EXIT_CTLS_ZERO_SETTING 0
#define VM_ENTRY_CTLS_ONE_SETTING \
(VM_ENTRY_LOAD_DEBUG_CONTROLS | \
VM_ENTRY_LOAD_EFER)
#define VM_ENTRY_CTLS_ZERO_SETTING \
(VM_ENTRY_INTO_SMM | \
VM_ENTRY_DEACTIVATE_DUAL_MONITOR)
#define HANDLED 1
#define UNHANDLED 0
static MALLOC_DEFINE(M_VMX, "vmx", "vmx");
static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic");
bool vmx_have_msr_tsc_aux;
SYSCTL_DECL(_hw_vmm);
SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
NULL);
int vmxon_enabled[MAXCPU];
static uint8_t *vmxon_region;
static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2;
static uint32_t exit_ctls, entry_ctls;
static uint64_t cr0_ones_mask, cr0_zeros_mask;
SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD,
&cr0_ones_mask, 0, NULL);
SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD,
&cr0_zeros_mask, 0, NULL);
static uint64_t cr4_ones_mask, cr4_zeros_mask;
SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD,
&cr4_ones_mask, 0, NULL);
SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD,
&cr4_zeros_mask, 0, NULL);
static int vmx_initialized;
SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD,
&vmx_initialized, 0, "Intel VMX initialized");
/*
* Optional capabilities
*/
static SYSCTL_NODE(_hw_vmm_vmx, OID_AUTO, cap,
CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
NULL);
static int cap_halt_exit;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, halt_exit, CTLFLAG_RD, &cap_halt_exit, 0,
"HLT triggers a VM-exit");
static int cap_pause_exit;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, pause_exit, CTLFLAG_RD, &cap_pause_exit,
0, "PAUSE triggers a VM-exit");
static int cap_wbinvd_exit;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, wbinvd_exit, CTLFLAG_RD, &cap_wbinvd_exit,
0, "WBINVD triggers a VM-exit");
static int cap_rdpid;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdpid, CTLFLAG_RD, &cap_rdpid, 0,
"Guests are allowed to use RDPID");
static int cap_rdtscp;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, rdtscp, CTLFLAG_RD, &cap_rdtscp, 0,
"Guests are allowed to use RDTSCP");
static int cap_unrestricted_guest;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, unrestricted_guest, CTLFLAG_RD,
&cap_unrestricted_guest, 0, "Unrestricted guests");
static int cap_monitor_trap;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, monitor_trap, CTLFLAG_RD,
&cap_monitor_trap, 0, "Monitor trap flag");
static int cap_invpcid;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, invpcid, CTLFLAG_RD, &cap_invpcid,
0, "Guests are allowed to use INVPCID");
static int tpr_shadowing;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, tpr_shadowing,
CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&tpr_shadowing, 0, "TPR shadowing support");
static int virtual_interrupt_delivery;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, virtual_interrupt_delivery,
CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support");
static int posted_interrupts;
SYSCTL_INT(_hw_vmm_vmx_cap, OID_AUTO, posted_interrupts,
CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&posted_interrupts, 0, "APICv posted interrupt support");
static int pirvec = -1;
SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD,
&pirvec, 0, "APICv posted interrupt vector");
static struct unrhdr *vpid_unr;
static u_int vpid_alloc_failed;
SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD,
&vpid_alloc_failed, 0, NULL);
int guest_l1d_flush;
SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&guest_l1d_flush, 0, NULL);
int guest_l1d_flush_sw;
SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, l1d_flush_sw, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&guest_l1d_flush_sw, 0, NULL);
static struct msr_entry msr_load_list[1] __aligned(16);
/*
* The definitions of SDT probes for VMX.
*/
SDT_PROBE_DEFINE3(vmm, vmx, exit, entry,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE4(vmm, vmx, exit, taskswitch,
"struct vmx *", "int", "struct vm_exit *", "struct vm_task_switch *");
SDT_PROBE_DEFINE4(vmm, vmx, exit, craccess,
"struct vmx *", "int", "struct vm_exit *", "uint64_t");
SDT_PROBE_DEFINE4(vmm, vmx, exit, rdmsr,
"struct vmx *", "int", "struct vm_exit *", "uint32_t");
SDT_PROBE_DEFINE5(vmm, vmx, exit, wrmsr,
"struct vmx *", "int", "struct vm_exit *", "uint32_t", "uint64_t");
SDT_PROBE_DEFINE3(vmm, vmx, exit, halt,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, mtrap,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, pause,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, intrwindow,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE4(vmm, vmx, exit, interrupt,
"struct vmx *", "int", "struct vm_exit *", "uint32_t");
SDT_PROBE_DEFINE3(vmm, vmx, exit, nmiwindow,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, inout,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, cpuid,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE5(vmm, vmx, exit, exception,
"struct vmx *", "int", "struct vm_exit *", "uint32_t", "int");
SDT_PROBE_DEFINE5(vmm, vmx, exit, nestedfault,
"struct vmx *", "int", "struct vm_exit *", "uint64_t", "uint64_t");
SDT_PROBE_DEFINE4(vmm, vmx, exit, mmiofault,
"struct vmx *", "int", "struct vm_exit *", "uint64_t");
SDT_PROBE_DEFINE3(vmm, vmx, exit, eoi,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, apicaccess,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE4(vmm, vmx, exit, apicwrite,
"struct vmx *", "int", "struct vm_exit *", "struct vlapic *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, xsetbv,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, monitor,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, mwait,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE3(vmm, vmx, exit, vminsn,
"struct vmx *", "int", "struct vm_exit *");
SDT_PROBE_DEFINE4(vmm, vmx, exit, unknown,
"struct vmx *", "int", "struct vm_exit *", "uint32_t");
SDT_PROBE_DEFINE4(vmm, vmx, exit, return,
"struct vmx *", "int", "struct vm_exit *", "int");
/*
* Use the last page below 4GB as the APIC access address. This address is
* occupied by the boot firmware so it is guaranteed that it will not conflict
* with a page in system memory.
*/
#define APIC_ACCESS_ADDRESS 0xFFFFF000
static int vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc);
static int vmx_getreg(void *vcpui, int reg, uint64_t *retval);
static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val);
static void vmx_inject_pir(struct vlapic *vlapic);
#ifdef BHYVE_SNAPSHOT
static int vmx_restore_tsc(void *vcpui, uint64_t now);
#endif
static inline bool
host_has_rdpid(void)
{
return ((cpu_stdext_feature2 & CPUID_STDEXT2_RDPID) != 0);
}
static inline bool
host_has_rdtscp(void)
{
return ((amd_feature & AMDID_RDTSCP) != 0);
}
#ifdef KTR
static const char *
exit_reason_to_str(int reason)
{
static char reasonbuf[32];
switch (reason) {
case EXIT_REASON_EXCEPTION:
return "exception";
case EXIT_REASON_EXT_INTR:
return "extint";
case EXIT_REASON_TRIPLE_FAULT:
return "triplefault";
case EXIT_REASON_INIT:
return "init";
case EXIT_REASON_SIPI:
return "sipi";
case EXIT_REASON_IO_SMI:
return "iosmi";
case EXIT_REASON_SMI:
return "smi";
case EXIT_REASON_INTR_WINDOW:
return "intrwindow";
case EXIT_REASON_NMI_WINDOW:
return "nmiwindow";
case EXIT_REASON_TASK_SWITCH:
return "taskswitch";
case EXIT_REASON_CPUID:
return "cpuid";
case EXIT_REASON_GETSEC:
return "getsec";
case EXIT_REASON_HLT:
return "hlt";
case EXIT_REASON_INVD:
return "invd";
case EXIT_REASON_INVLPG:
return "invlpg";
case EXIT_REASON_RDPMC:
return "rdpmc";
case EXIT_REASON_RDTSC:
return "rdtsc";
case EXIT_REASON_RSM:
return "rsm";
case EXIT_REASON_VMCALL:
return "vmcall";
case EXIT_REASON_VMCLEAR:
return "vmclear";
case EXIT_REASON_VMLAUNCH:
return "vmlaunch";
case EXIT_REASON_VMPTRLD:
return "vmptrld";
case EXIT_REASON_VMPTRST:
return "vmptrst";
case EXIT_REASON_VMREAD:
return "vmread";
case EXIT_REASON_VMRESUME:
return "vmresume";
case EXIT_REASON_VMWRITE:
return "vmwrite";
case EXIT_REASON_VMXOFF:
return "vmxoff";
case EXIT_REASON_VMXON:
return "vmxon";
case EXIT_REASON_CR_ACCESS:
return "craccess";
case EXIT_REASON_DR_ACCESS:
return "draccess";
case EXIT_REASON_INOUT:
return "inout";
case EXIT_REASON_RDMSR:
return "rdmsr";
case EXIT_REASON_WRMSR:
return "wrmsr";
case EXIT_REASON_INVAL_VMCS:
return "invalvmcs";
case EXIT_REASON_INVAL_MSR:
return "invalmsr";
case EXIT_REASON_MWAIT:
return "mwait";
case EXIT_REASON_MTF:
return "mtf";
case EXIT_REASON_MONITOR:
return "monitor";
case EXIT_REASON_PAUSE:
return "pause";
case EXIT_REASON_MCE_DURING_ENTRY:
return "mce-during-entry";
case EXIT_REASON_TPR:
return "tpr";
case EXIT_REASON_APIC_ACCESS:
return "apic-access";
case EXIT_REASON_GDTR_IDTR:
return "gdtridtr";
case EXIT_REASON_LDTR_TR:
return "ldtrtr";
case EXIT_REASON_EPT_FAULT:
return "eptfault";
case EXIT_REASON_EPT_MISCONFIG:
return "eptmisconfig";
case EXIT_REASON_INVEPT:
return "invept";
case EXIT_REASON_RDTSCP:
return "rdtscp";
case EXIT_REASON_VMX_PREEMPT:
return "vmxpreempt";
case EXIT_REASON_INVVPID:
return "invvpid";
case EXIT_REASON_WBINVD:
return "wbinvd";
case EXIT_REASON_XSETBV:
return "xsetbv";
case EXIT_REASON_APIC_WRITE:
return "apic-write";
default:
snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason);
return (reasonbuf);
}
}
#endif /* KTR */
static int
vmx_allow_x2apic_msrs(struct vmx *vmx)
{
int i, error;
error = 0;
/*
* Allow readonly access to the following x2APIC MSRs from the guest.
*/
error += guest_msr_ro(vmx, MSR_APIC_ID);
error += guest_msr_ro(vmx, MSR_APIC_VERSION);
error += guest_msr_ro(vmx, MSR_APIC_LDR);
error += guest_msr_ro(vmx, MSR_APIC_SVR);
for (i = 0; i < 8; i++)
error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i);
for (i = 0; i < 8; i++)
error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i);
for (i = 0; i < 8; i++)
error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i);
error += guest_msr_ro(vmx, MSR_APIC_ESR);
error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER);
error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL);
error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT);
error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0);
error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1);
error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR);
error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER);
error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER);
error += guest_msr_ro(vmx, MSR_APIC_ICR);
/*
* Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest.
*
* These registers get special treatment described in the section
* "Virtualizing MSR-Based APIC Accesses".
*/
error += guest_msr_rw(vmx, MSR_APIC_TPR);
error += guest_msr_rw(vmx, MSR_APIC_EOI);
error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI);
return (error);
}
u_long
vmx_fix_cr0(u_long cr0)
{
return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask);
}
u_long
vmx_fix_cr4(u_long cr4)
{
return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask);
}
static void
vpid_free(int vpid)
{
if (vpid < 0 || vpid > 0xffff)
panic("vpid_free: invalid vpid %d", vpid);
/*
* VPIDs [0,vm_maxcpu] are special and are not allocated from
* the unit number allocator.
*/
if (vpid > vm_maxcpu)
free_unr(vpid_unr, vpid);
}
static uint16_t
vpid_alloc(int vcpuid)
{
int x;
/*
* If the "enable vpid" execution control is not enabled then the
* VPID is required to be 0 for all vcpus.
*/
if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0)
return (0);
/*
* Try to allocate a unique VPID for each from the unit number
* allocator.
*/
x = alloc_unr(vpid_unr);
if (x == -1) {
atomic_add_int(&vpid_alloc_failed, 1);
/*
* If the unit number allocator does not have enough unique
* VPIDs then we need to allocate from the [1,vm_maxcpu] range.
*
* These VPIDs are not be unique across VMs but this does not
* affect correctness because the combined mappings are also
* tagged with the EP4TA which is unique for each VM.
*
* It is still sub-optimal because the invvpid will invalidate
* combined mappings for a particular VPID across all EP4TAs.
*/
return (vcpuid + 1);
}
return (x);
}
static void
vpid_init(void)
{
/*
* VPID 0 is required when the "enable VPID" execution control is
* disabled.
*
* VPIDs [1,vm_maxcpu] are used as the "overflow namespace" when the
* unit number allocator does not have sufficient unique VPIDs to
* satisfy the allocation.
*
* The remaining VPIDs are managed by the unit number allocator.
*/
vpid_unr = new_unrhdr(vm_maxcpu + 1, 0xffff, NULL);
}
static void
vmx_disable(void *arg __unused)
{
struct invvpid_desc invvpid_desc = { 0 };
struct invept_desc invept_desc = { 0 };
if (vmxon_enabled[curcpu]) {
/*
* See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b.
*
* VMXON or VMXOFF are not required to invalidate any TLB
* caching structures. This prevents potential retention of
* cached information in the TLB between distinct VMX episodes.
*/
invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc);
invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc);
vmxoff();
}
load_cr4(rcr4() & ~CR4_VMXE);
}
static int
vmx_modcleanup(void)
{
if (pirvec >= 0)
lapic_ipi_free(pirvec);
if (vpid_unr != NULL) {
delete_unrhdr(vpid_unr);
vpid_unr = NULL;
}
if (nmi_flush_l1d_sw == 1)
nmi_flush_l1d_sw = 0;
smp_rendezvous(NULL, vmx_disable, NULL, NULL);
if (vmxon_region != NULL)
kmem_free(vmxon_region, (mp_maxid + 1) * PAGE_SIZE);
return (0);
}
static void
vmx_enable(void *arg __unused)
{
int error;
uint64_t feature_control;
feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 ||
(feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
wrmsr(MSR_IA32_FEATURE_CONTROL,
feature_control | IA32_FEATURE_CONTROL_VMX_EN |
IA32_FEATURE_CONTROL_LOCK);
}
load_cr4(rcr4() | CR4_VMXE);
*(uint32_t *)&vmxon_region[curcpu * PAGE_SIZE] = vmx_revision();
error = vmxon(&vmxon_region[curcpu * PAGE_SIZE]);
if (error == 0)
vmxon_enabled[curcpu] = 1;
}
static void
vmx_modresume(void)
{
if (vmxon_enabled[curcpu])
vmxon(&vmxon_region[curcpu * PAGE_SIZE]);
}
static int
vmx_modinit(int ipinum)
{
int error;
uint64_t basic, fixed0, fixed1, feature_control;
uint32_t tmp, procbased2_vid_bits;
/* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */
if (!(cpu_feature2 & CPUID2_VMX)) {
printf("vmx_modinit: processor does not support VMX "
"operation\n");
return (ENXIO);
}
/*
* Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits
* are set (bits 0 and 2 respectively).
*/
feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL);
if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 1 &&
(feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) {
printf("vmx_modinit: VMX operation disabled by BIOS\n");
return (ENXIO);
}
/*
* Verify capabilities MSR_VMX_BASIC:
* - bit 54 indicates support for INS/OUTS decoding
*/
basic = rdmsr(MSR_VMX_BASIC);
if ((basic & (1UL << 54)) == 0) {
printf("vmx_modinit: processor does not support desired basic "
"capabilities\n");
return (EINVAL);
}
/* Check support for primary processor-based VM-execution controls */
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
MSR_VMX_TRUE_PROCBASED_CTLS,
PROCBASED_CTLS_ONE_SETTING,
PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls);
if (error) {
printf("vmx_modinit: processor does not support desired "
"primary processor-based controls\n");
return (error);
}
/* Clear the processor-based ctl bits that are set on demand */
procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING;
/* Check support for secondary processor-based VM-execution controls */
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
MSR_VMX_PROCBASED_CTLS2,
PROCBASED_CTLS2_ONE_SETTING,
PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2);
if (error) {
printf("vmx_modinit: processor does not support desired "
"secondary processor-based controls\n");
return (error);
}
/* Check support for VPID */
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
PROCBASED2_ENABLE_VPID, 0, &tmp);
if (error == 0)
procbased_ctls2 |= PROCBASED2_ENABLE_VPID;
/* Check support for pin-based VM-execution controls */
error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
MSR_VMX_TRUE_PINBASED_CTLS,
PINBASED_CTLS_ONE_SETTING,
PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls);
if (error) {
printf("vmx_modinit: processor does not support desired "
"pin-based controls\n");
return (error);
}
/* Check support for VM-exit controls */
error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS,
VM_EXIT_CTLS_ONE_SETTING,
VM_EXIT_CTLS_ZERO_SETTING,
&exit_ctls);
if (error) {
printf("vmx_modinit: processor does not support desired "
"exit controls\n");
return (error);
}
/* Check support for VM-entry controls */
error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS,
VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING,
&entry_ctls);
if (error) {
printf("vmx_modinit: processor does not support desired "
"entry controls\n");
return (error);
}
/*
* Check support for optional features by testing them
* as individual bits
*/
cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
MSR_VMX_TRUE_PROCBASED_CTLS,
PROCBASED_HLT_EXITING, 0,
&tmp) == 0);
cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
MSR_VMX_PROCBASED_CTLS,
PROCBASED_MTF, 0,
&tmp) == 0);
cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
MSR_VMX_TRUE_PROCBASED_CTLS,
PROCBASED_PAUSE_EXITING, 0,
&tmp) == 0);
cap_wbinvd_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
MSR_VMX_PROCBASED_CTLS2,
PROCBASED2_WBINVD_EXITING,
0,
&tmp) == 0);
/*
* Check support for RDPID and/or RDTSCP.
*
* Support a pass-through-based implementation of these via the
* "enable RDTSCP" VM-execution control and the "RDTSC exiting"
* VM-execution control.
*
* The "enable RDTSCP" VM-execution control applies to both RDPID
* and RDTSCP (see SDM volume 3, section 25.3, "Changes to
* Instruction Behavior in VMX Non-root operation"); this is why
* only this VM-execution control needs to be enabled in order to
* enable passing through whichever of RDPID and/or RDTSCP are
* supported by the host.
*
* The "RDTSC exiting" VM-execution control applies to both RDTSC
* and RDTSCP (again, per SDM volume 3, section 25.3), and is
* already set up for RDTSC and RDTSCP pass-through by the current
* implementation of RDTSC.
*
* Although RDPID and RDTSCP are optional capabilities, since there
* does not currently seem to be a use case for enabling/disabling
* these via libvmmapi, choose not to support this and, instead,
* just statically always enable or always disable this support
* across all vCPUs on all VMs. (Note that there may be some
* complications to providing this functionality, e.g., the MSR
* bitmap is currently per-VM rather than per-vCPU while the
* capability API wants to be able to control capabilities on a
* per-vCPU basis).
*/
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
MSR_VMX_PROCBASED_CTLS2,
PROCBASED2_ENABLE_RDTSCP, 0, &tmp);
cap_rdpid = error == 0 && host_has_rdpid();
cap_rdtscp = error == 0 && host_has_rdtscp();
if (cap_rdpid || cap_rdtscp) {
procbased_ctls2 |= PROCBASED2_ENABLE_RDTSCP;
vmx_have_msr_tsc_aux = true;
}
cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
MSR_VMX_PROCBASED_CTLS2,
PROCBASED2_UNRESTRICTED_GUEST, 0,
&tmp) == 0);
cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2,
MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0,
&tmp) == 0);
/*
* Check support for TPR shadow.
*/
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS,
MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0,
&tmp);
if (error == 0) {
tpr_shadowing = 1;
#ifndef BURN_BRIDGES
TUNABLE_INT_FETCH("hw.vmm.vmx.use_tpr_shadowing",
&tpr_shadowing);
#endif
TUNABLE_INT_FETCH("hw.vmm.vmx.cap.tpr_shadowing",
&tpr_shadowing);
}
if (tpr_shadowing) {
procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
procbased_ctls &= ~PROCBASED_CR8_LOAD_EXITING;
procbased_ctls &= ~PROCBASED_CR8_STORE_EXITING;
}
/*
* Check support for virtual interrupt delivery.
*/
procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES |
PROCBASED2_VIRTUALIZE_X2APIC_MODE |
PROCBASED2_APIC_REGISTER_VIRTUALIZATION |
PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY);
error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2,
procbased2_vid_bits, 0, &tmp);
if (error == 0 && tpr_shadowing) {
virtual_interrupt_delivery = 1;
#ifndef BURN_BRIDGES
TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid",
&virtual_interrupt_delivery);
#endif
TUNABLE_INT_FETCH("hw.vmm.vmx.cap.virtual_interrupt_delivery",
&virtual_interrupt_delivery);
}
if (virtual_interrupt_delivery) {
procbased_ctls |= PROCBASED_USE_TPR_SHADOW;
procbased_ctls2 |= procbased2_vid_bits;
procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE;
/*
* Check for Posted Interrupts only if Virtual Interrupt
* Delivery is enabled.
*/
error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS,
MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0,
&tmp);
if (error == 0) {
pirvec = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
&IDTVEC(justreturn));
if (pirvec < 0) {
if (bootverbose) {
printf("vmx_modinit: unable to "
"allocate posted interrupt "
"vector\n");
}
} else {
posted_interrupts = 1;
#ifndef BURN_BRIDGES
TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir",
&posted_interrupts);
#endif
TUNABLE_INT_FETCH("hw.vmm.vmx.cap.posted_interrupts",
&posted_interrupts);
}
}
}
if (posted_interrupts)
pinbased_ctls |= PINBASED_POSTED_INTERRUPT;
/* Initialize EPT */
error = ept_init(ipinum);
if (error) {
printf("vmx_modinit: ept initialization failed (%d)\n", error);
return (error);
}
guest_l1d_flush = (cpu_ia32_arch_caps &
IA32_ARCH_CAP_SKIP_L1DFL_VMENTRY) == 0;
#ifndef BURN_BRIDGES
TUNABLE_INT_FETCH("hw.vmm.l1d_flush", &guest_l1d_flush);
#endif
TUNABLE_INT_FETCH("hw.vmm.vmx.l1d_flush", &guest_l1d_flush);
/*
* L1D cache flush is enabled. Use IA32_FLUSH_CMD MSR when
* available. Otherwise fall back to the software flush
* method which loads enough data from the kernel text to
* flush existing L1D content, both on VMX entry and on NMI
* return.
*/
if (guest_l1d_flush) {
if ((cpu_stdext_feature3 & CPUID_STDEXT3_L1D_FLUSH) == 0) {
guest_l1d_flush_sw = 1;
#ifndef BURN_BRIDGES
TUNABLE_INT_FETCH("hw.vmm.l1d_flush_sw",
&guest_l1d_flush_sw);
#endif
TUNABLE_INT_FETCH("hw.vmm.vmx.l1d_flush_sw",
&guest_l1d_flush_sw);
}
if (guest_l1d_flush_sw) {
if (nmi_flush_l1d_sw <= 1)
nmi_flush_l1d_sw = 1;
} else {
msr_load_list[0].index = MSR_IA32_FLUSH_CMD;
msr_load_list[0].val = IA32_FLUSH_CMD_L1D;
}
}
/*
* Stash the cr0 and cr4 bits that must be fixed to 0 or 1
*/
fixed0 = rdmsr(MSR_VMX_CR0_FIXED0);
fixed1 = rdmsr(MSR_VMX_CR0_FIXED1);
cr0_ones_mask = fixed0 & fixed1;
cr0_zeros_mask = ~fixed0 & ~fixed1;
/*
* CR0_PE and CR0_PG can be set to zero in VMX non-root operation
* if unrestricted guest execution is allowed.
*/
if (cap_unrestricted_guest)
cr0_ones_mask &= ~(CR0_PG | CR0_PE);
/*
* Do not allow the guest to set CR0_NW or CR0_CD.
*/
cr0_zeros_mask |= (CR0_NW | CR0_CD);
fixed0 = rdmsr(MSR_VMX_CR4_FIXED0);
fixed1 = rdmsr(MSR_VMX_CR4_FIXED1);
cr4_ones_mask = fixed0 & fixed1;
cr4_zeros_mask = ~fixed0 & ~fixed1;
vpid_init();
vmx_msr_init();
/* enable VMX operation */
vmxon_region = kmem_malloc((mp_maxid + 1) * PAGE_SIZE,
M_WAITOK | M_ZERO);
smp_rendezvous(NULL, vmx_enable, NULL, NULL);
vmx_initialized = 1;
return (0);
}
static void
vmx_trigger_hostintr(int vector)
{
uintptr_t func;
struct gate_descriptor *gd;
gd = &idt[vector];
KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: "
"invalid vector %d", vector));
KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present",
vector));
KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d "
"has invalid type %d", vector, gd->gd_type));
KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d "
"has invalid dpl %d", vector, gd->gd_dpl));
KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor "
"for vector %d has invalid selector %d", vector, gd->gd_selector));
KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid "
"IST %d", vector, gd->gd_ist));
func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset);
vmx_call_isr(func);
}
static int
vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial)
{
int error, mask_ident, shadow_ident;
uint64_t mask_value;
if (which != 0 && which != 4)
panic("vmx_setup_cr_shadow: unknown cr%d", which);
if (which == 0) {
mask_ident = VMCS_CR0_MASK;
mask_value = cr0_ones_mask | cr0_zeros_mask;
shadow_ident = VMCS_CR0_SHADOW;
} else {
mask_ident = VMCS_CR4_MASK;
mask_value = cr4_ones_mask | cr4_zeros_mask;
shadow_ident = VMCS_CR4_SHADOW;
}
error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value);
if (error)
return (error);
error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial);
if (error)
return (error);
return (0);
}
#define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init))
#define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init))
static void *
vmx_init(struct vm *vm, pmap_t pmap)
{
int error __diagused;
struct vmx *vmx;
vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO);
vmx->vm = vm;
vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pmltop));
/*
* Clean up EPTP-tagged guest physical and combined mappings
*
* VMX transitions are not required to invalidate any guest physical
* mappings. So, it may be possible for stale guest physical mappings
* to be present in the processor TLBs.
*
* Combined mappings for this EP4TA are also invalidated for all VPIDs.
*/
ept_invalidate_mappings(vmx->eptp);
vmx->msr_bitmap = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
M_WAITOK | M_ZERO);
msr_bitmap_initialize(vmx->msr_bitmap);
/*
* It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE.
* The guest FSBASE and GSBASE are saved and restored during
* vm-exit and vm-entry respectively. The host FSBASE and GSBASE are
* always restored from the vmcs host state area on vm-exit.
*
* The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in
* how they are saved/restored so can be directly accessed by the
* guest.
*
* MSR_EFER is saved and restored in the guest VMCS area on a
* VM exit and entry respectively. It is also restored from the
* host VMCS area on a VM exit.
*
* The TSC MSR is exposed read-only. Writes are disallowed as
* that will impact the host TSC. If the guest does a write
* the "use TSC offsetting" execution control is enabled and the
* difference between the host TSC and the guest TSC is written
* into the TSC offset in the VMCS.
*
* Guest TSC_AUX support is enabled if any of guest RDPID and/or
* guest RDTSCP support are enabled (since, as per Table 2-2 in SDM
* volume 4, TSC_AUX is supported if any of RDPID and/or RDTSCP are
* supported). If guest TSC_AUX support is enabled, TSC_AUX is
* exposed read-only so that the VMM can do one fewer MSR read per
* exit than if this register were exposed read-write; the guest
* restore value can be updated during guest writes (expected to be
* rare) instead of during all exits (common).
*/
if (guest_msr_rw(vmx, MSR_GSBASE) ||
guest_msr_rw(vmx, MSR_FSBASE) ||
guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) ||
guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) ||
guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) ||
guest_msr_rw(vmx, MSR_EFER) ||
guest_msr_ro(vmx, MSR_TSC) ||
((cap_rdpid || cap_rdtscp) && guest_msr_ro(vmx, MSR_TSC_AUX)))
panic("vmx_init: error setting guest msr access");
if (virtual_interrupt_delivery) {
error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE,
APIC_ACCESS_ADDRESS);
/* XXX this should really return an error to the caller */
KASSERT(error == 0, ("vm_map_mmio(apicbase) error %d", error));
}
vmx->pmap = pmap;
return (vmx);
}
static void *
vmx_vcpu_init(void *vmi, struct vcpu *vcpu1, int vcpuid)
{
struct vmx *vmx = vmi;
struct vmcs *vmcs;
struct vmx_vcpu *vcpu;
uint32_t exc_bitmap;
uint16_t vpid;
int error;
vpid = vpid_alloc(vcpuid);
vcpu = malloc(sizeof(*vcpu), M_VMX, M_WAITOK | M_ZERO);
vcpu->vmx = vmx;
vcpu->vcpu = vcpu1;
vcpu->vcpuid = vcpuid;
vcpu->vmcs = malloc_aligned(sizeof(*vmcs), PAGE_SIZE, M_VMX,
M_WAITOK | M_ZERO);
vcpu->apic_page = malloc_aligned(PAGE_SIZE, PAGE_SIZE, M_VMX,
M_WAITOK | M_ZERO);
vcpu->pir_desc = malloc_aligned(sizeof(*vcpu->pir_desc), 64, M_VMX,
M_WAITOK | M_ZERO);
vmcs = vcpu->vmcs;
vmcs->identifier = vmx_revision();
error = vmclear(vmcs);
if (error != 0) {
panic("vmx_init: vmclear error %d on vcpu %d\n",
error, vcpuid);
}
vmx_msr_guest_init(vmx, vcpu);
error = vmcs_init(vmcs);
KASSERT(error == 0, ("vmcs_init error %d", error));
VMPTRLD(vmcs);
error = 0;
error += vmwrite(VMCS_HOST_RSP, (u_long)&vcpu->ctx);
error += vmwrite(VMCS_EPTP, vmx->eptp);
error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls);
error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls);
if (vcpu_trap_wbinvd(vcpu->vcpu)) {
KASSERT(cap_wbinvd_exit, ("WBINVD trap not available"));
procbased_ctls2 |= PROCBASED2_WBINVD_EXITING;
}
error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2);
error += vmwrite(VMCS_EXIT_CTLS, exit_ctls);
error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls);
error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap));
error += vmwrite(VMCS_VPID, vpid);
if (guest_l1d_flush && !guest_l1d_flush_sw) {
vmcs_write(VMCS_ENTRY_MSR_LOAD, pmap_kextract(
(vm_offset_t)&msr_load_list[0]));
vmcs_write(VMCS_ENTRY_MSR_LOAD_COUNT,
nitems(msr_load_list));
vmcs_write(VMCS_EXIT_MSR_STORE, 0);
vmcs_write(VMCS_EXIT_MSR_STORE_COUNT, 0);
}
/* exception bitmap */
if (vcpu_trace_exceptions(vcpu->vcpu))
exc_bitmap = 0xffffffff;
else
exc_bitmap = 1 << IDT_MC;
error += vmwrite(VMCS_EXCEPTION_BITMAP, exc_bitmap);
vcpu->ctx.guest_dr6 = DBREG_DR6_RESERVED1;
error += vmwrite(VMCS_GUEST_DR7, DBREG_DR7_RESERVED1);
if (tpr_shadowing) {
error += vmwrite(VMCS_VIRTUAL_APIC, vtophys(vcpu->apic_page));
}
if (virtual_interrupt_delivery) {
error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS);
error += vmwrite(VMCS_EOI_EXIT0, 0);
error += vmwrite(VMCS_EOI_EXIT1, 0);
error += vmwrite(VMCS_EOI_EXIT2, 0);
error += vmwrite(VMCS_EOI_EXIT3, 0);
}
if (posted_interrupts) {
error += vmwrite(VMCS_PIR_VECTOR, pirvec);
error += vmwrite(VMCS_PIR_DESC, vtophys(vcpu->pir_desc));
}
VMCLEAR(vmcs);
KASSERT(error == 0, ("vmx_init: error customizing the vmcs"));
vcpu->cap.set = 0;
vcpu->cap.set |= cap_rdpid != 0 ? 1 << VM_CAP_RDPID : 0;
vcpu->cap.set |= cap_rdtscp != 0 ? 1 << VM_CAP_RDTSCP : 0;
vcpu->cap.proc_ctls = procbased_ctls;
vcpu->cap.proc_ctls2 = procbased_ctls2;
vcpu->cap.exc_bitmap = exc_bitmap;
vcpu->state.nextrip = ~0;
vcpu->state.lastcpu = NOCPU;
vcpu->state.vpid = vpid;
/*
* Set up the CR0/4 shadows, and init the read shadow
* to the power-on register value from the Intel Sys Arch.
* CR0 - 0x60000010
* CR4 - 0
*/
error = vmx_setup_cr0_shadow(vmcs, 0x60000010);
if (error != 0)
panic("vmx_setup_cr0_shadow %d", error);
error = vmx_setup_cr4_shadow(vmcs, 0);
if (error != 0)
panic("vmx_setup_cr4_shadow %d", error);
vcpu->ctx.pmap = vmx->pmap;
return (vcpu);
}
static int
vmx_handle_cpuid(struct vmx_vcpu *vcpu, struct vmxctx *vmxctx)
{
int handled;
handled = x86_emulate_cpuid(vcpu->vcpu, (uint64_t *)&vmxctx->guest_rax,
(uint64_t *)&vmxctx->guest_rbx, (uint64_t *)&vmxctx->guest_rcx,
(uint64_t *)&vmxctx->guest_rdx);
return (handled);
}
static __inline void
vmx_run_trace(struct vmx_vcpu *vcpu)
{
VMX_CTR1(vcpu, "Resume execution at %#lx", vmcs_guest_rip());
}
static __inline void
vmx_exit_trace(struct vmx_vcpu *vcpu, uint64_t rip, uint32_t exit_reason,
int handled)
{
VMX_CTR3(vcpu, "%s %s vmexit at 0x%0lx",
handled ? "handled" : "unhandled",
exit_reason_to_str(exit_reason), rip);
}
static __inline void
vmx_astpending_trace(struct vmx_vcpu *vcpu, uint64_t rip)
{
VMX_CTR1(vcpu, "astpending vmexit at 0x%0lx", rip);
}
static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved");
static VMM_STAT_INTEL(VCPU_INVVPID_DONE, "Number of vpid invalidations done");
/*
* Invalidate guest mappings identified by its vpid from the TLB.
*/
static __inline void
vmx_invvpid(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap, int running)
{
struct vmxstate *vmxstate;
struct invvpid_desc invvpid_desc;
vmxstate = &vcpu->state;
if (vmxstate->vpid == 0)
return;
if (!running) {
/*
* Set the 'lastcpu' to an invalid host cpu.
*
* This will invalidate TLB entries tagged with the vcpu's
* vpid the next time it runs via vmx_set_pcpu_defaults().
*/
vmxstate->lastcpu = NOCPU;
return;
}
KASSERT(curthread->td_critnest > 0, ("%s: vcpu %d running outside "
"critical section", __func__, vcpu->vcpuid));
/*
* Invalidate all mappings tagged with 'vpid'
*
* We do this because this vcpu was executing on a different host
* cpu when it last ran. We do not track whether it invalidated
* mappings associated with its 'vpid' during that run. So we must
* assume that the mappings associated with 'vpid' on 'curcpu' are
* stale and invalidate them.
*
* Note that we incur this penalty only when the scheduler chooses to
* move the thread associated with this vcpu between host cpus.
*
* Note also that this will invalidate mappings tagged with 'vpid'
* for "all" EP4TAs.
*/
if (atomic_load_long(&pmap->pm_eptgen) == vmx->eptgen[curcpu]) {
invvpid_desc._res1 = 0;
invvpid_desc._res2 = 0;
invvpid_desc.vpid = vmxstate->vpid;
invvpid_desc.linear_addr = 0;
invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc);
vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_DONE, 1);
} else {
/*
* The invvpid can be skipped if an invept is going to
* be performed before entering the guest. The invept
* will invalidate combined mappings tagged with
* 'vmx->eptp' for all vpids.
*/
vmm_stat_incr(vcpu->vcpu, VCPU_INVVPID_SAVED, 1);
}
}
static void
vmx_set_pcpu_defaults(struct vmx *vmx, struct vmx_vcpu *vcpu, pmap_t pmap)
{
struct vmxstate *vmxstate;
vmxstate = &vcpu->state;
if (vmxstate->lastcpu == curcpu)
return;
vmxstate->lastcpu = curcpu;
vmm_stat_incr(vcpu->vcpu, VCPU_MIGRATIONS, 1);
vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase());
vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase());
vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase());
vmx_invvpid(vmx, vcpu, pmap, 1);
}
/*
* We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set.
*/
CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0);
static void __inline
vmx_set_int_window_exiting(struct vmx_vcpu *vcpu)
{
if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) {
vcpu->cap.proc_ctls |= PROCBASED_INT_WINDOW_EXITING;
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
VMX_CTR0(vcpu, "Enabling interrupt window exiting");
}
}
static void __inline
vmx_clear_int_window_exiting(struct vmx_vcpu *vcpu)
{
KASSERT((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0,
("intr_window_exiting not set: %#x", vcpu->cap.proc_ctls));
vcpu->cap.proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING;
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
VMX_CTR0(vcpu, "Disabling interrupt window exiting");
}
static void __inline
vmx_set_nmi_window_exiting(struct vmx_vcpu *vcpu)
{
if ((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) {
vcpu->cap.proc_ctls |= PROCBASED_NMI_WINDOW_EXITING;
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
VMX_CTR0(vcpu, "Enabling NMI window exiting");
}
}
static void __inline
vmx_clear_nmi_window_exiting(struct vmx_vcpu *vcpu)
{
KASSERT((vcpu->cap.proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0,
("nmi_window_exiting not set %#x", vcpu->cap.proc_ctls));
vcpu->cap.proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING;
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
VMX_CTR0(vcpu, "Disabling NMI window exiting");
}
int
vmx_set_tsc_offset(struct vmx_vcpu *vcpu, uint64_t offset)
{
int error;
if ((vcpu->cap.proc_ctls & PROCBASED_TSC_OFFSET) == 0) {
vcpu->cap.proc_ctls |= PROCBASED_TSC_OFFSET;
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vcpu->cap.proc_ctls);
VMX_CTR0(vcpu, "Enabling TSC offsetting");
}
error = vmwrite(VMCS_TSC_OFFSET, offset);
#ifdef BHYVE_SNAPSHOT
if (error == 0)
vm_set_tsc_offset(vcpu->vcpu, offset);
#endif
return (error);
}
#define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
#define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \
VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING)
static void
vmx_inject_nmi(struct vmx_vcpu *vcpu)
{
uint32_t gi __diagused, info;
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest "
"interruptibility-state %#x", gi));
info = vmcs_read(VMCS_ENTRY_INTR_INFO);
KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid "
"VM-entry interruption information %#x", info));
/*
* Inject the virtual NMI. The vector must be the NMI IDT entry
* or the VMCS entry check will fail.
*/
info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID;
vmcs_write(VMCS_ENTRY_INTR_INFO, info);
VMX_CTR0(vcpu, "Injecting vNMI");
/* Clear the request */
vm_nmi_clear(vcpu->vcpu);
}
static void
vmx_inject_interrupts(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
uint64_t guestrip)
{
int vector, need_nmi_exiting, extint_pending;
uint64_t rflags, entryinfo;
uint32_t gi, info;
if (vcpu->cap.set & (1 << VM_CAP_MASK_HWINTR)) {
return;
}
if (vcpu->state.nextrip != guestrip) {
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
if (gi & HWINTR_BLOCKING) {
VMX_CTR2(vcpu, "Guest interrupt blocking "
"cleared due to rip change: %#lx/%#lx",
vcpu->state.nextrip, guestrip);
gi &= ~HWINTR_BLOCKING;
vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
}
}
if (vm_entry_intinfo(vcpu->vcpu, &entryinfo)) {
KASSERT((entryinfo & VMCS_INTR_VALID) != 0, ("%s: entry "
"intinfo is not valid: %#lx", __func__, entryinfo));
info = vmcs_read(VMCS_ENTRY_INTR_INFO);
KASSERT((info & VMCS_INTR_VALID) == 0, ("%s: cannot inject "
"pending exception: %#lx/%#x", __func__, entryinfo, info));
info = entryinfo;
vector = info & 0xff;
if (vector == IDT_BP || vector == IDT_OF) {
/*
* VT-x requires #BP and #OF to be injected as software
* exceptions.
*/
info &= ~VMCS_INTR_T_MASK;
info |= VMCS_INTR_T_SWEXCEPTION;
}
if (info & VMCS_INTR_DEL_ERRCODE)
vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, entryinfo >> 32);
vmcs_write(VMCS_ENTRY_INTR_INFO, info);
}
if (vm_nmi_pending(vcpu->vcpu)) {
/*
* If there are no conditions blocking NMI injection then
* inject it directly here otherwise enable "NMI window
* exiting" to inject it as soon as we can.
*
* We also check for STI_BLOCKING because some implementations
* don't allow NMI injection in this case. If we are running
* on a processor that doesn't have this restriction it will
* immediately exit and the NMI will be injected in the
* "NMI window exiting" handler.
*/
need_nmi_exiting = 1;
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) {
info = vmcs_read(VMCS_ENTRY_INTR_INFO);
if ((info & VMCS_INTR_VALID) == 0) {
vmx_inject_nmi(vcpu);
need_nmi_exiting = 0;
} else {
VMX_CTR1(vcpu, "Cannot inject NMI "
"due to VM-entry intr info %#x", info);
}
} else {
VMX_CTR1(vcpu, "Cannot inject NMI due to "
"Guest Interruptibility-state %#x", gi);
}
if (need_nmi_exiting)
vmx_set_nmi_window_exiting(vcpu);
}
extint_pending = vm_extint_pending(vcpu->vcpu);
if (!extint_pending && virtual_interrupt_delivery) {
vmx_inject_pir(vlapic);
return;
}
/*
* If interrupt-window exiting is already in effect then don't bother
* checking for pending interrupts. This is just an optimization and
* not needed for correctness.
*/
if ((vcpu->cap.proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) {
VMX_CTR0(vcpu, "Skip interrupt injection due to "
"pending int_window_exiting");
return;
}
if (!extint_pending) {
/* Ask the local apic for a vector to inject */
if (!vlapic_pending_intr(vlapic, &vector))
return;
/*
* From the Intel SDM, Volume 3, Section "Maskable
* Hardware Interrupts":
* - maskable interrupt vectors [16,255] can be delivered
* through the local APIC.
*/
KASSERT(vector >= 16 && vector <= 255,
("invalid vector %d from local APIC", vector));
} else {
/* Ask the legacy pic for a vector to inject */
vatpic_pending_intr(vcpu->vmx->vm, &vector);
/*
* From the Intel SDM, Volume 3, Section "Maskable
* Hardware Interrupts":
* - maskable interrupt vectors [0,255] can be delivered
* through the INTR pin.
*/
KASSERT(vector >= 0 && vector <= 255,
("invalid vector %d from INTR", vector));
}
/* Check RFLAGS.IF and the interruptibility state of the guest */
rflags = vmcs_read(VMCS_GUEST_RFLAGS);
if ((rflags & PSL_I) == 0) {
VMX_CTR2(vcpu, "Cannot inject vector %d due to "
"rflags %#lx", vector, rflags);
goto cantinject;
}
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
if (gi & HWINTR_BLOCKING) {
VMX_CTR2(vcpu, "Cannot inject vector %d due to "
"Guest Interruptibility-state %#x", vector, gi);
goto cantinject;
}
info = vmcs_read(VMCS_ENTRY_INTR_INFO);
if (info & VMCS_INTR_VALID) {
/*
* This is expected and could happen for multiple reasons:
* - A vectoring VM-entry was aborted due to astpending
* - A VM-exit happened during event injection.
* - An exception was injected above.
* - An NMI was injected above or after "NMI window exiting"
*/
VMX_CTR2(vcpu, "Cannot inject vector %d due to "
"VM-entry intr info %#x", vector, info);
goto cantinject;
}
/* Inject the interrupt */
info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID;
info |= vector;
vmcs_write(VMCS_ENTRY_INTR_INFO, info);
if (!extint_pending) {
/* Update the Local APIC ISR */
vlapic_intr_accepted(vlapic, vector);
} else {
vm_extint_clear(vcpu->vcpu);
vatpic_intr_accepted(vcpu->vmx->vm, vector);
/*
* After we accepted the current ExtINT the PIC may
* have posted another one. If that is the case, set
* the Interrupt Window Exiting execution control so
* we can inject that one too.
*
* Also, interrupt window exiting allows us to inject any
* pending APIC vector that was preempted by the ExtINT
* as soon as possible. This applies both for the software
* emulated vlapic and the hardware assisted virtual APIC.
*/
vmx_set_int_window_exiting(vcpu);
}
VMX_CTR1(vcpu, "Injecting hwintr at vector %d", vector);
return;
cantinject:
/*
* Set the Interrupt Window Exiting execution control so we can inject
* the interrupt as soon as blocking condition goes away.
*/
vmx_set_int_window_exiting(vcpu);
}
/*
* If the Virtual NMIs execution control is '1' then the logical processor
* tracks virtual-NMI blocking in the Guest Interruptibility-state field of
* the VMCS. An IRET instruction in VMX non-root operation will remove any
* virtual-NMI blocking.
*
* This unblocking occurs even if the IRET causes a fault. In this case the
* hypervisor needs to restore virtual-NMI blocking before resuming the guest.
*/
static void
vmx_restore_nmi_blocking(struct vmx_vcpu *vcpu)
{
uint32_t gi;
VMX_CTR0(vcpu, "Restore Virtual-NMI blocking");
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
}
static void
vmx_clear_nmi_blocking(struct vmx_vcpu *vcpu)
{
uint32_t gi;
VMX_CTR0(vcpu, "Clear Virtual-NMI blocking");
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING;
vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi);
}
static void
vmx_assert_nmi_blocking(struct vmx_vcpu *vcpu)
{
uint32_t gi __diagused;
gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY);
KASSERT(gi & VMCS_INTERRUPTIBILITY_NMI_BLOCKING,
("NMI blocking is not in effect %#x", gi));
}
static int
vmx_emulate_xsetbv(struct vmx *vmx, struct vmx_vcpu *vcpu,
struct vm_exit *vmexit)
{
struct vmxctx *vmxctx;
uint64_t xcrval;
const struct xsave_limits *limits;
vmxctx = &vcpu->ctx;
limits = vmm_get_xsave_limits();
/*
* Note that the processor raises a GP# fault on its own if
* xsetbv is executed for CPL != 0, so we do not have to
* emulate that fault here.
*/
/* Only xcr0 is supported. */
if (vmxctx->guest_rcx != 0) {
vm_inject_gp(vcpu->vcpu);
return (HANDLED);
}
/* We only handle xcr0 if both the host and guest have XSAVE enabled. */
if (!limits->xsave_enabled || !(vmcs_read(VMCS_GUEST_CR4) & CR4_XSAVE)) {
vm_inject_ud(vcpu->vcpu);
return (HANDLED);
}
xcrval = vmxctx->guest_rdx << 32 | (vmxctx->guest_rax & 0xffffffff);
if ((xcrval & ~limits->xcr0_allowed) != 0) {
vm_inject_gp(vcpu->vcpu);
return (HANDLED);
}
if (!(xcrval & XFEATURE_ENABLED_X87)) {
vm_inject_gp(vcpu->vcpu);
return (HANDLED);
}
/* AVX (YMM_Hi128) requires SSE. */
if (xcrval & XFEATURE_ENABLED_AVX &&
(xcrval & XFEATURE_AVX) != XFEATURE_AVX) {
vm_inject_gp(vcpu->vcpu);
return (HANDLED);
}
/*
* AVX512 requires base AVX (YMM_Hi128) as well as OpMask,
* ZMM_Hi256, and Hi16_ZMM.
*/
if (xcrval & XFEATURE_AVX512 &&
(xcrval & (XFEATURE_AVX512 | XFEATURE_AVX)) !=
(XFEATURE_AVX512 | XFEATURE_AVX)) {
vm_inject_gp(vcpu->vcpu);
return (HANDLED);
}
/*
* Intel MPX requires both bound register state flags to be
* set.
*/
if (((xcrval & XFEATURE_ENABLED_BNDREGS) != 0) !=
((xcrval & XFEATURE_ENABLED_BNDCSR) != 0)) {
vm_inject_gp(vcpu->vcpu);
return (HANDLED);
}
/*
* This runs "inside" vmrun() with the guest's FPU state, so
* modifying xcr0 directly modifies the guest's xcr0, not the
* host's.
*/
load_xcr(0, xcrval);
return (HANDLED);
}
static uint64_t
vmx_get_guest_reg(struct vmx_vcpu *vcpu, int ident)
{
const struct vmxctx *vmxctx;
vmxctx = &vcpu->ctx;
switch (ident) {
case 0:
return (vmxctx->guest_rax);
case 1:
return (vmxctx->guest_rcx);
case 2:
return (vmxctx->guest_rdx);
case 3:
return (vmxctx->guest_rbx);
case 4:
return (vmcs_read(VMCS_GUEST_RSP));
case 5:
return (vmxctx->guest_rbp);
case 6:
return (vmxctx->guest_rsi);
case 7:
return (vmxctx->guest_rdi);
case 8:
return (vmxctx->guest_r8);
case 9:
return (vmxctx->guest_r9);
case 10:
return (vmxctx->guest_r10);
case 11:
return (vmxctx->guest_r11);
case 12:
return (vmxctx->guest_r12);
case 13:
return (vmxctx->guest_r13);
case 14:
return (vmxctx->guest_r14);
case 15:
return (vmxctx->guest_r15);
default:
panic("invalid vmx register %d", ident);
}
}
static void
vmx_set_guest_reg(struct vmx_vcpu *vcpu, int ident, uint64_t regval)
{
struct vmxctx *vmxctx;
vmxctx = &vcpu->ctx;
switch (ident) {
case 0:
vmxctx->guest_rax = regval;
break;
case 1:
vmxctx->guest_rcx = regval;
break;
case 2:
vmxctx->guest_rdx = regval;
break;
case 3:
vmxctx->guest_rbx = regval;
break;
case 4:
vmcs_write(VMCS_GUEST_RSP, regval);
break;
case 5:
vmxctx->guest_rbp = regval;
break;
case 6:
vmxctx->guest_rsi = regval;
break;
case 7:
vmxctx->guest_rdi = regval;
break;
case 8:
vmxctx->guest_r8 = regval;
break;
case 9:
vmxctx->guest_r9 = regval;
break;
case 10:
vmxctx->guest_r10 = regval;
break;
case 11:
vmxctx->guest_r11 = regval;
break;
case 12:
vmxctx->guest_r12 = regval;
break;
case 13:
vmxctx->guest_r13 = regval;
break;
case 14:
vmxctx->guest_r14 = regval;
break;
case 15:
vmxctx->guest_r15 = regval;
break;
default:
panic("invalid vmx register %d", ident);
}
}
static int
vmx_emulate_cr0_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
{
uint64_t crval, regval;
/* We only handle mov to %cr0 at this time */
if ((exitqual & 0xf0) != 0x00)
return (UNHANDLED);
regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
vmcs_write(VMCS_CR0_SHADOW, regval);
crval = regval | cr0_ones_mask;
crval &= ~cr0_zeros_mask;
vmcs_write(VMCS_GUEST_CR0, crval);
if (regval & CR0_PG) {
uint64_t efer, entry_ctls;
/*
* If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and
* the "IA-32e mode guest" bit in VM-entry control must be
* equal.
*/
efer = vmcs_read(VMCS_GUEST_IA32_EFER);
if (efer & EFER_LME) {
efer |= EFER_LMA;
vmcs_write(VMCS_GUEST_IA32_EFER, efer);
entry_ctls = vmcs_read(VMCS_ENTRY_CTLS);
entry_ctls |= VM_ENTRY_GUEST_LMA;
vmcs_write(VMCS_ENTRY_CTLS, entry_ctls);
}
}
return (HANDLED);
}
static int
vmx_emulate_cr4_access(struct vmx_vcpu *vcpu, uint64_t exitqual)
{
uint64_t crval, regval;
/* We only handle mov to %cr4 at this time */
if ((exitqual & 0xf0) != 0x00)
return (UNHANDLED);
regval = vmx_get_guest_reg(vcpu, (exitqual >> 8) & 0xf);
vmcs_write(VMCS_CR4_SHADOW, regval);
crval = regval | cr4_ones_mask;
crval &= ~cr4_zeros_mask;
vmcs_write(VMCS_GUEST_CR4, crval);
return (HANDLED);
}
static int
vmx_emulate_cr8_access(struct vmx *vmx, struct vmx_vcpu *vcpu,
uint64_t exitqual)
{
struct vlapic *vlapic;
uint64_t cr8;
int regnum;
/* We only handle mov %cr8 to/from a register at this time. */
if ((exitqual & 0xe0) != 0x00) {
return (UNHANDLED);
}
vlapic = vm_lapic(vcpu->vcpu);
regnum = (exitqual >> 8) & 0xf;
if (exitqual & 0x10) {
cr8 = vlapic_get_cr8(vlapic);
vmx_set_guest_reg(vcpu, regnum, cr8);
} else {
cr8 = vmx_get_guest_reg(vcpu, regnum);
vlapic_set_cr8(vlapic, cr8);
}
return (HANDLED);
}
/*
* From section "Guest Register State" in the Intel SDM: CPL = SS.DPL
*/
static int
vmx_cpl(void)
{
uint32_t ssar;
ssar = vmcs_read(VMCS_GUEST_SS_ACCESS_RIGHTS);
return ((ssar >> 5) & 0x3);
}
static enum vm_cpu_mode
vmx_cpu_mode(void)
{
uint32_t csar;
if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) {
csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
if (csar & 0x2000)
return (CPU_MODE_64BIT); /* CS.L = 1 */
else
return (CPU_MODE_COMPATIBILITY);
} else if (vmcs_read(VMCS_GUEST_CR0) & CR0_PE) {
return (CPU_MODE_PROTECTED);
} else {
return (CPU_MODE_REAL);
}
}
static enum vm_paging_mode
vmx_paging_mode(void)
{
uint64_t cr4;
if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG))
return (PAGING_MODE_FLAT);
cr4 = vmcs_read(VMCS_GUEST_CR4);
if (!(cr4 & CR4_PAE))
return (PAGING_MODE_32);
if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) {
if (!(cr4 & CR4_LA57))
return (PAGING_MODE_64);
return (PAGING_MODE_64_LA57);
} else
return (PAGING_MODE_PAE);
}
static uint64_t
inout_str_index(struct vmx_vcpu *vcpu, int in)
{
uint64_t val;
int error __diagused;
enum vm_reg_name reg;
reg = in ? VM_REG_GUEST_RDI : VM_REG_GUEST_RSI;
error = vmx_getreg(vcpu, reg, &val);
KASSERT(error == 0, ("%s: vmx_getreg error %d", __func__, error));
return (val);
}
static uint64_t
inout_str_count(struct vmx_vcpu *vcpu, int rep)
{
uint64_t val;
int error __diagused;
if (rep) {
error = vmx_getreg(vcpu, VM_REG_GUEST_RCX, &val);
KASSERT(!error, ("%s: vmx_getreg error %d", __func__, error));
} else {
val = 1;
}
return (val);
}
static int
inout_str_addrsize(uint32_t inst_info)
{
uint32_t size;
size = (inst_info >> 7) & 0x7;
switch (size) {
case 0:
return (2); /* 16 bit */
case 1:
return (4); /* 32 bit */
case 2:
return (8); /* 64 bit */
default:
panic("%s: invalid size encoding %d", __func__, size);
}
}
static void
inout_str_seginfo(struct vmx_vcpu *vcpu, uint32_t inst_info, int in,
struct vm_inout_str *vis)
{
int error __diagused, s;
if (in) {
vis->seg_name = VM_REG_GUEST_ES;
} else {
s = (inst_info >> 15) & 0x7;
vis->seg_name = vm_segment_name(s);
}
error = vmx_getdesc(vcpu, vis->seg_name, &vis->seg_desc);
KASSERT(error == 0, ("%s: vmx_getdesc error %d", __func__, error));
}
static void
vmx_paging_info(struct vm_guest_paging *paging)
{
paging->cr3 = vmcs_guest_cr3();
paging->cpl = vmx_cpl();
paging->cpu_mode = vmx_cpu_mode();
paging->paging_mode = vmx_paging_mode();
}
static void
vmexit_inst_emul(struct vm_exit *vmexit, uint64_t gpa, uint64_t gla)
{
struct vm_guest_paging *paging;
uint32_t csar;
paging = &vmexit->u.inst_emul.paging;
vmexit->exitcode = VM_EXITCODE_INST_EMUL;
vmexit->inst_length = 0;
vmexit->u.inst_emul.gpa = gpa;
vmexit->u.inst_emul.gla = gla;
vmx_paging_info(paging);
switch (paging->cpu_mode) {
case CPU_MODE_REAL:
vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
vmexit->u.inst_emul.cs_d = 0;
break;
case CPU_MODE_PROTECTED:
case CPU_MODE_COMPATIBILITY:
vmexit->u.inst_emul.cs_base = vmcs_read(VMCS_GUEST_CS_BASE);
csar = vmcs_read(VMCS_GUEST_CS_ACCESS_RIGHTS);
vmexit->u.inst_emul.cs_d = SEG_DESC_DEF32(csar);
break;
default:
vmexit->u.inst_emul.cs_base = 0;
vmexit->u.inst_emul.cs_d = 0;
break;
}
vie_init(&vmexit->u.inst_emul.vie, NULL, 0);
}
static int
ept_fault_type(uint64_t ept_qual)
{
int fault_type;
if (ept_qual & EPT_VIOLATION_DATA_WRITE)
fault_type = VM_PROT_WRITE;
else if (ept_qual & EPT_VIOLATION_INST_FETCH)
fault_type = VM_PROT_EXECUTE;
else
fault_type= VM_PROT_READ;
return (fault_type);
}
static bool
ept_emulation_fault(uint64_t ept_qual)
{
int read, write;
/* EPT fault on an instruction fetch doesn't make sense here */
if (ept_qual & EPT_VIOLATION_INST_FETCH)
return (false);
/* EPT fault must be a read fault or a write fault */
read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0;
write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0;
if ((read | write) == 0)
return (false);
/*
* The EPT violation must have been caused by accessing a
* guest-physical address that is a translation of a guest-linear
* address.
*/
if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 ||
(ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) {
return (false);
}
return (true);
}
static __inline int
apic_access_virtualization(struct vmx_vcpu *vcpu)
{
uint32_t proc_ctls2;
proc_ctls2 = vcpu->cap.proc_ctls2;
return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) ? 1 : 0);
}
static __inline int
x2apic_virtualization(struct vmx_vcpu *vcpu)
{
uint32_t proc_ctls2;
proc_ctls2 = vcpu->cap.proc_ctls2;
return ((proc_ctls2 & PROCBASED2_VIRTUALIZE_X2APIC_MODE) ? 1 : 0);
}
static int
vmx_handle_apic_write(struct vmx_vcpu *vcpu, struct vlapic *vlapic,
uint64_t qual)
{
int error, handled, offset;
uint32_t *apic_regs, vector;
bool retu;
handled = HANDLED;
offset = APIC_WRITE_OFFSET(qual);
if (!apic_access_virtualization(vcpu)) {
/*
* In general there should not be any APIC write VM-exits
* unless APIC-access virtualization is enabled.
*
* However self-IPI virtualization can legitimately trigger
* an APIC-write VM-exit so treat it specially.
*/
if (x2apic_virtualization(vcpu) &&
offset == APIC_OFFSET_SELF_IPI) {
apic_regs = (uint32_t *)(vlapic->apic_page);
vector = apic_regs[APIC_OFFSET_SELF_IPI / 4];
vlapic_self_ipi_handler(vlapic, vector);
return (HANDLED);
} else
return (UNHANDLED);
}
switch (offset) {
case APIC_OFFSET_ID:
vlapic_id_write_handler(vlapic);
break;
case APIC_OFFSET_LDR:
vlapic_ldr_write_handler(vlapic);
break;
case APIC_OFFSET_DFR:
vlapic_dfr_write_handler(vlapic);
break;
case APIC_OFFSET_SVR:
vlapic_svr_write_handler(vlapic);
break;
case APIC_OFFSET_ESR:
vlapic_esr_write_handler(vlapic);
break;
case APIC_OFFSET_ICR_LOW:
retu = false;
error = vlapic_icrlo_write_handler(vlapic, &retu);
if (error != 0 || retu)
handled = UNHANDLED;
break;
case APIC_OFFSET_CMCI_LVT:
case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT:
vlapic_lvt_write_handler(vlapic, offset);
break;
case APIC_OFFSET_TIMER_ICR:
vlapic_icrtmr_write_handler(vlapic);
break;
case APIC_OFFSET_TIMER_DCR:
vlapic_dcr_write_handler(vlapic);
break;
default:
handled = UNHANDLED;
break;
}
return (handled);
}
static bool
apic_access_fault(struct vmx_vcpu *vcpu, uint64_t gpa)
{
if (apic_access_virtualization(vcpu) &&
(gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE))
return (true);
else
return (false);
}
static int
vmx_handle_apic_access(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
{
uint64_t qual;
int access_type, offset, allowed;
if (!apic_access_virtualization(vcpu))
return (UNHANDLED);
qual = vmexit->u.vmx.exit_qualification;
access_type = APIC_ACCESS_TYPE(qual);
offset = APIC_ACCESS_OFFSET(qual);
allowed = 0;
if (access_type == 0) {
/*
* Read data access to the following registers is expected.
*/
switch (offset) {
case APIC_OFFSET_APR:
case APIC_OFFSET_PPR:
case APIC_OFFSET_RRR:
case APIC_OFFSET_CMCI_LVT:
case APIC_OFFSET_TIMER_CCR:
allowed = 1;
break;
default:
break;
}
} else if (access_type == 1) {
/*
* Write data access to the following registers is expected.
*/
switch (offset) {
case APIC_OFFSET_VER:
case APIC_OFFSET_APR:
case APIC_OFFSET_PPR:
case APIC_OFFSET_RRR:
case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7:
case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7:
case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7:
case APIC_OFFSET_CMCI_LVT:
case APIC_OFFSET_TIMER_CCR:
allowed = 1;
break;
default:
break;
}
}
if (allowed) {
vmexit_inst_emul(vmexit, DEFAULT_APIC_BASE + offset,
VIE_INVALID_GLA);
}
/*
* Regardless of whether the APIC-access is allowed this handler
* always returns UNHANDLED:
* - if the access is allowed then it is handled by emulating the
* instruction that caused the VM-exit (outside the critical section)
* - if the access is not allowed then it will be converted to an
* exitcode of VM_EXITCODE_VMX and will be dealt with in userland.
*/
return (UNHANDLED);
}
static enum task_switch_reason
vmx_task_switch_reason(uint64_t qual)
{
int reason;
reason = (qual >> 30) & 0x3;
switch (reason) {
case 0:
return (TSR_CALL);
case 1:
return (TSR_IRET);
case 2:
return (TSR_JMP);
case 3:
return (TSR_IDT_GATE);
default:
panic("%s: invalid reason %d", __func__, reason);
}
}
static int
emulate_wrmsr(struct vmx_vcpu *vcpu, u_int num, uint64_t val, bool *retu)
{
int error;
if (lapic_msr(num))
error = lapic_wrmsr(vcpu->vcpu, num, val, retu);
else
error = vmx_wrmsr(vcpu, num, val, retu);
return (error);
}
static int
emulate_rdmsr(struct vmx_vcpu *vcpu, u_int num, bool *retu)
{
struct vmxctx *vmxctx;
uint64_t result;
uint32_t eax, edx;
int error;
if (lapic_msr(num))
error = lapic_rdmsr(vcpu->vcpu, num, &result, retu);
else
error = vmx_rdmsr(vcpu, num, &result, retu);
if (error == 0) {
eax = result;
vmxctx = &vcpu->ctx;
error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RAX, eax);
KASSERT(error == 0, ("vmxctx_setreg(rax) error %d", error));
edx = result >> 32;
error = vmxctx_setreg(vmxctx, VM_REG_GUEST_RDX, edx);
KASSERT(error == 0, ("vmxctx_setreg(rdx) error %d", error));
}
return (error);
}
static int
vmx_exit_process(struct vmx *vmx, struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
{
int error, errcode, errcode_valid, handled, in;
struct vmxctx *vmxctx;
struct vlapic *vlapic;
struct vm_inout_str *vis;
struct vm_task_switch *ts;
uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, inst_info;
uint32_t intr_type, intr_vec, reason;
uint64_t exitintinfo, qual, gpa;
#ifdef KDTRACE_HOOKS
int vcpuid;
#endif
bool retu;
CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0);
CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0);
handled = UNHANDLED;
vmxctx = &vcpu->ctx;
#ifdef KDTRACE_HOOKS
vcpuid = vcpu->vcpuid;
#endif
qual = vmexit->u.vmx.exit_qualification;
reason = vmexit->u.vmx.exit_reason;
vmexit->exitcode = VM_EXITCODE_BOGUS;
vmm_stat_incr(vcpu->vcpu, VMEXIT_COUNT, 1);
SDT_PROBE3(vmm, vmx, exit, entry, vmx, vcpuid, vmexit);
/*
* VM-entry failures during or after loading guest state.
*
* These VM-exits are uncommon but must be handled specially
* as most VM-exit fields are not populated as usual.
*/
if (__predict_false(reason == EXIT_REASON_MCE_DURING_ENTRY)) {
VMX_CTR0(vcpu, "Handling MCE during VM-entry");
__asm __volatile("int $18");
return (1);
}
/*
* VM exits that can be triggered during event delivery need to
* be handled specially by re-injecting the event if the IDT
* vectoring information field's valid bit is set.
*
* See "Information for VM Exits During Event Delivery" in Intel SDM
* for details.
*/
idtvec_info = vmcs_idt_vectoring_info();
if (idtvec_info & VMCS_IDT_VEC_VALID) {
idtvec_info &= ~(1 << 12); /* clear undefined bit */
exitintinfo = idtvec_info;
if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
idtvec_err = vmcs_idt_vectoring_err();
exitintinfo |= (uint64_t)idtvec_err << 32;
}
error = vm_exit_intinfo(vcpu->vcpu, exitintinfo);
KASSERT(error == 0, ("%s: vm_set_intinfo error %d",
__func__, error));
/*
* If 'virtual NMIs' are being used and the VM-exit
* happened while injecting an NMI during the previous
* VM-entry, then clear "blocking by NMI" in the
* Guest Interruptibility-State so the NMI can be
* reinjected on the subsequent VM-entry.
*
* However, if the NMI was being delivered through a task
* gate, then the new task must start execution with NMIs
* blocked so don't clear NMI blocking in this case.
*/
intr_type = idtvec_info & VMCS_INTR_T_MASK;
if (intr_type == VMCS_INTR_T_NMI) {
if (reason != EXIT_REASON_TASK_SWITCH)
vmx_clear_nmi_blocking(vcpu);
else
vmx_assert_nmi_blocking(vcpu);
}
/*
* Update VM-entry instruction length if the event being
* delivered was a software interrupt or software exception.
*/
if (intr_type == VMCS_INTR_T_SWINTR ||
intr_type == VMCS_INTR_T_PRIV_SWEXCEPTION ||
intr_type == VMCS_INTR_T_SWEXCEPTION) {
vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
}
}
switch (reason) {
case EXIT_REASON_TASK_SWITCH:
ts = &vmexit->u.task_switch;
ts->tsssel = qual & 0xffff;
ts->reason = vmx_task_switch_reason(qual);
ts->ext = 0;
ts->errcode_valid = 0;
vmx_paging_info(&ts->paging);
/*
* If the task switch was due to a CALL, JMP, IRET, software
* interrupt (INT n) or software exception (INT3, INTO),
* then the saved %rip references the instruction that caused
* the task switch. The instruction length field in the VMCS
* is valid in this case.
*
* In all other cases (e.g., NMI, hardware exception) the
* saved %rip is one that would have been saved in the old TSS
* had the task switch completed normally so the instruction
* length field is not needed in this case and is explicitly
* set to 0.
*/
if (ts->reason == TSR_IDT_GATE) {
KASSERT(idtvec_info & VMCS_IDT_VEC_VALID,
("invalid idtvec_info %#x for IDT task switch",
idtvec_info));
intr_type = idtvec_info & VMCS_INTR_T_MASK;
if (intr_type != VMCS_INTR_T_SWINTR &&
intr_type != VMCS_INTR_T_SWEXCEPTION &&
intr_type != VMCS_INTR_T_PRIV_SWEXCEPTION) {
/* Task switch triggered by external event */
ts->ext = 1;
vmexit->inst_length = 0;
if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) {
ts->errcode_valid = 1;
ts->errcode = vmcs_idt_vectoring_err();
}
}
}
vmexit->exitcode = VM_EXITCODE_TASK_SWITCH;
SDT_PROBE4(vmm, vmx, exit, taskswitch, vmx, vcpuid, vmexit, ts);
VMX_CTR4(vcpu, "task switch reason %d, tss 0x%04x, "
"%s errcode 0x%016lx", ts->reason, ts->tsssel,
ts->ext ? "external" : "internal",
((uint64_t)ts->errcode << 32) | ts->errcode_valid);
break;
case EXIT_REASON_CR_ACCESS:
vmm_stat_incr(vcpu->vcpu, VMEXIT_CR_ACCESS, 1);
SDT_PROBE4(vmm, vmx, exit, craccess, vmx, vcpuid, vmexit, qual);
switch (qual & 0xf) {
case 0:
handled = vmx_emulate_cr0_access(vcpu, qual);
break;
case 4:
handled = vmx_emulate_cr4_access(vcpu, qual);
break;
case 8:
handled = vmx_emulate_cr8_access(vmx, vcpu, qual);
break;
}
break;
case EXIT_REASON_RDMSR:
vmm_stat_incr(vcpu->vcpu, VMEXIT_RDMSR, 1);
retu = false;
ecx = vmxctx->guest_rcx;
VMX_CTR1(vcpu, "rdmsr 0x%08x", ecx);
SDT_PROBE4(vmm, vmx, exit, rdmsr, vmx, vcpuid, vmexit, ecx);
error = emulate_rdmsr(vcpu, ecx, &retu);
if (error) {
vmexit->exitcode = VM_EXITCODE_RDMSR;
vmexit->u.msr.code = ecx;
} else if (!retu) {
handled = HANDLED;
} else {
/* Return to userspace with a valid exitcode */
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
("emulate_rdmsr retu with bogus exitcode"));
}
break;
case EXIT_REASON_WRMSR:
vmm_stat_incr(vcpu->vcpu, VMEXIT_WRMSR, 1);
retu = false;
eax = vmxctx->guest_rax;
ecx = vmxctx->guest_rcx;
edx = vmxctx->guest_rdx;
VMX_CTR2(vcpu, "wrmsr 0x%08x value 0x%016lx",
ecx, (uint64_t)edx << 32 | eax);
SDT_PROBE5(vmm, vmx, exit, wrmsr, vmx, vmexit, vcpuid, ecx,
(uint64_t)edx << 32 | eax);
error = emulate_wrmsr(vcpu, ecx, (uint64_t)edx << 32 | eax,
&retu);
if (error) {
vmexit->exitcode = VM_EXITCODE_WRMSR;
vmexit->u.msr.code = ecx;
vmexit->u.msr.wval = (uint64_t)edx << 32 | eax;
} else if (!retu) {
handled = HANDLED;
} else {
/* Return to userspace with a valid exitcode */
KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS,
("emulate_wrmsr retu with bogus exitcode"));
}
break;
case EXIT_REASON_HLT:
vmm_stat_incr(vcpu->vcpu, VMEXIT_HLT, 1);
SDT_PROBE3(vmm, vmx, exit, halt, vmx, vcpuid, vmexit);
vmexit->exitcode = VM_EXITCODE_HLT;
vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS);
if (virtual_interrupt_delivery)
vmexit->u.hlt.intr_status =
vmcs_read(VMCS_GUEST_INTR_STATUS);
else
vmexit->u.hlt.intr_status = 0;
break;
case EXIT_REASON_MTF:
vmm_stat_incr(vcpu->vcpu, VMEXIT_MTRAP, 1);
SDT_PROBE3(vmm, vmx, exit, mtrap, vmx, vcpuid, vmexit);
vmexit->exitcode = VM_EXITCODE_MTRAP;
vmexit->inst_length = 0;
break;
case EXIT_REASON_PAUSE:
vmm_stat_incr(vcpu->vcpu, VMEXIT_PAUSE, 1);
SDT_PROBE3(vmm, vmx, exit, pause, vmx, vcpuid, vmexit);
vmexit->exitcode = VM_EXITCODE_PAUSE;
break;
case EXIT_REASON_INTR_WINDOW:
vmm_stat_incr(vcpu->vcpu, VMEXIT_INTR_WINDOW, 1);
SDT_PROBE3(vmm, vmx, exit, intrwindow, vmx, vcpuid, vmexit);
vmx_clear_int_window_exiting(vcpu);
return (1);
case EXIT_REASON_EXT_INTR:
/*
* External interrupts serve only to cause VM exits and allow
* the host interrupt handler to run.
*
* If this external interrupt triggers a virtual interrupt
* to a VM, then that state will be recorded by the
* host interrupt handler in the VM's softc. We will inject
* this virtual interrupt during the subsequent VM enter.
*/
intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
SDT_PROBE4(vmm, vmx, exit, interrupt,
vmx, vcpuid, vmexit, intr_info);
/*
* XXX: Ignore this exit if VMCS_INTR_VALID is not set.
* This appears to be a bug in VMware Fusion?
*/
if (!(intr_info & VMCS_INTR_VALID))
return (1);
KASSERT((intr_info & VMCS_INTR_VALID) != 0 &&
(intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR,
("VM exit interruption info invalid: %#x", intr_info));
vmx_trigger_hostintr(intr_info & 0xff);
/*
* This is special. We want to treat this as an 'handled'
* VM-exit but not increment the instruction pointer.
*/
vmm_stat_incr(vcpu->vcpu, VMEXIT_EXTINT, 1);
return (1);
case EXIT_REASON_NMI_WINDOW:
SDT_PROBE3(vmm, vmx, exit, nmiwindow, vmx, vcpuid, vmexit);
/* Exit to allow the pending virtual NMI to be injected */
if (vm_nmi_pending(vcpu->vcpu))
vmx_inject_nmi(vcpu);
vmx_clear_nmi_window_exiting(vcpu);
vmm_stat_incr(vcpu->vcpu, VMEXIT_NMI_WINDOW, 1);
return (1);
case EXIT_REASON_INOUT:
vmm_stat_incr(vcpu->vcpu, VMEXIT_INOUT, 1);
vmexit->exitcode = VM_EXITCODE_INOUT;
vmexit->u.inout.bytes = (qual & 0x7) + 1;
vmexit->u.inout.in = in = (qual & 0x8) ? 1 : 0;
vmexit->u.inout.string = (qual & 0x10) ? 1 : 0;
vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0;
vmexit->u.inout.port = (uint16_t)(qual >> 16);
vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax);
if (vmexit->u.inout.string) {
inst_info = vmcs_read(VMCS_EXIT_INSTRUCTION_INFO);
vmexit->exitcode = VM_EXITCODE_INOUT_STR;
vis = &vmexit->u.inout_str;
vmx_paging_info(&vis->paging);
vis->rflags = vmcs_read(VMCS_GUEST_RFLAGS);
vis->cr0 = vmcs_read(VMCS_GUEST_CR0);
vis->index = inout_str_index(vcpu, in);
vis->count = inout_str_count(vcpu, vis->inout.rep);
vis->addrsize = inout_str_addrsize(inst_info);
inout_str_seginfo(vcpu, inst_info, in, vis);
}
SDT_PROBE3(vmm, vmx, exit, inout, vmx, vcpuid, vmexit);
break;
case EXIT_REASON_CPUID:
vmm_stat_incr(vcpu->vcpu, VMEXIT_CPUID, 1);
SDT_PROBE3(vmm, vmx, exit, cpuid, vmx, vcpuid, vmexit);
handled = vmx_handle_cpuid(vcpu, vmxctx);
break;
case EXIT_REASON_EXCEPTION:
vmm_stat_incr(vcpu->vcpu, VMEXIT_EXCEPTION, 1);
intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
KASSERT((intr_info & VMCS_INTR_VALID) != 0,
("VM exit interruption info invalid: %#x", intr_info));
intr_vec = intr_info & 0xff;
intr_type = intr_info & VMCS_INTR_T_MASK;
/*
* If Virtual NMIs control is 1 and the VM-exit is due to a
* fault encountered during the execution of IRET then we must
* restore the state of "virtual-NMI blocking" before resuming
* the guest.
*
* See "Resuming Guest Software after Handling an Exception".
* See "Information for VM Exits Due to Vectored Events".
*/
if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
(intr_vec != IDT_DF) &&
(intr_info & EXIT_QUAL_NMIUDTI) != 0)
vmx_restore_nmi_blocking(vcpu);
/*
* The NMI has already been handled in vmx_exit_handle_nmi().
*/
if (intr_type == VMCS_INTR_T_NMI)
return (1);
/*
* Call the machine check handler by hand. Also don't reflect
* the machine check back into the guest.
*/
if (intr_vec == IDT_MC) {
VMX_CTR0(vcpu, "Vectoring to MCE handler");
__asm __volatile("int $18");
return (1);
}
/*
* If the hypervisor has requested user exits for
* debug exceptions, bounce them out to userland.
*/
if (intr_type == VMCS_INTR_T_SWEXCEPTION && intr_vec == IDT_BP &&
(vcpu->cap.set & (1 << VM_CAP_BPT_EXIT))) {
vmexit->exitcode = VM_EXITCODE_BPT;
vmexit->u.bpt.inst_length = vmexit->inst_length;
vmexit->inst_length = 0;
break;
}
if (intr_vec == IDT_PF) {
error = vmxctx_setreg(vmxctx, VM_REG_GUEST_CR2, qual);
KASSERT(error == 0, ("%s: vmxctx_setreg(cr2) error %d",
__func__, error));
}
/*
* Software exceptions exhibit trap-like behavior. This in
* turn requires populating the VM-entry instruction length
* so that the %rip in the trap frame is past the INT3/INTO
* instruction.
*/
if (intr_type == VMCS_INTR_T_SWEXCEPTION)
vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length);
/* Reflect all other exceptions back into the guest */
errcode_valid = errcode = 0;
if (intr_info & VMCS_INTR_DEL_ERRCODE) {
errcode_valid = 1;
errcode = vmcs_read(VMCS_EXIT_INTR_ERRCODE);
}
VMX_CTR2(vcpu, "Reflecting exception %d/%#x into "
"the guest", intr_vec, errcode);
SDT_PROBE5(vmm, vmx, exit, exception,
vmx, vcpuid, vmexit, intr_vec, errcode);
error = vm_inject_exception(vcpu->vcpu, intr_vec,
errcode_valid, errcode, 0);
KASSERT(error == 0, ("%s: vm_inject_exception error %d",
__func__, error));
return (1);
case EXIT_REASON_EPT_FAULT:
/*
* If 'gpa' lies within the address space allocated to
* memory then this must be a nested page fault otherwise
* this must be an instruction that accesses MMIO space.
*/
gpa = vmcs_gpa();
if (vm_mem_allocated(vcpu->vcpu, gpa) ||
apic_access_fault(vcpu, gpa)) {
vmexit->exitcode = VM_EXITCODE_PAGING;
vmexit->inst_length = 0;
vmexit->u.paging.gpa = gpa;
vmexit->u.paging.fault_type = ept_fault_type(qual);
vmm_stat_incr(vcpu->vcpu, VMEXIT_NESTED_FAULT, 1);
SDT_PROBE5(vmm, vmx, exit, nestedfault,
vmx, vcpuid, vmexit, gpa, qual);
} else if (ept_emulation_fault(qual)) {
vmexit_inst_emul(vmexit, gpa, vmcs_gla());
vmm_stat_incr(vcpu->vcpu, VMEXIT_INST_EMUL, 1);
SDT_PROBE4(vmm, vmx, exit, mmiofault,
vmx, vcpuid, vmexit, gpa);
}
/*
* If Virtual NMIs control is 1 and the VM-exit is due to an
* EPT fault during the execution of IRET then we must restore
* the state of "virtual-NMI blocking" before resuming.
*
* See description of "NMI unblocking due to IRET" in
* "Exit Qualification for EPT Violations".
*/
if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 &&
(qual & EXIT_QUAL_NMIUDTI) != 0)
vmx_restore_nmi_blocking(vcpu);
break;
case EXIT_REASON_VIRTUALIZED_EOI:
vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI;
vmexit->u.ioapic_eoi.vector = qual & 0xFF;
SDT_PROBE3(vmm, vmx, exit, eoi, vmx, vcpuid, vmexit);
vmexit->inst_length = 0; /* trap-like */
break;
case EXIT_REASON_APIC_ACCESS:
SDT_PROBE3(vmm, vmx, exit, apicaccess, vmx, vcpuid, vmexit);
handled = vmx_handle_apic_access(vcpu, vmexit);
break;
case EXIT_REASON_APIC_WRITE:
/*
* APIC-write VM exit is trap-like so the %rip is already
* pointing to the next instruction.
*/
vmexit->inst_length = 0;
vlapic = vm_lapic(vcpu->vcpu);
SDT_PROBE4(vmm, vmx, exit, apicwrite,
vmx, vcpuid, vmexit, vlapic);
handled = vmx_handle_apic_write(vcpu, vlapic, qual);
break;
case EXIT_REASON_XSETBV:
SDT_PROBE3(vmm, vmx, exit, xsetbv, vmx, vcpuid, vmexit);
handled = vmx_emulate_xsetbv(vmx, vcpu, vmexit);
break;
case EXIT_REASON_MONITOR:
SDT_PROBE3(vmm, vmx, exit, monitor, vmx, vcpuid, vmexit);
vmexit->exitcode = VM_EXITCODE_MONITOR;
break;
case EXIT_REASON_MWAIT:
SDT_PROBE3(vmm, vmx, exit, mwait, vmx, vcpuid, vmexit);
vmexit->exitcode = VM_EXITCODE_MWAIT;
break;
case EXIT_REASON_TPR:
vlapic = vm_lapic(vcpu->vcpu);
vlapic_sync_tpr(vlapic);
vmexit->inst_length = 0;
handled = HANDLED;
break;
case EXIT_REASON_VMCALL:
case EXIT_REASON_VMCLEAR:
case EXIT_REASON_VMLAUNCH:
case EXIT_REASON_VMPTRLD:
case EXIT_REASON_VMPTRST:
case EXIT_REASON_VMREAD:
case EXIT_REASON_VMRESUME:
case EXIT_REASON_VMWRITE:
case EXIT_REASON_VMXOFF:
case EXIT_REASON_VMXON:
SDT_PROBE3(vmm, vmx, exit, vminsn, vmx, vcpuid, vmexit);
vmexit->exitcode = VM_EXITCODE_VMINSN;
break;
case EXIT_REASON_INVD:
case EXIT_REASON_WBINVD:
/* ignore exit */
handled = HANDLED;
break;
default:
SDT_PROBE4(vmm, vmx, exit, unknown,
vmx, vcpuid, vmexit, reason);
vmm_stat_incr(vcpu->vcpu, VMEXIT_UNKNOWN, 1);
break;
}
if (handled) {
/*
* It is possible that control is returned to userland
* even though we were able to handle the VM exit in the
* kernel.
*
* In such a case we want to make sure that the userland
* restarts guest execution at the instruction *after*
* the one we just processed. Therefore we update the
* guest rip in the VMCS and in 'vmexit'.
*/
vmexit->rip += vmexit->inst_length;
vmexit->inst_length = 0;
vmcs_write(VMCS_GUEST_RIP, vmexit->rip);
} else {
if (vmexit->exitcode == VM_EXITCODE_BOGUS) {
/*
* If this VM exit was not claimed by anybody then
* treat it as a generic VMX exit.
*/
vmexit->exitcode = VM_EXITCODE_VMX;
vmexit->u.vmx.status = VM_SUCCESS;
vmexit->u.vmx.inst_type = 0;
vmexit->u.vmx.inst_error = 0;
} else {
/*
* The exitcode and collateral have been populated.
* The VM exit will be processed further in userland.
*/
}
}
SDT_PROBE4(vmm, vmx, exit, return,
vmx, vcpuid, vmexit, handled);
return (handled);
}
static __inline void
vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit)
{
KASSERT(vmxctx->inst_fail_status != VM_SUCCESS,
("vmx_exit_inst_error: invalid inst_fail_status %d",
vmxctx->inst_fail_status));
vmexit->inst_length = 0;
vmexit->exitcode = VM_EXITCODE_VMX;
vmexit->u.vmx.status = vmxctx->inst_fail_status;
vmexit->u.vmx.inst_error = vmcs_instruction_error();
vmexit->u.vmx.exit_reason = ~0;
vmexit->u.vmx.exit_qualification = ~0;
switch (rc) {
case VMX_VMRESUME_ERROR:
case VMX_VMLAUNCH_ERROR:
vmexit->u.vmx.inst_type = rc;
break;
default:
panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc);
}
}
/*
* If the NMI-exiting VM execution control is set to '1' then an NMI in
* non-root operation causes a VM-exit. NMI blocking is in effect so it is
* sufficient to simply vector to the NMI handler via a software interrupt.
* However, this must be done before maskable interrupts are enabled
* otherwise the "iret" issued by an interrupt handler will incorrectly
* clear NMI blocking.
*/
static __inline void
vmx_exit_handle_nmi(struct vmx_vcpu *vcpu, struct vm_exit *vmexit)
{
uint32_t intr_info;
KASSERT((read_rflags() & PSL_I) == 0, ("interrupts enabled"));
if (vmexit->u.vmx.exit_reason != EXIT_REASON_EXCEPTION)
return;
intr_info = vmcs_read(VMCS_EXIT_INTR_INFO);
KASSERT((intr_info & VMCS_INTR_VALID) != 0,
("VM exit interruption info invalid: %#x", intr_info));
if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) {
KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due "
"to NMI has invalid vector: %#x", intr_info));
VMX_CTR0(vcpu, "Vectoring to NMI handler");
__asm __volatile("int $2");
}
}
static __inline void
vmx_dr_enter_guest(struct vmxctx *vmxctx)
{
register_t rflags;
/* Save host control debug registers. */
vmxctx->host_dr7 = rdr7();
vmxctx->host_debugctl = rdmsr(MSR_DEBUGCTLMSR);
/*
* Disable debugging in DR7 and DEBUGCTL to avoid triggering
* exceptions in the host based on the guest DRx values. The
* guest DR7 and DEBUGCTL are saved/restored in the VMCS.
*/
load_dr7(0);
wrmsr(MSR_DEBUGCTLMSR, 0);
/*
* Disable single stepping the kernel to avoid corrupting the
* guest DR6. A debugger might still be able to corrupt the
* guest DR6 by setting a breakpoint after this point and then
* single stepping.
*/
rflags = read_rflags();
vmxctx->host_tf = rflags & PSL_T;
write_rflags(rflags & ~PSL_T);
/* Save host debug registers. */
vmxctx->host_dr0 = rdr0();
vmxctx->host_dr1 = rdr1();
vmxctx->host_dr2 = rdr2();
vmxctx->host_dr3 = rdr3();
vmxctx->host_dr6 = rdr6();
/* Restore guest debug registers. */
load_dr0(vmxctx->guest_dr0);
load_dr1(vmxctx->guest_dr1);
load_dr2(vmxctx->guest_dr2);
load_dr3(vmxctx->guest_dr3);
load_dr6(vmxctx->guest_dr6);
}
static __inline void
vmx_dr_leave_guest(struct vmxctx *vmxctx)
{
/* Save guest debug registers. */
vmxctx->guest_dr0 = rdr0();
vmxctx->guest_dr1 = rdr1();
vmxctx->guest_dr2 = rdr2();
vmxctx->guest_dr3 = rdr3();
vmxctx->guest_dr6 = rdr6();
/*
* Restore host debug registers. Restore DR7, DEBUGCTL, and
* PSL_T last.
*/
load_dr0(vmxctx->host_dr0);
load_dr1(vmxctx->host_dr1);
load_dr2(vmxctx->host_dr2);
load_dr3(vmxctx->host_dr3);
load_dr6(vmxctx->host_dr6);
wrmsr(MSR_DEBUGCTLMSR, vmxctx->host_debugctl);
load_dr7(vmxctx->host_dr7);
write_rflags(read_rflags() | vmxctx->host_tf);
}
static __inline void
vmx_pmap_activate(struct vmx *vmx, pmap_t pmap)
{
long eptgen;
int cpu;
cpu = curcpu;
CPU_SET_ATOMIC(cpu, &pmap->pm_active);
smr_enter(pmap->pm_eptsmr);
eptgen = atomic_load_long(&pmap->pm_eptgen);
if (eptgen != vmx->eptgen[cpu]) {
vmx->eptgen[cpu] = eptgen;
invept(INVEPT_TYPE_SINGLE_CONTEXT,
(struct invept_desc){ .eptp = vmx->eptp, ._res = 0 });
}
}
static __inline void
vmx_pmap_deactivate(struct vmx *vmx, pmap_t pmap)
{
smr_exit(pmap->pm_eptsmr);
CPU_CLR_ATOMIC(curcpu, &pmap->pm_active);
}
static int
vmx_run(void *vcpui, register_t rip, pmap_t pmap, struct vm_eventinfo *evinfo)
{
int rc, handled, launched;
struct vmx *vmx;
struct vmx_vcpu *vcpu;
struct vmxctx *vmxctx;
struct vmcs *vmcs;
struct vm_exit *vmexit;
struct vlapic *vlapic;
uint32_t exit_reason;
struct region_descriptor gdtr, idtr;
uint16_t ldt_sel;
vcpu = vcpui;
vmx = vcpu->vmx;
vmcs = vcpu->vmcs;
vmxctx = &vcpu->ctx;
vlapic = vm_lapic(vcpu->vcpu);
vmexit = vm_exitinfo(vcpu->vcpu);
launched = 0;
KASSERT(vmxctx->pmap == pmap,
("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap));
vmx_msr_guest_enter(vcpu);
VMPTRLD(vmcs);
/*
* XXX
* We do this every time because we may setup the virtual machine
* from a different process than the one that actually runs it.
*
* If the life of a virtual machine was spent entirely in the context
* of a single process we could do this once in vmx_init().
*/
vmcs_write(VMCS_HOST_CR3, rcr3());
vmcs_write(VMCS_GUEST_RIP, rip);
vmx_set_pcpu_defaults(vmx, vcpu, pmap);
do {
KASSERT(vmcs_guest_rip() == rip, ("%s: vmcs guest rip mismatch "
"%#lx/%#lx", __func__, vmcs_guest_rip(), rip));
handled = UNHANDLED;
/*
* Interrupts are disabled from this point on until the
* guest starts executing. This is done for the following
* reasons:
*
* If an AST is asserted on this thread after the check below,
* then the IPI_AST notification will not be lost, because it
* will cause a VM exit due to external interrupt as soon as
* the guest state is loaded.
*
* A posted interrupt after 'vmx_inject_interrupts()' will
* not be "lost" because it will be held pending in the host
* APIC because interrupts are disabled. The pending interrupt
* will be recognized as soon as the guest state is loaded.
*
* The same reasoning applies to the IPI generated by
* pmap_invalidate_ept().
*/
disable_intr();
vmx_inject_interrupts(vcpu, vlapic, rip);
/*
* Check for vcpu suspension after injecting events because
* vmx_inject_interrupts() can suspend the vcpu due to a
* triple fault.
*/
if (vcpu_suspended(evinfo)) {
enable_intr();
vm_exit_suspended(vcpu->vcpu, rip);
break;
}
if (vcpu_rendezvous_pending(vcpu->vcpu, evinfo)) {
enable_intr();
vm_exit_rendezvous(vcpu->vcpu, rip);
break;
}
if (vcpu_reqidle(evinfo)) {
enable_intr();
vm_exit_reqidle(vcpu->vcpu, rip);
break;
}
if (vcpu_should_yield(vcpu->vcpu)) {
enable_intr();
vm_exit_astpending(vcpu->vcpu, rip);
vmx_astpending_trace(vcpu, rip);
handled = HANDLED;
break;
}
if (vcpu_debugged(vcpu->vcpu)) {
enable_intr();
vm_exit_debug(vcpu->vcpu, rip);
break;
}
/*
* If TPR Shadowing is enabled, the TPR Threshold
* must be updated right before entering the guest.
*/
if (tpr_shadowing && !virtual_interrupt_delivery) {
if ((vcpu->cap.proc_ctls & PROCBASED_USE_TPR_SHADOW) != 0) {
vmcs_write(VMCS_TPR_THRESHOLD, vlapic_get_cr8(vlapic));
}
}
/*
* VM exits restore the base address but not the
* limits of GDTR and IDTR. The VMCS only stores the
* base address, so VM exits set the limits to 0xffff.
* Save and restore the full GDTR and IDTR to restore
* the limits.
*
* The VMCS does not save the LDTR at all, and VM
* exits clear LDTR as if a NULL selector were loaded.
* The userspace hypervisor probably doesn't use a
* LDT, but save and restore it to be safe.
*/
sgdt(&gdtr);
sidt(&idtr);
ldt_sel = sldt();
/*
* The TSC_AUX MSR must be saved/restored while interrupts
* are disabled so that it is not possible for the guest
* TSC_AUX MSR value to be overwritten by the resume
* portion of the IPI_SUSPEND codepath. This is why the
* transition of this MSR is handled separately from those
* handled by vmx_msr_guest_{enter,exit}(), which are ok to
* be transitioned with preemption disabled but interrupts
* enabled.
*
* These vmx_msr_guest_{enter,exit}_tsc_aux() calls can be
* anywhere in this loop so long as they happen with
* interrupts disabled. This location is chosen for
* simplicity.
*/
vmx_msr_guest_enter_tsc_aux(vmx, vcpu);
vmx_dr_enter_guest(vmxctx);
/*
* Mark the EPT as active on this host CPU and invalidate
* EPTP-tagged TLB entries if required.
*/
vmx_pmap_activate(vmx, pmap);
vmx_run_trace(vcpu);
rc = vmx_enter_guest(vmxctx, vmx, launched);
vmx_pmap_deactivate(vmx, pmap);
vmx_dr_leave_guest(vmxctx);
vmx_msr_guest_exit_tsc_aux(vmx, vcpu);
bare_lgdt(&gdtr);
lidt(&idtr);
lldt(ldt_sel);
/* Collect some information for VM exit processing */
vmexit->rip = rip = vmcs_guest_rip();
vmexit->inst_length = vmexit_instruction_length();
vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason();
vmexit->u.vmx.exit_qualification = vmcs_exit_qualification();
/* Update 'nextrip' */
vcpu->state.nextrip = rip;
if (rc == VMX_GUEST_VMEXIT) {
vmx_exit_handle_nmi(vcpu, vmexit);
enable_intr();
handled = vmx_exit_process(vmx, vcpu, vmexit);
} else {
enable_intr();
vmx_exit_inst_error(vmxctx, rc, vmexit);
}
launched = 1;
vmx_exit_trace(vcpu, rip, exit_reason, handled);
rip = vmexit->rip;
} while (handled);
/*
* If a VM exit has been handled then the exitcode must be BOGUS
* If a VM exit is not handled then the exitcode must not be BOGUS
*/
if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) ||
(!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) {
panic("Mismatch between handled (%d) and exitcode (%d)",
handled, vmexit->exitcode);
}
VMX_CTR1(vcpu, "returning from vmx_run: exitcode %d",
vmexit->exitcode);
VMCLEAR(vmcs);
vmx_msr_guest_exit(vcpu);
return (0);
}
static void
vmx_vcpu_cleanup(void *vcpui)
{
struct vmx_vcpu *vcpu = vcpui;
vpid_free(vcpu->state.vpid);
free(vcpu->pir_desc, M_VMX);
free(vcpu->apic_page, M_VMX);
free(vcpu->vmcs, M_VMX);
free(vcpu, M_VMX);
}
static void
vmx_cleanup(void *vmi)
{
struct vmx *vmx = vmi;
if (virtual_interrupt_delivery)
vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
free(vmx->msr_bitmap, M_VMX);
free(vmx, M_VMX);
return;
}
static register_t *
vmxctx_regptr(struct vmxctx *vmxctx, int reg)
{
switch (reg) {
case VM_REG_GUEST_RAX:
return (&vmxctx->guest_rax);
case VM_REG_GUEST_RBX:
return (&vmxctx->guest_rbx);
case VM_REG_GUEST_RCX:
return (&vmxctx->guest_rcx);
case VM_REG_GUEST_RDX:
return (&vmxctx->guest_rdx);
case VM_REG_GUEST_RSI:
return (&vmxctx->guest_rsi);
case VM_REG_GUEST_RDI:
return (&vmxctx->guest_rdi);
case VM_REG_GUEST_RBP:
return (&vmxctx->guest_rbp);
case VM_REG_GUEST_R8:
return (&vmxctx->guest_r8);
case VM_REG_GUEST_R9:
return (&vmxctx->guest_r9);
case VM_REG_GUEST_R10:
return (&vmxctx->guest_r10);
case VM_REG_GUEST_R11:
return (&vmxctx->guest_r11);
case VM_REG_GUEST_R12:
return (&vmxctx->guest_r12);
case VM_REG_GUEST_R13:
return (&vmxctx->guest_r13);
case VM_REG_GUEST_R14:
return (&vmxctx->guest_r14);
case VM_REG_GUEST_R15:
return (&vmxctx->guest_r15);
case VM_REG_GUEST_CR2:
return (&vmxctx->guest_cr2);
case VM_REG_GUEST_DR0:
return (&vmxctx->guest_dr0);
case VM_REG_GUEST_DR1:
return (&vmxctx->guest_dr1);
case VM_REG_GUEST_DR2:
return (&vmxctx->guest_dr2);
case VM_REG_GUEST_DR3:
return (&vmxctx->guest_dr3);
case VM_REG_GUEST_DR6:
return (&vmxctx->guest_dr6);
default:
break;
}
return (NULL);
}
static int
vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval)
{
register_t *regp;
if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
*retval = *regp;
return (0);
} else
return (EINVAL);
}
static int
vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val)
{
register_t *regp;
if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) {
*regp = val;
return (0);
} else
return (EINVAL);
}
static int
vmx_get_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t *retval)
{
uint64_t gi;
int error;
error = vmcs_getreg(vcpu->vmcs, running,
VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY), &gi);
*retval = (gi & HWINTR_BLOCKING) ? 1 : 0;
return (error);
}
static int
vmx_modify_intr_shadow(struct vmx_vcpu *vcpu, int running, uint64_t val)
{
struct vmcs *vmcs;
uint64_t gi;
int error, ident;
/*
* Forcing the vcpu into an interrupt shadow is not supported.
*/
if (val) {
error = EINVAL;
goto done;
}
vmcs = vcpu->vmcs;
ident = VMCS_IDENT(VMCS_GUEST_INTERRUPTIBILITY);
error = vmcs_getreg(vmcs, running, ident, &gi);
if (error == 0) {
gi &= ~HWINTR_BLOCKING;
error = vmcs_setreg(vmcs, running, ident, gi);
}
done:
VMX_CTR2(vcpu, "Setting intr_shadow to %#lx %s", val,
error ? "failed" : "succeeded");
return (error);
}
static int
vmx_shadow_reg(int reg)
{
int shreg;
shreg = -1;
switch (reg) {
case VM_REG_GUEST_CR0:
shreg = VMCS_CR0_SHADOW;
break;
case VM_REG_GUEST_CR4:
shreg = VMCS_CR4_SHADOW;
break;
default:
break;
}
return (shreg);
}
static int
vmx_getreg(void *vcpui, int reg, uint64_t *retval)
{
int running, hostcpu;
struct vmx_vcpu *vcpu = vcpui;
struct vmx *vmx = vcpu->vmx;
running = vcpu_is_running(vcpu->vcpu, &hostcpu);
if (running && hostcpu != curcpu)
panic("vmx_getreg: %s%d is running", vm_name(vmx->vm),
vcpu->vcpuid);
if (reg == VM_REG_GUEST_INTR_SHADOW)
return (vmx_get_intr_shadow(vcpu, running, retval));
if (vmxctx_getreg(&vcpu->ctx, reg, retval) == 0)
return (0);
return (vmcs_getreg(vcpu->vmcs, running, reg, retval));
}
static int
vmx_setreg(void *vcpui, int reg, uint64_t val)
{
int error, hostcpu, running, shadow;
uint64_t ctls;
pmap_t pmap;
struct vmx_vcpu *vcpu = vcpui;
struct vmx *vmx = vcpu->vmx;
running = vcpu_is_running(vcpu->vcpu, &hostcpu);
if (running && hostcpu != curcpu)
panic("vmx_setreg: %s%d is running", vm_name(vmx->vm),
vcpu->vcpuid);
if (reg == VM_REG_GUEST_INTR_SHADOW)
return (vmx_modify_intr_shadow(vcpu, running, val));
if (vmxctx_setreg(&vcpu->ctx, reg, val) == 0)
return (0);
/* Do not permit user write access to VMCS fields by offset. */
if (reg < 0)
return (EINVAL);
error = vmcs_setreg(vcpu->vmcs, running, reg, val);
if (error == 0) {
/*
* If the "load EFER" VM-entry control is 1 then the
* value of EFER.LMA must be identical to "IA-32e mode guest"
* bit in the VM-entry control.
*/
if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 &&
(reg == VM_REG_GUEST_EFER)) {
vmcs_getreg(vcpu->vmcs, running,
VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls);
if (val & EFER_LMA)
ctls |= VM_ENTRY_GUEST_LMA;
else
ctls &= ~VM_ENTRY_GUEST_LMA;
vmcs_setreg(vcpu->vmcs, running,
VMCS_IDENT(VMCS_ENTRY_CTLS), ctls);
}
shadow = vmx_shadow_reg(reg);
if (shadow > 0) {
/*
* Store the unmodified value in the shadow
*/
error = vmcs_setreg(vcpu->vmcs, running,
VMCS_IDENT(shadow), val);
}
if (reg == VM_REG_GUEST_CR3) {
/*
* Invalidate the guest vcpu's TLB mappings to emulate
* the behavior of updating %cr3.
*
* XXX the processor retains global mappings when %cr3
* is updated but vmx_invvpid() does not.
*/
pmap = vcpu->ctx.pmap;
vmx_invvpid(vmx, vcpu, pmap, running);
}
}
return (error);
}
static int
vmx_getdesc(void *vcpui, int reg, struct seg_desc *desc)
{
int hostcpu, running;
struct vmx_vcpu *vcpu = vcpui;
struct vmx *vmx = vcpu->vmx;
running = vcpu_is_running(vcpu->vcpu, &hostcpu);
if (running && hostcpu != curcpu)
panic("vmx_getdesc: %s%d is running", vm_name(vmx->vm),
vcpu->vcpuid);
return (vmcs_getdesc(vcpu->vmcs, running, reg, desc));
}
static int
vmx_setdesc(void *vcpui, int reg, struct seg_desc *desc)
{
int hostcpu, running;
struct vmx_vcpu *vcpu = vcpui;
struct vmx *vmx = vcpu->vmx;
running = vcpu_is_running(vcpu->vcpu, &hostcpu);
if (running && hostcpu != curcpu)
panic("vmx_setdesc: %s%d is running", vm_name(vmx->vm),
vcpu->vcpuid);
return (vmcs_setdesc(vcpu->vmcs, running, reg, desc));
}
static int
vmx_getcap(void *vcpui, int type, int *retval)
{
struct vmx_vcpu *vcpu = vcpui;
int vcap;
int ret;
ret = ENOENT;
vcap = vcpu->cap.set;
switch (type) {
case VM_CAP_HALT_EXIT:
if (cap_halt_exit)
ret = 0;
break;
case VM_CAP_PAUSE_EXIT:
if (cap_pause_exit)
ret = 0;
break;
case VM_CAP_MTRAP_EXIT:
if (cap_monitor_trap)
ret = 0;
break;
case VM_CAP_RDPID:
if (cap_rdpid)
ret = 0;
break;
case VM_CAP_RDTSCP:
if (cap_rdtscp)
ret = 0;
break;
case VM_CAP_UNRESTRICTED_GUEST:
if (cap_unrestricted_guest)
ret = 0;
break;
case VM_CAP_ENABLE_INVPCID:
if (cap_invpcid)
ret = 0;
break;
case VM_CAP_BPT_EXIT:
case VM_CAP_IPI_EXIT:
ret = 0;
break;
default:
break;
}
if (ret == 0)
*retval = (vcap & (1 << type)) ? 1 : 0;
return (ret);
}
static int
vmx_setcap(void *vcpui, int type, int val)
{
struct vmx_vcpu *vcpu = vcpui;
struct vmcs *vmcs = vcpu->vmcs;
struct vlapic *vlapic;
uint32_t baseval;
uint32_t *pptr;
int error;
int flag;
int reg;
int retval;
retval = ENOENT;
pptr = NULL;
switch (type) {
case VM_CAP_HALT_EXIT:
if (cap_halt_exit) {
retval = 0;
pptr = &vcpu->cap.proc_ctls;
baseval = *pptr;
flag = PROCBASED_HLT_EXITING;
reg = VMCS_PRI_PROC_BASED_CTLS;
}
break;
case VM_CAP_MTRAP_EXIT:
if (cap_monitor_trap) {
retval = 0;
pptr = &vcpu->cap.proc_ctls;
baseval = *pptr;
flag = PROCBASED_MTF;
reg = VMCS_PRI_PROC_BASED_CTLS;
}
break;
case VM_CAP_PAUSE_EXIT:
if (cap_pause_exit) {
retval = 0;
pptr = &vcpu->cap.proc_ctls;
baseval = *pptr;
flag = PROCBASED_PAUSE_EXITING;
reg = VMCS_PRI_PROC_BASED_CTLS;
}
break;
case VM_CAP_RDPID:
case VM_CAP_RDTSCP:
if (cap_rdpid || cap_rdtscp)
/*
* Choose not to support enabling/disabling
* RDPID/RDTSCP via libvmmapi since, as per the
* discussion in vmx_modinit(), RDPID/RDTSCP are
* either always enabled or always disabled.
*/
error = EOPNOTSUPP;
break;
case VM_CAP_UNRESTRICTED_GUEST:
if (cap_unrestricted_guest) {
retval = 0;
pptr = &vcpu->cap.proc_ctls2;
baseval = *pptr;
flag = PROCBASED2_UNRESTRICTED_GUEST;
reg = VMCS_SEC_PROC_BASED_CTLS;
}
break;
case VM_CAP_ENABLE_INVPCID:
if (cap_invpcid) {
retval = 0;
pptr = &vcpu->cap.proc_ctls2;
baseval = *pptr;
flag = PROCBASED2_ENABLE_INVPCID;
reg = VMCS_SEC_PROC_BASED_CTLS;
}
break;
case VM_CAP_BPT_EXIT:
retval = 0;
/* Don't change the bitmap if we are tracing all exceptions. */
if (vcpu->cap.exc_bitmap != 0xffffffff) {
pptr = &vcpu->cap.exc_bitmap;
baseval = *pptr;
flag = (1 << IDT_BP);
reg = VMCS_EXCEPTION_BITMAP;
}
break;
case VM_CAP_IPI_EXIT:
retval = 0;
vlapic = vm_lapic(vcpu->vcpu);
vlapic->ipi_exit = val;
break;
case VM_CAP_MASK_HWINTR:
retval = 0;
break;
default:
break;
}
if (retval)
return (retval);
if (pptr != NULL) {
if (val) {
baseval |= flag;
} else {
baseval &= ~flag;
}
VMPTRLD(vmcs);
error = vmwrite(reg, baseval);
VMCLEAR(vmcs);
if (error)
return (error);
/*
* Update optional stored flags, and record
* setting
*/
*pptr = baseval;
}
if (val) {
vcpu->cap.set |= (1 << type);
} else {
vcpu->cap.set &= ~(1 << type);
}
return (0);
}
static struct vmspace *
vmx_vmspace_alloc(vm_offset_t min, vm_offset_t max)
{
return (ept_vmspace_alloc(min, max));
}
static void
vmx_vmspace_free(struct vmspace *vmspace)
{
ept_vmspace_free(vmspace);
}
struct vlapic_vtx {
struct vlapic vlapic;
struct pir_desc *pir_desc;
struct vmx_vcpu *vcpu;
u_int pending_prio;
};
#define VPR_PRIO_BIT(vpr) (1 << ((vpr) >> 4))
#define VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level, msg) \
do { \
VLAPIC_CTR2(vlapic, msg " assert %s-triggered vector %d", \
level ? "level" : "edge", vector); \
VLAPIC_CTR1(vlapic, msg " pir0 0x%016lx", pir_desc->pir[0]); \
VLAPIC_CTR1(vlapic, msg " pir1 0x%016lx", pir_desc->pir[1]); \
VLAPIC_CTR1(vlapic, msg " pir2 0x%016lx", pir_desc->pir[2]); \
VLAPIC_CTR1(vlapic, msg " pir3 0x%016lx", pir_desc->pir[3]); \
VLAPIC_CTR1(vlapic, msg " notify: %s", notify ? "yes" : "no"); \
} while (0)
/*
* vlapic->ops handlers that utilize the APICv hardware assist described in
* Chapter 29 of the Intel SDM.
*/
static int
vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level)
{
struct vlapic_vtx *vlapic_vtx;
struct pir_desc *pir_desc;
uint64_t mask;
int idx, notify = 0;
vlapic_vtx = (struct vlapic_vtx *)vlapic;
pir_desc = vlapic_vtx->pir_desc;
/*
* Keep track of interrupt requests in the PIR descriptor. This is
* because the virtual APIC page pointed to by the VMCS cannot be
* modified if the vcpu is running.
*/
idx = vector / 64;
mask = 1UL << (vector % 64);
atomic_set_long(&pir_desc->pir[idx], mask);
/*
* A notification is required whenever the 'pending' bit makes a
* transition from 0->1.
*
* Even if the 'pending' bit is already asserted, notification about
* the incoming interrupt may still be necessary. For example, if a
* vCPU is HLTed with a high PPR, a low priority interrupt would cause
* the 0->1 'pending' transition with a notification, but the vCPU
* would ignore the interrupt for the time being. The same vCPU would
* need to then be notified if a high-priority interrupt arrived which
* satisfied the PPR.
*
* The priorities of interrupts injected while 'pending' is asserted
* are tracked in a custom bitfield 'pending_prio'. Should the
* to-be-injected interrupt exceed the priorities already present, the
* notification is sent. The priorities recorded in 'pending_prio' are
* cleared whenever the 'pending' bit makes another 0->1 transition.
*/
if (atomic_cmpset_long(&pir_desc->pending, 0, 1) != 0) {
notify = 1;
vlapic_vtx->pending_prio = 0;
} else {
const u_int old_prio = vlapic_vtx->pending_prio;
const u_int prio_bit = VPR_PRIO_BIT(vector & APIC_TPR_INT);
if ((old_prio & prio_bit) == 0 && prio_bit > old_prio) {
atomic_set_int(&vlapic_vtx->pending_prio, prio_bit);
notify = 1;
}
}
VMX_CTR_PIR(vlapic, pir_desc, notify, vector, level,
"vmx_set_intr_ready");
return (notify);
}
static int
vmx_pending_intr(struct vlapic *vlapic, int *vecptr)
{
struct vlapic_vtx *vlapic_vtx;
struct pir_desc *pir_desc;
struct LAPIC *lapic;
uint64_t pending, pirval;
uint8_t ppr, vpr, rvi;
struct vm_exit *vmexit;
int i;
/*
* This function is only expected to be called from the 'HLT' exit
* handler which does not care about the vector that is pending.
*/
KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL"));
vlapic_vtx = (struct vlapic_vtx *)vlapic;
pir_desc = vlapic_vtx->pir_desc;
lapic = vlapic->apic_page;
/*
* While a virtual interrupt may have already been
* processed the actual delivery maybe pending the
* interruptibility of the guest. Recognize a pending
* interrupt by reevaluating virtual interrupts
* following Section 30.2.1 in the Intel SDM Volume 3.
*/
vmexit = vm_exitinfo(vlapic->vcpu);
KASSERT(vmexit->exitcode == VM_EXITCODE_HLT,
("vmx_pending_intr: exitcode not 'HLT'"));
rvi = vmexit->u.hlt.intr_status & APIC_TPR_INT;
ppr = lapic->ppr & APIC_TPR_INT;
if (rvi > ppr)
return (1);
pending = atomic_load_acq_long(&pir_desc->pending);
if (!pending)
return (0);
/*
* If there is an interrupt pending then it will be recognized only
* if its priority is greater than the processor priority.
*
* Special case: if the processor priority is zero then any pending
* interrupt will be recognized.
*/
if (ppr == 0)
return (1);
VLAPIC_CTR1(vlapic, "HLT with non-zero PPR %d", lapic->ppr);
vpr = 0;
for (i = 3; i >= 0; i--) {
pirval = pir_desc->pir[i];
if (pirval != 0) {
vpr = (i * 64 + flsl(pirval) - 1) & APIC_TPR_INT;
break;
}
}
/*
* If the highest-priority pending interrupt falls short of the
* processor priority of this vCPU, ensure that 'pending_prio' does not
* have any stale bits which would preclude a higher-priority interrupt
* from incurring a notification later.
*/
if (vpr <= ppr) {
const u_int prio_bit = VPR_PRIO_BIT(vpr);
const u_int old = vlapic_vtx->pending_prio;
if (old > prio_bit && (old & prio_bit) == 0) {
vlapic_vtx->pending_prio = prio_bit;
}
return (0);
}
return (1);
}
static void
vmx_intr_accepted(struct vlapic *vlapic, int vector)
{
panic("vmx_intr_accepted: not expected to be called");
}
static void
vmx_set_tmr(struct vlapic *vlapic, int vector, bool level)
{
struct vlapic_vtx *vlapic_vtx;
struct vmcs *vmcs;
uint64_t mask, val;
KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector));
KASSERT(!vcpu_is_running(vlapic->vcpu, NULL),
("vmx_set_tmr: vcpu cannot be running"));
vlapic_vtx = (struct vlapic_vtx *)vlapic;
vmcs = vlapic_vtx->vcpu->vmcs;
mask = 1UL << (vector % 64);
VMPTRLD(vmcs);
val = vmcs_read(VMCS_EOI_EXIT(vector));
if (level)
val |= mask;
else
val &= ~mask;
vmcs_write(VMCS_EOI_EXIT(vector), val);
VMCLEAR(vmcs);
}
static void
vmx_enable_x2apic_mode_ts(struct vlapic *vlapic)
{
struct vlapic_vtx *vlapic_vtx;
struct vmx_vcpu *vcpu;
struct vmcs *vmcs;
uint32_t proc_ctls;
vlapic_vtx = (struct vlapic_vtx *)vlapic;
vcpu = vlapic_vtx->vcpu;
vmcs = vcpu->vmcs;
proc_ctls = vcpu->cap.proc_ctls;
proc_ctls &= ~PROCBASED_USE_TPR_SHADOW;
proc_ctls |= PROCBASED_CR8_LOAD_EXITING;
proc_ctls |= PROCBASED_CR8_STORE_EXITING;
vcpu->cap.proc_ctls = proc_ctls;
VMPTRLD(vmcs);
vmcs_write(VMCS_PRI_PROC_BASED_CTLS, proc_ctls);
VMCLEAR(vmcs);
}
static void
vmx_enable_x2apic_mode_vid(struct vlapic *vlapic)
{
struct vlapic_vtx *vlapic_vtx;
struct vmx *vmx;
struct vmx_vcpu *vcpu;
struct vmcs *vmcs;
uint32_t proc_ctls2;
int error __diagused;
vlapic_vtx = (struct vlapic_vtx *)vlapic;
vcpu = vlapic_vtx->vcpu;
vmx = vcpu->vmx;
vmcs = vcpu->vmcs;
proc_ctls2 = vcpu->cap.proc_ctls2;
KASSERT((proc_ctls2 & PROCBASED2_VIRTUALIZE_APIC_ACCESSES) != 0,
("%s: invalid proc_ctls2 %#x", __func__, proc_ctls2));
proc_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES;
proc_ctls2 |= PROCBASED2_VIRTUALIZE_X2APIC_MODE;
vcpu->cap.proc_ctls2 = proc_ctls2;
VMPTRLD(vmcs);
vmcs_write(VMCS_SEC_PROC_BASED_CTLS, proc_ctls2);
VMCLEAR(vmcs);
if (vlapic->vcpuid == 0) {
/*
* The nested page table mappings are shared by all vcpus
* so unmap the APIC access page just once.
*/
error = vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE);
KASSERT(error == 0, ("%s: vm_unmap_mmio error %d",
__func__, error));
/*
* The MSR bitmap is shared by all vcpus so modify it only
* once in the context of vcpu 0.
*/
error = vmx_allow_x2apic_msrs(vmx);
KASSERT(error == 0, ("%s: vmx_allow_x2apic_msrs error %d",
__func__, error));
}
}
static void
vmx_post_intr(struct vlapic *vlapic, int hostcpu)
{
ipi_cpu(hostcpu, pirvec);
}
/*
* Transfer the pending interrupts in the PIR descriptor to the IRR
* in the virtual APIC page.
*/
static void
vmx_inject_pir(struct vlapic *vlapic)
{
struct vlapic_vtx *vlapic_vtx;
struct pir_desc *pir_desc;
struct LAPIC *lapic;
uint64_t val, pirval;
int rvi, pirbase = -1;
uint16_t intr_status_old, intr_status_new;
vlapic_vtx = (struct vlapic_vtx *)vlapic;
pir_desc = vlapic_vtx->pir_desc;
if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) {
VLAPIC_CTR0(vlapic, "vmx_inject_pir: "
"no posted interrupt pending");
return;
}
pirval = 0;
pirbase = -1;
lapic = vlapic->apic_page;
val = atomic_readandclear_long(&pir_desc->pir[0]);
if (val != 0) {
lapic->irr0 |= val;
lapic->irr1 |= val >> 32;
pirbase = 0;
pirval = val;
}
val = atomic_readandclear_long(&pir_desc->pir[1]);
if (val != 0) {
lapic->irr2 |= val;
lapic->irr3 |= val >> 32;
pirbase = 64;
pirval = val;
}
val = atomic_readandclear_long(&pir_desc->pir[2]);
if (val != 0) {
lapic->irr4 |= val;
lapic->irr5 |= val >> 32;
pirbase = 128;
pirval = val;
}
val = atomic_readandclear_long(&pir_desc->pir[3]);
if (val != 0) {
lapic->irr6 |= val;
lapic->irr7 |= val >> 32;
pirbase = 192;
pirval = val;
}
VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir");
/*
* Update RVI so the processor can evaluate pending virtual
* interrupts on VM-entry.
*
* It is possible for pirval to be 0 here, even though the
* pending bit has been set. The scenario is:
* CPU-Y is sending a posted interrupt to CPU-X, which
* is running a guest and processing posted interrupts in h/w.
* CPU-X will eventually exit and the state seen in s/w is
* the pending bit set, but no PIR bits set.
*
* CPU-X CPU-Y
* (vm running) (host running)
* rx posted interrupt
* CLEAR pending bit
* SET PIR bit
* READ/CLEAR PIR bits
* SET pending bit
* (vm exit)
* pending bit set, PIR 0
*/
if (pirval != 0) {
rvi = pirbase + flsl(pirval) - 1;
intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS);
intr_status_new = (intr_status_old & 0xFF00) | rvi;
if (intr_status_new > intr_status_old) {
vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new);
VLAPIC_CTR2(vlapic, "vmx_inject_pir: "
"guest_intr_status changed from 0x%04x to 0x%04x",
intr_status_old, intr_status_new);
}
}
}
static struct vlapic *
vmx_vlapic_init(void *vcpui)
{
struct vmx *vmx;
struct vmx_vcpu *vcpu;
struct vlapic *vlapic;
struct vlapic_vtx *vlapic_vtx;
vcpu = vcpui;
vmx = vcpu->vmx;
vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO);
vlapic->vm = vmx->vm;
vlapic->vcpu = vcpu->vcpu;
vlapic->vcpuid = vcpu->vcpuid;
vlapic->apic_page = (struct LAPIC *)vcpu->apic_page;
vlapic_vtx = (struct vlapic_vtx *)vlapic;
vlapic_vtx->pir_desc = vcpu->pir_desc;
vlapic_vtx->vcpu = vcpu;
if (tpr_shadowing) {
vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_ts;
}
if (virtual_interrupt_delivery) {
vlapic->ops.set_intr_ready = vmx_set_intr_ready;
vlapic->ops.pending_intr = vmx_pending_intr;
vlapic->ops.intr_accepted = vmx_intr_accepted;
vlapic->ops.set_tmr = vmx_set_tmr;
vlapic->ops.enable_x2apic_mode = vmx_enable_x2apic_mode_vid;
}
if (posted_interrupts)
vlapic->ops.post_intr = vmx_post_intr;
vlapic_init(vlapic);
return (vlapic);
}
static void
vmx_vlapic_cleanup(struct vlapic *vlapic)
{
vlapic_cleanup(vlapic);
free(vlapic, M_VLAPIC);
}
#ifdef BHYVE_SNAPSHOT
static int
vmx_vcpu_snapshot(void *vcpui, struct vm_snapshot_meta *meta)
{
struct vmcs *vmcs;
struct vmx *vmx;
struct vmx_vcpu *vcpu;
struct vmxctx *vmxctx;
int err, run, hostcpu;
err = 0;
vcpu = vcpui;
vmx = vcpu->vmx;
vmcs = vcpu->vmcs;
run = vcpu_is_running(vcpu->vcpu, &hostcpu);
if (run && hostcpu != curcpu) {
printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
vcpu->vcpuid);
return (EINVAL);
}
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR0, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR3, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CR4, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DR7, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RSP, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RIP, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_RFLAGS, meta);
/* Guest segments */
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_ES, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_ES, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_CS, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_CS, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_SS, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_SS, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_DS, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_DS, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_FS, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_FS, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_GS, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GS, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_TR, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_TR, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_LDTR, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_LDTR, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_EFER, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_IDTR, meta);
err += vmcs_snapshot_desc(vmcs, run, VM_REG_GUEST_GDTR, meta);
/* Guest page tables */
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE0, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE1, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE2, meta);
err += vmcs_snapshot_reg(vmcs, run, VM_REG_GUEST_PDPTE3, meta);
/* Other guest state */
err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_CS, meta);
err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_ESP, meta);
err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_IA32_SYSENTER_EIP, meta);
err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_INTERRUPTIBILITY, meta);
err += vmcs_snapshot_any(vmcs, run, VMCS_GUEST_ACTIVITY, meta);
err += vmcs_snapshot_any(vmcs, run, VMCS_ENTRY_CTLS, meta);
err += vmcs_snapshot_any(vmcs, run, VMCS_EXIT_CTLS, meta);
if (err != 0)
goto done;
SNAPSHOT_BUF_OR_LEAVE(vcpu->guest_msrs,
sizeof(vcpu->guest_msrs), meta, err, done);
SNAPSHOT_BUF_OR_LEAVE(vcpu->pir_desc,
sizeof(*vcpu->pir_desc), meta, err, done);
vmxctx = &vcpu->ctx;
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdi, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rsi, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rdx, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rcx, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r8, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r9, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rax, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbx, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_rbp, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r10, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r11, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r12, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r13, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r14, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_r15, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_cr2, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr0, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr1, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr2, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr3, meta, err, done);
SNAPSHOT_VAR_OR_LEAVE(vmxctx->guest_dr6, meta, err, done);
done:
return (err);
}
static int
vmx_restore_tsc(void *vcpui, uint64_t offset)
{
struct vmx_vcpu *vcpu = vcpui;
struct vmcs *vmcs;
struct vmx *vmx;
int error, running, hostcpu;
vmx = vcpu->vmx;
vmcs = vcpu->vmcs;
running = vcpu_is_running(vcpu->vcpu, &hostcpu);
if (running && hostcpu != curcpu) {
printf("%s: %s%d is running", __func__, vm_name(vmx->vm),
vcpu->vcpuid);
return (EINVAL);
}
if (!running)
VMPTRLD(vmcs);
error = vmx_set_tsc_offset(vcpu, offset);
if (!running)
VMCLEAR(vmcs);
return (error);
}
#endif
const struct vmm_ops vmm_ops_intel = {
.modinit = vmx_modinit,
.modcleanup = vmx_modcleanup,
.modresume = vmx_modresume,
.init = vmx_init,
.run = vmx_run,
.cleanup = vmx_cleanup,
.vcpu_init = vmx_vcpu_init,
.vcpu_cleanup = vmx_vcpu_cleanup,
.getreg = vmx_getreg,
.setreg = vmx_setreg,
.getdesc = vmx_getdesc,
.setdesc = vmx_setdesc,
.getcap = vmx_getcap,
.setcap = vmx_setcap,
.vmspace_alloc = vmx_vmspace_alloc,
.vmspace_free = vmx_vmspace_free,
.vlapic_init = vmx_vlapic_init,
.vlapic_cleanup = vmx_vlapic_cleanup,
#ifdef BHYVE_SNAPSHOT
.vcpu_snapshot = vmx_vcpu_snapshot,
.restore_tsc = vmx_restore_tsc,
#endif
};