/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2011 NetApp, Inc.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_bhyve_snapshot.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/sysctl.h>
#include <sys/malloc.h>
#include <sys/pcpu.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/sched.h>
#include <sys/smp.h>
#include <sys/sx.h>
#include <sys/vnode.h>
#include <vm/vm.h>
#include <vm/vm_param.h>
#include <vm/vm_extern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/pmap.h>
#include <vm/vm_map.h>
#include <vm/vm_pager.h>
#include <vm/vm_kern.h>
#include <vm/vnode_pager.h>
#include <vm/swap_pager.h>
#include <vm/uma.h>
#include <machine/cpu.h>
#include <machine/pcb.h>
#include <machine/smp.h>
#include <machine/md_var.h>
#include <x86/psl.h>
#include <x86/apicreg.h>
#include <x86/ifunc.h>
#include <machine/vmm.h>
#include <machine/vmm_dev.h>
#include <machine/vmm_instruction_emul.h>
#include <machine/vmm_snapshot.h>
#include "vmm_ioport.h"
#include "vmm_ktr.h"
#include "vmm_host.h"
#include "vmm_mem.h"
#include "vmm_util.h"
#include "vatpic.h"
#include "vatpit.h"
#include "vhpet.h"
#include "vioapic.h"
#include "vlapic.h"
#include "vpmtmr.h"
#include "vrtc.h"
#include "vmm_stat.h"
#include "vmm_lapic.h"
#include "io/ppt.h"
#include "io/iommu.h"
struct vlapic;
/*
* Initialization:
* (a) allocated when vcpu is created
* (i) initialized when vcpu is created and when it is reinitialized
* (o) initialized the first time the vcpu is created
* (x) initialized before use
*/
struct vcpu {
struct mtx mtx; /* (o) protects 'state' and 'hostcpu' */
enum vcpu_state state; /* (o) vcpu state */
int vcpuid; /* (o) */
int hostcpu; /* (o) vcpu's host cpu */
int reqidle; /* (i) request vcpu to idle */
struct vm *vm; /* (o) */
void *cookie; /* (i) cpu-specific data */
struct vlapic *vlapic; /* (i) APIC device model */
enum x2apic_state x2apic_state; /* (i) APIC mode */
uint64_t exitintinfo; /* (i) events pending at VM exit */
int nmi_pending; /* (i) NMI pending */
int extint_pending; /* (i) INTR pending */
int exception_pending; /* (i) exception pending */
int exc_vector; /* (x) exception collateral */
int exc_errcode_valid;
uint32_t exc_errcode;
struct savefpu *guestfpu; /* (a,i) guest fpu state */
uint64_t guest_xcr0; /* (i) guest %xcr0 register */
void *stats; /* (a,i) statistics */
struct vm_exit exitinfo; /* (x) exit reason and collateral */
cpuset_t exitinfo_cpuset; /* (x) storage for vmexit handlers */
uint64_t nextrip; /* (x) next instruction to execute */
uint64_t tsc_offset; /* (o) TSC offsetting */
};
#define vcpu_lock_init(v) mtx_init(&((v)->mtx), "vcpu lock", 0, MTX_SPIN)
#define vcpu_lock_destroy(v) mtx_destroy(&((v)->mtx))
#define vcpu_lock(v) mtx_lock_spin(&((v)->mtx))
#define vcpu_unlock(v) mtx_unlock_spin(&((v)->mtx))
#define vcpu_assert_locked(v) mtx_assert(&((v)->mtx), MA_OWNED)
struct mem_seg {
size_t len;
bool sysmem;
struct vm_object *object;
};
#define VM_MAX_MEMSEGS 4
struct mem_map {
vm_paddr_t gpa;
size_t len;
vm_ooffset_t segoff;
int segid;
int prot;
int flags;
};
#define VM_MAX_MEMMAPS 8
/*
* Initialization:
* (o) initialized the first time the VM is created
* (i) initialized when VM is created and when it is reinitialized
* (x) initialized before use
*
* Locking:
* [m] mem_segs_lock
* [r] rendezvous_mtx
* [v] reads require one frozen vcpu, writes require freezing all vcpus
*/
struct vm {
void *cookie; /* (i) cpu-specific data */
void *iommu; /* (x) iommu-specific data */
struct vhpet *vhpet; /* (i) virtual HPET */
struct vioapic *vioapic; /* (i) virtual ioapic */
struct vatpic *vatpic; /* (i) virtual atpic */
struct vatpit *vatpit; /* (i) virtual atpit */
struct vpmtmr *vpmtmr; /* (i) virtual ACPI PM timer */
struct vrtc *vrtc; /* (o) virtual RTC */
volatile cpuset_t active_cpus; /* (i) active vcpus */
volatile cpuset_t debug_cpus; /* (i) vcpus stopped for debug */
cpuset_t startup_cpus; /* (i) [r] waiting for startup */
int suspend; /* (i) stop VM execution */
bool dying; /* (o) is dying */
volatile cpuset_t suspended_cpus; /* (i) suspended vcpus */
volatile cpuset_t halted_cpus; /* (x) cpus in a hard halt */
cpuset_t rendezvous_req_cpus; /* (x) [r] rendezvous requested */
cpuset_t rendezvous_done_cpus; /* (x) [r] rendezvous finished */
void *rendezvous_arg; /* (x) [r] rendezvous func/arg */
vm_rendezvous_func_t rendezvous_func;
struct mtx rendezvous_mtx; /* (o) rendezvous lock */
struct mem_map mem_maps[VM_MAX_MEMMAPS]; /* (i) [m+v] guest address space */
struct mem_seg mem_segs[VM_MAX_MEMSEGS]; /* (o) [m+v] guest memory regions */
struct vmspace *vmspace; /* (o) guest's address space */
char name[VM_MAX_NAMELEN+1]; /* (o) virtual machine name */
struct vcpu **vcpu; /* (o) guest vcpus */
/* The following describe the vm cpu topology */
uint16_t sockets; /* (o) num of sockets */
uint16_t cores; /* (o) num of cores/socket */
uint16_t threads; /* (o) num of threads/core */
uint16_t maxcpus; /* (o) max pluggable cpus */
struct sx mem_segs_lock; /* (o) */
struct sx vcpus_init_lock; /* (o) */
};
#define VMM_CTR0(vcpu, format) \
VCPU_CTR0((vcpu)->vm, (vcpu)->vcpuid, format)
#define VMM_CTR1(vcpu, format, p1) \
VCPU_CTR1((vcpu)->vm, (vcpu)->vcpuid, format, p1)
#define VMM_CTR2(vcpu, format, p1, p2) \
VCPU_CTR2((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2)
#define VMM_CTR3(vcpu, format, p1, p2, p3) \
VCPU_CTR3((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3)
#define VMM_CTR4(vcpu, format, p1, p2, p3, p4) \
VCPU_CTR4((vcpu)->vm, (vcpu)->vcpuid, format, p1, p2, p3, p4)
static int vmm_initialized;
static void vmmops_panic(void);
static void
vmmops_panic(void)
{
panic("vmm_ops func called when !vmm_is_intel() && !vmm_is_svm()");
}
#define DEFINE_VMMOPS_IFUNC(ret_type, opname, args) \
DEFINE_IFUNC(static, ret_type, vmmops_##opname, args) \
{ \
if (vmm_is_intel()) \
return (vmm_ops_intel.opname); \
else if (vmm_is_svm()) \
return (vmm_ops_amd.opname); \
else \
return ((ret_type (*)args)vmmops_panic); \
}
DEFINE_VMMOPS_IFUNC(int, modinit, (int ipinum))
DEFINE_VMMOPS_IFUNC(int, modcleanup, (void))
DEFINE_VMMOPS_IFUNC(void, modresume, (void))
DEFINE_VMMOPS_IFUNC(void *, init, (struct vm *vm, struct pmap *pmap))
DEFINE_VMMOPS_IFUNC(int, run, (void *vcpui, register_t rip, struct pmap *pmap,
struct vm_eventinfo *info))
DEFINE_VMMOPS_IFUNC(void, cleanup, (void *vmi))
DEFINE_VMMOPS_IFUNC(void *, vcpu_init, (void *vmi, struct vcpu *vcpu,
int vcpu_id))
DEFINE_VMMOPS_IFUNC(void, vcpu_cleanup, (void *vcpui))
DEFINE_VMMOPS_IFUNC(int, getreg, (void *vcpui, int num, uint64_t *retval))
DEFINE_VMMOPS_IFUNC(int, setreg, (void *vcpui, int num, uint64_t val))
DEFINE_VMMOPS_IFUNC(int, getdesc, (void *vcpui, int num, struct seg_desc *desc))
DEFINE_VMMOPS_IFUNC(int, setdesc, (void *vcpui, int num, struct seg_desc *desc))
DEFINE_VMMOPS_IFUNC(int, getcap, (void *vcpui, int num, int *retval))
DEFINE_VMMOPS_IFUNC(int, setcap, (void *vcpui, int num, int val))
DEFINE_VMMOPS_IFUNC(struct vmspace *, vmspace_alloc, (vm_offset_t min,
vm_offset_t max))
DEFINE_VMMOPS_IFUNC(void, vmspace_free, (struct vmspace *vmspace))
DEFINE_VMMOPS_IFUNC(struct vlapic *, vlapic_init, (void *vcpui))
DEFINE_VMMOPS_IFUNC(void, vlapic_cleanup, (struct vlapic *vlapic))
#ifdef BHYVE_SNAPSHOT
DEFINE_VMMOPS_IFUNC(int, vcpu_snapshot, (void *vcpui,
struct vm_snapshot_meta *meta))
DEFINE_VMMOPS_IFUNC(int, restore_tsc, (void *vcpui, uint64_t now))
#endif
#define fpu_start_emulating() load_cr0(rcr0() | CR0_TS)
#define fpu_stop_emulating() clts()
SDT_PROVIDER_DEFINE(vmm);
static MALLOC_DEFINE(M_VM, "vm", "vm");
/* statistics */
static VMM_STAT(VCPU_TOTAL_RUNTIME, "vcpu total runtime");
SYSCTL_NODE(_hw, OID_AUTO, vmm, CTLFLAG_RW | CTLFLAG_MPSAFE, NULL,
NULL);
/*
* Halt the guest if all vcpus are executing a HLT instruction with
* interrupts disabled.
*/
static int halt_detection_enabled = 1;
SYSCTL_INT(_hw_vmm, OID_AUTO, halt_detection, CTLFLAG_RDTUN,
&halt_detection_enabled, 0,
"Halt VM if all vcpus execute HLT with interrupts disabled");
static int vmm_ipinum;
SYSCTL_INT(_hw_vmm, OID_AUTO, ipinum, CTLFLAG_RD, &vmm_ipinum, 0,
"IPI vector used for vcpu notifications");
static int trace_guest_exceptions;
SYSCTL_INT(_hw_vmm, OID_AUTO, trace_guest_exceptions, CTLFLAG_RDTUN,
&trace_guest_exceptions, 0,
"Trap into hypervisor on all guest exceptions and reflect them back");
static int trap_wbinvd;
SYSCTL_INT(_hw_vmm, OID_AUTO, trap_wbinvd, CTLFLAG_RDTUN, &trap_wbinvd, 0,
"WBINVD triggers a VM-exit");
u_int vm_maxcpu;
SYSCTL_UINT(_hw_vmm, OID_AUTO, maxcpu, CTLFLAG_RDTUN | CTLFLAG_NOFETCH,
&vm_maxcpu, 0, "Maximum number of vCPUs");
static void vm_free_memmap(struct vm *vm, int ident);
static bool sysmem_mapping(struct vm *vm, struct mem_map *mm);
static void vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr);
/*
* Upper limit on vm_maxcpu. Limited by use of uint16_t types for CPU
* counts as well as range of vpid values for VT-x and by the capacity
* of cpuset_t masks. The call to new_unrhdr() in vpid_init() in
* vmx.c requires 'vm_maxcpu + 1 <= 0xffff', hence the '- 1' below.
*/
#define VM_MAXCPU MIN(0xffff - 1, CPU_SETSIZE)
#ifdef KTR
static const char *
vcpu_state2str(enum vcpu_state state)
{
switch (state) {
case VCPU_IDLE:
return ("idle");
case VCPU_FROZEN:
return ("frozen");
case VCPU_RUNNING:
return ("running");
case VCPU_SLEEPING:
return ("sleeping");
default:
return ("unknown");
}
}
#endif
static void
vcpu_cleanup(struct vcpu *vcpu, bool destroy)
{
vmmops_vlapic_cleanup(vcpu->vlapic);
vmmops_vcpu_cleanup(vcpu->cookie);
vcpu->cookie = NULL;
if (destroy) {
vmm_stat_free(vcpu->stats);
fpu_save_area_free(vcpu->guestfpu);
vcpu_lock_destroy(vcpu);
free(vcpu, M_VM);
}
}
static struct vcpu *
vcpu_alloc(struct vm *vm, int vcpu_id)
{
struct vcpu *vcpu;
KASSERT(vcpu_id >= 0 && vcpu_id < vm->maxcpus,
("vcpu_init: invalid vcpu %d", vcpu_id));
vcpu = malloc(sizeof(*vcpu), M_VM, M_WAITOK | M_ZERO);
vcpu_lock_init(vcpu);
vcpu->state = VCPU_IDLE;
vcpu->hostcpu = NOCPU;
vcpu->vcpuid = vcpu_id;
vcpu->vm = vm;
vcpu->guestfpu = fpu_save_area_alloc();
vcpu->stats = vmm_stat_alloc();
vcpu->tsc_offset = 0;
return (vcpu);
}
static void
vcpu_init(struct vcpu *vcpu)
{
vcpu->cookie = vmmops_vcpu_init(vcpu->vm->cookie, vcpu, vcpu->vcpuid);
vcpu->vlapic = vmmops_vlapic_init(vcpu->cookie);
vm_set_x2apic_state(vcpu, X2APIC_DISABLED);
vcpu->reqidle = 0;
vcpu->exitintinfo = 0;
vcpu->nmi_pending = 0;
vcpu->extint_pending = 0;
vcpu->exception_pending = 0;
vcpu->guest_xcr0 = XFEATURE_ENABLED_X87;
fpu_save_area_reset(vcpu->guestfpu);
vmm_stat_init(vcpu->stats);
}
int
vcpu_trace_exceptions(struct vcpu *vcpu)
{
return (trace_guest_exceptions);
}
int
vcpu_trap_wbinvd(struct vcpu *vcpu)
{
return (trap_wbinvd);
}
struct vm_exit *
vm_exitinfo(struct vcpu *vcpu)
{
return (&vcpu->exitinfo);
}
cpuset_t *
vm_exitinfo_cpuset(struct vcpu *vcpu)
{
return (&vcpu->exitinfo_cpuset);
}
static int
vmm_init(void)
{
int error;
if (!vmm_is_hw_supported())
return (ENXIO);
vm_maxcpu = mp_ncpus;
TUNABLE_INT_FETCH("hw.vmm.maxcpu", &vm_maxcpu);
if (vm_maxcpu > VM_MAXCPU) {
printf("vmm: vm_maxcpu clamped to %u\n", VM_MAXCPU);
vm_maxcpu = VM_MAXCPU;
}
if (vm_maxcpu == 0)
vm_maxcpu = 1;
vmm_host_state_init();
vmm_ipinum = lapic_ipi_alloc(pti ? &IDTVEC(justreturn1_pti) :
&IDTVEC(justreturn));
if (vmm_ipinum < 0)
vmm_ipinum = IPI_AST;
error = vmm_mem_init();
if (error)
return (error);
vmm_resume_p = vmmops_modresume;
return (vmmops_modinit(vmm_ipinum));
}
static int
vmm_handler(module_t mod, int what, void *arg)
{
int error;
switch (what) {
case MOD_LOAD:
if (vmm_is_hw_supported()) {
vmmdev_init();
error = vmm_init();
if (error == 0)
vmm_initialized = 1;
} else {
error = ENXIO;
}
break;
case MOD_UNLOAD:
if (vmm_is_hw_supported()) {
error = vmmdev_cleanup();
if (error == 0) {
vmm_resume_p = NULL;
iommu_cleanup();
if (vmm_ipinum != IPI_AST)
lapic_ipi_free(vmm_ipinum);
error = vmmops_modcleanup();
/*
* Something bad happened - prevent new
* VMs from being created
*/
if (error)
vmm_initialized = 0;
}
} else {
error = 0;
}
break;
default:
error = 0;
break;
}
return (error);
}
static moduledata_t vmm_kmod = {
"vmm",
vmm_handler,
NULL
};
/*
* vmm initialization has the following dependencies:
*
* - VT-x initialization requires smp_rendezvous() and therefore must happen
* after SMP is fully functional (after SI_SUB_SMP).
*/
DECLARE_MODULE(vmm, vmm_kmod, SI_SUB_SMP + 1, SI_ORDER_ANY);
MODULE_VERSION(vmm, 1);
static void
vm_init(struct vm *vm, bool create)
{
vm->cookie = vmmops_init(vm, vmspace_pmap(vm->vmspace));
vm->iommu = NULL;
vm->vioapic = vioapic_init(vm);
vm->vhpet = vhpet_init(vm);
vm->vatpic = vatpic_init(vm);
vm->vatpit = vatpit_init(vm);
vm->vpmtmr = vpmtmr_init(vm);
if (create)
vm->vrtc = vrtc_init(vm);
CPU_ZERO(&vm->active_cpus);
CPU_ZERO(&vm->debug_cpus);
CPU_ZERO(&vm->startup_cpus);
vm->suspend = 0;
CPU_ZERO(&vm->suspended_cpus);
if (!create) {
for (int i = 0; i < vm->maxcpus; i++) {
if (vm->vcpu[i] != NULL)
vcpu_init(vm->vcpu[i]);
}
}
}
void
vm_disable_vcpu_creation(struct vm *vm)
{
sx_xlock(&vm->vcpus_init_lock);
vm->dying = true;
sx_xunlock(&vm->vcpus_init_lock);
}
struct vcpu *
vm_alloc_vcpu(struct vm *vm, int vcpuid)
{
struct vcpu *vcpu;
if (vcpuid < 0 || vcpuid >= vm_get_maxcpus(vm))
return (NULL);
vcpu = atomic_load_ptr(&vm->vcpu[vcpuid]);
if (__predict_true(vcpu != NULL))
return (vcpu);
sx_xlock(&vm->vcpus_init_lock);
vcpu = vm->vcpu[vcpuid];
if (vcpu == NULL && !vm->dying) {
vcpu = vcpu_alloc(vm, vcpuid);
vcpu_init(vcpu);
/*
* Ensure vCPU is fully created before updating pointer
* to permit unlocked reads above.
*/
atomic_store_rel_ptr((uintptr_t *)&vm->vcpu[vcpuid],
(uintptr_t)vcpu);
}
sx_xunlock(&vm->vcpus_init_lock);
return (vcpu);
}
void
vm_slock_vcpus(struct vm *vm)
{
sx_slock(&vm->vcpus_init_lock);
}
void
vm_unlock_vcpus(struct vm *vm)
{
sx_unlock(&vm->vcpus_init_lock);
}
/*
* The default CPU topology is a single thread per package.
*/
u_int cores_per_package = 1;
u_int threads_per_core = 1;
int
vm_create(const char *name, struct vm **retvm)
{
struct vm *vm;
struct vmspace *vmspace;
/*
* If vmm.ko could not be successfully initialized then don't attempt
* to create the virtual machine.
*/
if (!vmm_initialized)
return (ENXIO);
if (name == NULL || strnlen(name, VM_MAX_NAMELEN + 1) ==
VM_MAX_NAMELEN + 1)
return (EINVAL);
vmspace = vmmops_vmspace_alloc(0, VM_MAXUSER_ADDRESS_LA48);
if (vmspace == NULL)
return (ENOMEM);
vm = malloc(sizeof(struct vm), M_VM, M_WAITOK | M_ZERO);
strcpy(vm->name, name);
vm->vmspace = vmspace;
mtx_init(&vm->rendezvous_mtx, "vm rendezvous lock", 0, MTX_DEF);
sx_init(&vm->mem_segs_lock, "vm mem_segs");
sx_init(&vm->vcpus_init_lock, "vm vcpus");
vm->vcpu = malloc(sizeof(*vm->vcpu) * vm_maxcpu, M_VM, M_WAITOK |
M_ZERO);
vm->sockets = 1;
vm->cores = cores_per_package; /* XXX backwards compatibility */
vm->threads = threads_per_core; /* XXX backwards compatibility */
vm->maxcpus = vm_maxcpu;
vm_init(vm, true);
*retvm = vm;
return (0);
}
void
vm_get_topology(struct vm *vm, uint16_t *sockets, uint16_t *cores,
uint16_t *threads, uint16_t *maxcpus)
{
*sockets = vm->sockets;
*cores = vm->cores;
*threads = vm->threads;
*maxcpus = vm->maxcpus;
}
uint16_t
vm_get_maxcpus(struct vm *vm)
{
return (vm->maxcpus);
}
int
vm_set_topology(struct vm *vm, uint16_t sockets, uint16_t cores,
uint16_t threads, uint16_t maxcpus __unused)
{
/* Ignore maxcpus. */
if ((sockets * cores * threads) > vm->maxcpus)
return (EINVAL);
vm->sockets = sockets;
vm->cores = cores;
vm->threads = threads;
return(0);
}
static void
vm_cleanup(struct vm *vm, bool destroy)
{
struct mem_map *mm;
int i;
if (destroy)
vm_xlock_memsegs(vm);
ppt_unassign_all(vm);
if (vm->iommu != NULL)
iommu_destroy_domain(vm->iommu);
if (destroy)
vrtc_cleanup(vm->vrtc);
else
vrtc_reset(vm->vrtc);
vpmtmr_cleanup(vm->vpmtmr);
vatpit_cleanup(vm->vatpit);
vhpet_cleanup(vm->vhpet);
vatpic_cleanup(vm->vatpic);
vioapic_cleanup(vm->vioapic);
for (i = 0; i < vm->maxcpus; i++) {
if (vm->vcpu[i] != NULL)
vcpu_cleanup(vm->vcpu[i], destroy);
}
vmmops_cleanup(vm->cookie);
/*
* System memory is removed from the guest address space only when
* the VM is destroyed. This is because the mapping remains the same
* across VM reset.
*
* Device memory can be relocated by the guest (e.g. using PCI BARs)
* so those mappings are removed on a VM reset.
*/
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
mm = &vm->mem_maps[i];
if (destroy || !sysmem_mapping(vm, mm))
vm_free_memmap(vm, i);
}
if (destroy) {
for (i = 0; i < VM_MAX_MEMSEGS; i++)
vm_free_memseg(vm, i);
vm_unlock_memsegs(vm);
vmmops_vmspace_free(vm->vmspace);
vm->vmspace = NULL;
free(vm->vcpu, M_VM);
sx_destroy(&vm->vcpus_init_lock);
sx_destroy(&vm->mem_segs_lock);
mtx_destroy(&vm->rendezvous_mtx);
}
}
void
vm_destroy(struct vm *vm)
{
vm_cleanup(vm, true);
free(vm, M_VM);
}
int
vm_reinit(struct vm *vm)
{
int error;
/*
* A virtual machine can be reset only if all vcpus are suspended.
*/
if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
vm_cleanup(vm, false);
vm_init(vm, false);
error = 0;
} else {
error = EBUSY;
}
return (error);
}
const char *
vm_name(struct vm *vm)
{
return (vm->name);
}
void
vm_slock_memsegs(struct vm *vm)
{
sx_slock(&vm->mem_segs_lock);
}
void
vm_xlock_memsegs(struct vm *vm)
{
sx_xlock(&vm->mem_segs_lock);
}
void
vm_unlock_memsegs(struct vm *vm)
{
sx_unlock(&vm->mem_segs_lock);
}
int
vm_map_mmio(struct vm *vm, vm_paddr_t gpa, size_t len, vm_paddr_t hpa)
{
vm_object_t obj;
if ((obj = vmm_mmio_alloc(vm->vmspace, gpa, len, hpa)) == NULL)
return (ENOMEM);
else
return (0);
}
int
vm_unmap_mmio(struct vm *vm, vm_paddr_t gpa, size_t len)
{
vmm_mmio_free(vm->vmspace, gpa, len);
return (0);
}
/*
* Return 'true' if 'gpa' is allocated in the guest address space.
*
* This function is called in the context of a running vcpu which acts as
* an implicit lock on 'vm->mem_maps[]'.
*/
bool
vm_mem_allocated(struct vcpu *vcpu, vm_paddr_t gpa)
{
struct vm *vm = vcpu->vm;
struct mem_map *mm;
int i;
#ifdef INVARIANTS
int hostcpu, state;
state = vcpu_get_state(vcpu, &hostcpu);
KASSERT(state == VCPU_RUNNING && hostcpu == curcpu,
("%s: invalid vcpu state %d/%d", __func__, state, hostcpu));
#endif
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
mm = &vm->mem_maps[i];
if (mm->len != 0 && gpa >= mm->gpa && gpa < mm->gpa + mm->len)
return (true); /* 'gpa' is sysmem or devmem */
}
if (ppt_is_mmio(vm, gpa))
return (true); /* 'gpa' is pci passthru mmio */
return (false);
}
int
vm_alloc_memseg(struct vm *vm, int ident, size_t len, bool sysmem)
{
struct mem_seg *seg;
vm_object_t obj;
sx_assert(&vm->mem_segs_lock, SX_XLOCKED);
if (ident < 0 || ident >= VM_MAX_MEMSEGS)
return (EINVAL);
if (len == 0 || (len & PAGE_MASK))
return (EINVAL);
seg = &vm->mem_segs[ident];
if (seg->object != NULL) {
if (seg->len == len && seg->sysmem == sysmem)
return (EEXIST);
else
return (EINVAL);
}
obj = vm_object_allocate(OBJT_SWAP, len >> PAGE_SHIFT);
if (obj == NULL)
return (ENOMEM);
seg->len = len;
seg->object = obj;
seg->sysmem = sysmem;
return (0);
}
int
vm_get_memseg(struct vm *vm, int ident, size_t *len, bool *sysmem,
vm_object_t *objptr)
{
struct mem_seg *seg;
sx_assert(&vm->mem_segs_lock, SX_LOCKED);
if (ident < 0 || ident >= VM_MAX_MEMSEGS)
return (EINVAL);
seg = &vm->mem_segs[ident];
if (len)
*len = seg->len;
if (sysmem)
*sysmem = seg->sysmem;
if (objptr)
*objptr = seg->object;
return (0);
}
void
vm_free_memseg(struct vm *vm, int ident)
{
struct mem_seg *seg;
KASSERT(ident >= 0 && ident < VM_MAX_MEMSEGS,
("%s: invalid memseg ident %d", __func__, ident));
seg = &vm->mem_segs[ident];
if (seg->object != NULL) {
vm_object_deallocate(seg->object);
bzero(seg, sizeof(struct mem_seg));
}
}
int
vm_mmap_memseg(struct vm *vm, vm_paddr_t gpa, int segid, vm_ooffset_t first,
size_t len, int prot, int flags)
{
struct mem_seg *seg;
struct mem_map *m, *map;
vm_ooffset_t last;
int i, error;
if (prot == 0 || (prot & ~(VM_PROT_ALL)) != 0)
return (EINVAL);
if (flags & ~VM_MEMMAP_F_WIRED)
return (EINVAL);
if (segid < 0 || segid >= VM_MAX_MEMSEGS)
return (EINVAL);
seg = &vm->mem_segs[segid];
if (seg->object == NULL)
return (EINVAL);
last = first + len;
if (first < 0 || first >= last || last > seg->len)
return (EINVAL);
if ((gpa | first | last) & PAGE_MASK)
return (EINVAL);
map = NULL;
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
m = &vm->mem_maps[i];
if (m->len == 0) {
map = m;
break;
}
}
if (map == NULL)
return (ENOSPC);
error = vm_map_find(&vm->vmspace->vm_map, seg->object, first, &gpa,
len, 0, VMFS_NO_SPACE, prot, prot, 0);
if (error != KERN_SUCCESS)
return (EFAULT);
vm_object_reference(seg->object);
if (flags & VM_MEMMAP_F_WIRED) {
error = vm_map_wire(&vm->vmspace->vm_map, gpa, gpa + len,
VM_MAP_WIRE_USER | VM_MAP_WIRE_NOHOLES);
if (error != KERN_SUCCESS) {
vm_map_remove(&vm->vmspace->vm_map, gpa, gpa + len);
return (error == KERN_RESOURCE_SHORTAGE ? ENOMEM :
EFAULT);
}
}
map->gpa = gpa;
map->len = len;
map->segoff = first;
map->segid = segid;
map->prot = prot;
map->flags = flags;
return (0);
}
int
vm_munmap_memseg(struct vm *vm, vm_paddr_t gpa, size_t len)
{
struct mem_map *m;
int i;
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
m = &vm->mem_maps[i];
if (m->gpa == gpa && m->len == len &&
(m->flags & VM_MEMMAP_F_IOMMU) == 0) {
vm_free_memmap(vm, i);
return (0);
}
}
return (EINVAL);
}
int
vm_mmap_getnext(struct vm *vm, vm_paddr_t *gpa, int *segid,
vm_ooffset_t *segoff, size_t *len, int *prot, int *flags)
{
struct mem_map *mm, *mmnext;
int i;
mmnext = NULL;
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
mm = &vm->mem_maps[i];
if (mm->len == 0 || mm->gpa < *gpa)
continue;
if (mmnext == NULL || mm->gpa < mmnext->gpa)
mmnext = mm;
}
if (mmnext != NULL) {
*gpa = mmnext->gpa;
if (segid)
*segid = mmnext->segid;
if (segoff)
*segoff = mmnext->segoff;
if (len)
*len = mmnext->len;
if (prot)
*prot = mmnext->prot;
if (flags)
*flags = mmnext->flags;
return (0);
} else {
return (ENOENT);
}
}
static void
vm_free_memmap(struct vm *vm, int ident)
{
struct mem_map *mm;
int error __diagused;
mm = &vm->mem_maps[ident];
if (mm->len) {
error = vm_map_remove(&vm->vmspace->vm_map, mm->gpa,
mm->gpa + mm->len);
KASSERT(error == KERN_SUCCESS, ("%s: vm_map_remove error %d",
__func__, error));
bzero(mm, sizeof(struct mem_map));
}
}
static __inline bool
sysmem_mapping(struct vm *vm, struct mem_map *mm)
{
if (mm->len != 0 && vm->mem_segs[mm->segid].sysmem)
return (true);
else
return (false);
}
vm_paddr_t
vmm_sysmem_maxaddr(struct vm *vm)
{
struct mem_map *mm;
vm_paddr_t maxaddr;
int i;
maxaddr = 0;
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
mm = &vm->mem_maps[i];
if (sysmem_mapping(vm, mm)) {
if (maxaddr < mm->gpa + mm->len)
maxaddr = mm->gpa + mm->len;
}
}
return (maxaddr);
}
static void
vm_iommu_modify(struct vm *vm, bool map)
{
int i, sz;
vm_paddr_t gpa, hpa;
struct mem_map *mm;
void *vp, *cookie, *host_domain;
sz = PAGE_SIZE;
host_domain = iommu_host_domain();
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
mm = &vm->mem_maps[i];
if (!sysmem_mapping(vm, mm))
continue;
if (map) {
KASSERT((mm->flags & VM_MEMMAP_F_IOMMU) == 0,
("iommu map found invalid memmap %#lx/%#lx/%#x",
mm->gpa, mm->len, mm->flags));
if ((mm->flags & VM_MEMMAP_F_WIRED) == 0)
continue;
mm->flags |= VM_MEMMAP_F_IOMMU;
} else {
if ((mm->flags & VM_MEMMAP_F_IOMMU) == 0)
continue;
mm->flags &= ~VM_MEMMAP_F_IOMMU;
KASSERT((mm->flags & VM_MEMMAP_F_WIRED) != 0,
("iommu unmap found invalid memmap %#lx/%#lx/%#x",
mm->gpa, mm->len, mm->flags));
}
gpa = mm->gpa;
while (gpa < mm->gpa + mm->len) {
vp = vm_gpa_hold_global(vm, gpa, PAGE_SIZE,
VM_PROT_WRITE, &cookie);
KASSERT(vp != NULL, ("vm(%s) could not map gpa %#lx",
vm_name(vm), gpa));
vm_gpa_release(cookie);
hpa = DMAP_TO_PHYS((uintptr_t)vp);
if (map) {
iommu_create_mapping(vm->iommu, gpa, hpa, sz);
} else {
iommu_remove_mapping(vm->iommu, gpa, sz);
}
gpa += PAGE_SIZE;
}
}
/*
* Invalidate the cached translations associated with the domain
* from which pages were removed.
*/
if (map)
iommu_invalidate_tlb(host_domain);
else
iommu_invalidate_tlb(vm->iommu);
}
#define vm_iommu_unmap(vm) vm_iommu_modify((vm), false)
#define vm_iommu_map(vm) vm_iommu_modify((vm), true)
int
vm_unassign_pptdev(struct vm *vm, int bus, int slot, int func)
{
int error;
error = ppt_unassign_device(vm, bus, slot, func);
if (error)
return (error);
if (ppt_assigned_devices(vm) == 0)
vm_iommu_unmap(vm);
return (0);
}
int
vm_assign_pptdev(struct vm *vm, int bus, int slot, int func)
{
int error;
vm_paddr_t maxaddr;
/* Set up the IOMMU to do the 'gpa' to 'hpa' translation */
if (ppt_assigned_devices(vm) == 0) {
KASSERT(vm->iommu == NULL,
("vm_assign_pptdev: iommu must be NULL"));
maxaddr = vmm_sysmem_maxaddr(vm);
vm->iommu = iommu_create_domain(maxaddr);
if (vm->iommu == NULL)
return (ENXIO);
vm_iommu_map(vm);
}
error = ppt_assign_device(vm, bus, slot, func);
return (error);
}
static void *
_vm_gpa_hold(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
void **cookie)
{
int i, count, pageoff;
struct mem_map *mm;
vm_page_t m;
pageoff = gpa & PAGE_MASK;
if (len > PAGE_SIZE - pageoff)
panic("vm_gpa_hold: invalid gpa/len: 0x%016lx/%lu", gpa, len);
count = 0;
for (i = 0; i < VM_MAX_MEMMAPS; i++) {
mm = &vm->mem_maps[i];
if (gpa >= mm->gpa && gpa < mm->gpa + mm->len) {
count = vm_fault_quick_hold_pages(&vm->vmspace->vm_map,
trunc_page(gpa), PAGE_SIZE, reqprot, &m, 1);
break;
}
}
if (count == 1) {
*cookie = m;
return ((void *)(PHYS_TO_DMAP(VM_PAGE_TO_PHYS(m)) + pageoff));
} else {
*cookie = NULL;
return (NULL);
}
}
void *
vm_gpa_hold(struct vcpu *vcpu, vm_paddr_t gpa, size_t len, int reqprot,
void **cookie)
{
#ifdef INVARIANTS
/*
* The current vcpu should be frozen to ensure 'vm_memmap[]'
* stability.
*/
int state = vcpu_get_state(vcpu, NULL);
KASSERT(state == VCPU_FROZEN, ("%s: invalid vcpu state %d",
__func__, state));
#endif
return (_vm_gpa_hold(vcpu->vm, gpa, len, reqprot, cookie));
}
void *
vm_gpa_hold_global(struct vm *vm, vm_paddr_t gpa, size_t len, int reqprot,
void **cookie)
{
sx_assert(&vm->mem_segs_lock, SX_LOCKED);
return (_vm_gpa_hold(vm, gpa, len, reqprot, cookie));
}
void
vm_gpa_release(void *cookie)
{
vm_page_t m = cookie;
vm_page_unwire(m, PQ_ACTIVE);
}
int
vm_get_register(struct vcpu *vcpu, int reg, uint64_t *retval)
{
if (reg >= VM_REG_LAST)
return (EINVAL);
return (vmmops_getreg(vcpu->cookie, reg, retval));
}
int
vm_set_register(struct vcpu *vcpu, int reg, uint64_t val)
{
int error;
if (reg >= VM_REG_LAST)
return (EINVAL);
error = vmmops_setreg(vcpu->cookie, reg, val);
if (error || reg != VM_REG_GUEST_RIP)
return (error);
/* Set 'nextrip' to match the value of %rip */
VMM_CTR1(vcpu, "Setting nextrip to %#lx", val);
vcpu->nextrip = val;
return (0);
}
static bool
is_descriptor_table(int reg)
{
switch (reg) {
case VM_REG_GUEST_IDTR:
case VM_REG_GUEST_GDTR:
return (true);
default:
return (false);
}
}
static bool
is_segment_register(int reg)
{
switch (reg) {
case VM_REG_GUEST_ES:
case VM_REG_GUEST_CS:
case VM_REG_GUEST_SS:
case VM_REG_GUEST_DS:
case VM_REG_GUEST_FS:
case VM_REG_GUEST_GS:
case VM_REG_GUEST_TR:
case VM_REG_GUEST_LDTR:
return (true);
default:
return (false);
}
}
int
vm_get_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
{
if (!is_segment_register(reg) && !is_descriptor_table(reg))
return (EINVAL);
return (vmmops_getdesc(vcpu->cookie, reg, desc));
}
int
vm_set_seg_desc(struct vcpu *vcpu, int reg, struct seg_desc *desc)
{
if (!is_segment_register(reg) && !is_descriptor_table(reg))
return (EINVAL);
return (vmmops_setdesc(vcpu->cookie, reg, desc));
}
static void
restore_guest_fpustate(struct vcpu *vcpu)
{
/* flush host state to the pcb */
fpuexit(curthread);
/* restore guest FPU state */
fpu_stop_emulating();
fpurestore(vcpu->guestfpu);
/* restore guest XCR0 if XSAVE is enabled in the host */
if (rcr4() & CR4_XSAVE)
load_xcr(0, vcpu->guest_xcr0);
/*
* The FPU is now "dirty" with the guest's state so turn on emulation
* to trap any access to the FPU by the host.
*/
fpu_start_emulating();
}
static void
save_guest_fpustate(struct vcpu *vcpu)
{
if ((rcr0() & CR0_TS) == 0)
panic("fpu emulation not enabled in host!");
/* save guest XCR0 and restore host XCR0 */
if (rcr4() & CR4_XSAVE) {
vcpu->guest_xcr0 = rxcr(0);
load_xcr(0, vmm_get_host_xcr0());
}
/* save guest FPU state */
fpu_stop_emulating();
fpusave(vcpu->guestfpu);
fpu_start_emulating();
}
static VMM_STAT(VCPU_IDLE_TICKS, "number of ticks vcpu was idle");
static int
vcpu_set_state_locked(struct vcpu *vcpu, enum vcpu_state newstate,
bool from_idle)
{
int error;
vcpu_assert_locked(vcpu);
/*
* State transitions from the vmmdev_ioctl() must always begin from
* the VCPU_IDLE state. This guarantees that there is only a single
* ioctl() operating on a vcpu at any point.
*/
if (from_idle) {
while (vcpu->state != VCPU_IDLE) {
vcpu->reqidle = 1;
vcpu_notify_event_locked(vcpu, false);
VMM_CTR1(vcpu, "vcpu state change from %s to "
"idle requested", vcpu_state2str(vcpu->state));
msleep_spin(&vcpu->state, &vcpu->mtx, "vmstat", hz);
}
} else {
KASSERT(vcpu->state != VCPU_IDLE, ("invalid transition from "
"vcpu idle state"));
}
if (vcpu->state == VCPU_RUNNING) {
KASSERT(vcpu->hostcpu == curcpu, ("curcpu %d and hostcpu %d "
"mismatch for running vcpu", curcpu, vcpu->hostcpu));
} else {
KASSERT(vcpu->hostcpu == NOCPU, ("Invalid hostcpu %d for a "
"vcpu that is not running", vcpu->hostcpu));
}
/*
* The following state transitions are allowed:
* IDLE -> FROZEN -> IDLE
* FROZEN -> RUNNING -> FROZEN
* FROZEN -> SLEEPING -> FROZEN
*/
switch (vcpu->state) {
case VCPU_IDLE:
case VCPU_RUNNING:
case VCPU_SLEEPING:
error = (newstate != VCPU_FROZEN);
break;
case VCPU_FROZEN:
error = (newstate == VCPU_FROZEN);
break;
default:
error = 1;
break;
}
if (error)
return (EBUSY);
VMM_CTR2(vcpu, "vcpu state changed from %s to %s",
vcpu_state2str(vcpu->state), vcpu_state2str(newstate));
vcpu->state = newstate;
if (newstate == VCPU_RUNNING)
vcpu->hostcpu = curcpu;
else
vcpu->hostcpu = NOCPU;
if (newstate == VCPU_IDLE)
wakeup(&vcpu->state);
return (0);
}
static void
vcpu_require_state(struct vcpu *vcpu, enum vcpu_state newstate)
{
int error;
if ((error = vcpu_set_state(vcpu, newstate, false)) != 0)
panic("Error %d setting state to %d\n", error, newstate);
}
static void
vcpu_require_state_locked(struct vcpu *vcpu, enum vcpu_state newstate)
{
int error;
if ((error = vcpu_set_state_locked(vcpu, newstate, false)) != 0)
panic("Error %d setting state to %d", error, newstate);
}
static int
vm_handle_rendezvous(struct vcpu *vcpu)
{
struct vm *vm = vcpu->vm;
struct thread *td;
int error, vcpuid;
error = 0;
vcpuid = vcpu->vcpuid;
td = curthread;
mtx_lock(&vm->rendezvous_mtx);
while (vm->rendezvous_func != NULL) {
/* 'rendezvous_req_cpus' must be a subset of 'active_cpus' */
CPU_AND(&vm->rendezvous_req_cpus, &vm->rendezvous_req_cpus, &vm->active_cpus);
if (CPU_ISSET(vcpuid, &vm->rendezvous_req_cpus) &&
!CPU_ISSET(vcpuid, &vm->rendezvous_done_cpus)) {
VMM_CTR0(vcpu, "Calling rendezvous func");
(*vm->rendezvous_func)(vcpu, vm->rendezvous_arg);
CPU_SET(vcpuid, &vm->rendezvous_done_cpus);
}
if (CPU_CMP(&vm->rendezvous_req_cpus,
&vm->rendezvous_done_cpus) == 0) {
VMM_CTR0(vcpu, "Rendezvous completed");
CPU_ZERO(&vm->rendezvous_req_cpus);
vm->rendezvous_func = NULL;
wakeup(&vm->rendezvous_func);
break;
}
VMM_CTR0(vcpu, "Wait for rendezvous completion");
mtx_sleep(&vm->rendezvous_func, &vm->rendezvous_mtx, 0,
"vmrndv", hz);
if (td_ast_pending(td, TDA_SUSPEND)) {
mtx_unlock(&vm->rendezvous_mtx);
error = thread_check_susp(td, true);
if (error != 0)
return (error);
mtx_lock(&vm->rendezvous_mtx);
}
}
mtx_unlock(&vm->rendezvous_mtx);
return (0);
}
/*
* Emulate a guest 'hlt' by sleeping until the vcpu is ready to run.
*/
static int
vm_handle_hlt(struct vcpu *vcpu, bool intr_disabled, bool *retu)
{
struct vm *vm = vcpu->vm;
const char *wmesg;
struct thread *td;
int error, t, vcpuid, vcpu_halted, vm_halted;
vcpuid = vcpu->vcpuid;
vcpu_halted = 0;
vm_halted = 0;
error = 0;
td = curthread;
KASSERT(!CPU_ISSET(vcpuid, &vm->halted_cpus), ("vcpu already halted"));
vcpu_lock(vcpu);
while (1) {
/*
* Do a final check for pending NMI or interrupts before
* really putting this thread to sleep. Also check for
* software events that would cause this vcpu to wakeup.
*
* These interrupts/events could have happened after the
* vcpu returned from vmmops_run() and before it acquired the
* vcpu lock above.
*/
if (vm->rendezvous_func != NULL || vm->suspend || vcpu->reqidle)
break;
if (vm_nmi_pending(vcpu))
break;
if (!intr_disabled) {
if (vm_extint_pending(vcpu) ||
vlapic_pending_intr(vcpu->vlapic, NULL)) {
break;
}
}
/* Don't go to sleep if the vcpu thread needs to yield */
if (vcpu_should_yield(vcpu))
break;
if (vcpu_debugged(vcpu))
break;
/*
* Some Linux guests implement "halt" by having all vcpus
* execute HLT with interrupts disabled. 'halted_cpus' keeps
* track of the vcpus that have entered this state. When all
* vcpus enter the halted state the virtual machine is halted.
*/
if (intr_disabled) {
wmesg = "vmhalt";
VMM_CTR0(vcpu, "Halted");
if (!vcpu_halted && halt_detection_enabled) {
vcpu_halted = 1;
CPU_SET_ATOMIC(vcpuid, &vm->halted_cpus);
}
if (CPU_CMP(&vm->halted_cpus, &vm->active_cpus) == 0) {
vm_halted = 1;
break;
}
} else {
wmesg = "vmidle";
}
t = ticks;
vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
/*
* XXX msleep_spin() cannot be interrupted by signals so
* wake up periodically to check pending signals.
*/
msleep_spin(vcpu, &vcpu->mtx, wmesg, hz);
vcpu_require_state_locked(vcpu, VCPU_FROZEN);
vmm_stat_incr(vcpu, VCPU_IDLE_TICKS, ticks - t);
if (td_ast_pending(td, TDA_SUSPEND)) {
vcpu_unlock(vcpu);
error = thread_check_susp(td, false);
if (error != 0) {
if (vcpu_halted) {
CPU_CLR_ATOMIC(vcpuid,
&vm->halted_cpus);
}
return (error);
}
vcpu_lock(vcpu);
}
}
if (vcpu_halted)
CPU_CLR_ATOMIC(vcpuid, &vm->halted_cpus);
vcpu_unlock(vcpu);
if (vm_halted)
vm_suspend(vm, VM_SUSPEND_HALT);
return (0);
}
static int
vm_handle_paging(struct vcpu *vcpu, bool *retu)
{
struct vm *vm = vcpu->vm;
int rv, ftype;
struct vm_map *map;
struct vm_exit *vme;
vme = &vcpu->exitinfo;
KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
__func__, vme->inst_length));
ftype = vme->u.paging.fault_type;
KASSERT(ftype == VM_PROT_READ ||
ftype == VM_PROT_WRITE || ftype == VM_PROT_EXECUTE,
("vm_handle_paging: invalid fault_type %d", ftype));
if (ftype == VM_PROT_READ || ftype == VM_PROT_WRITE) {
rv = pmap_emulate_accessed_dirty(vmspace_pmap(vm->vmspace),
vme->u.paging.gpa, ftype);
if (rv == 0) {
VMM_CTR2(vcpu, "%s bit emulation for gpa %#lx",
ftype == VM_PROT_READ ? "accessed" : "dirty",
vme->u.paging.gpa);
goto done;
}
}
map = &vm->vmspace->vm_map;
rv = vm_fault(map, vme->u.paging.gpa, ftype, VM_FAULT_NORMAL, NULL);
VMM_CTR3(vcpu, "vm_handle_paging rv = %d, gpa = %#lx, "
"ftype = %d", rv, vme->u.paging.gpa, ftype);
if (rv != KERN_SUCCESS)
return (EFAULT);
done:
return (0);
}
static int
vm_handle_inst_emul(struct vcpu *vcpu, bool *retu)
{
struct vie *vie;
struct vm_exit *vme;
uint64_t gla, gpa, cs_base;
struct vm_guest_paging *paging;
mem_region_read_t mread;
mem_region_write_t mwrite;
enum vm_cpu_mode cpu_mode;
int cs_d, error, fault;
vme = &vcpu->exitinfo;
KASSERT(vme->inst_length == 0, ("%s: invalid inst_length %d",
__func__, vme->inst_length));
gla = vme->u.inst_emul.gla;
gpa = vme->u.inst_emul.gpa;
cs_base = vme->u.inst_emul.cs_base;
cs_d = vme->u.inst_emul.cs_d;
vie = &vme->u.inst_emul.vie;
paging = &vme->u.inst_emul.paging;
cpu_mode = paging->cpu_mode;
VMM_CTR1(vcpu, "inst_emul fault accessing gpa %#lx", gpa);
/* Fetch, decode and emulate the faulting instruction */
if (vie->num_valid == 0) {
error = vmm_fetch_instruction(vcpu, paging, vme->rip + cs_base,
VIE_INST_SIZE, vie, &fault);
} else {
/*
* The instruction bytes have already been copied into 'vie'
*/
error = fault = 0;
}
if (error || fault)
return (error);
if (vmm_decode_instruction(vcpu, gla, cpu_mode, cs_d, vie) != 0) {
VMM_CTR1(vcpu, "Error decoding instruction at %#lx",
vme->rip + cs_base);
*retu = true; /* dump instruction bytes in userspace */
return (0);
}
/*
* Update 'nextrip' based on the length of the emulated instruction.
*/
vme->inst_length = vie->num_processed;
vcpu->nextrip += vie->num_processed;
VMM_CTR1(vcpu, "nextrip updated to %#lx after instruction decoding",
vcpu->nextrip);
/* return to userland unless this is an in-kernel emulated device */
if (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE) {
mread = lapic_mmio_read;
mwrite = lapic_mmio_write;
} else if (gpa >= VIOAPIC_BASE && gpa < VIOAPIC_BASE + VIOAPIC_SIZE) {
mread = vioapic_mmio_read;
mwrite = vioapic_mmio_write;
} else if (gpa >= VHPET_BASE && gpa < VHPET_BASE + VHPET_SIZE) {
mread = vhpet_mmio_read;
mwrite = vhpet_mmio_write;
} else {
*retu = true;
return (0);
}
error = vmm_emulate_instruction(vcpu, gpa, vie, paging, mread, mwrite,
retu);
return (error);
}
static int
vm_handle_suspend(struct vcpu *vcpu, bool *retu)
{
struct vm *vm = vcpu->vm;
int error, i;
struct thread *td;
error = 0;
td = curthread;
CPU_SET_ATOMIC(vcpu->vcpuid, &vm->suspended_cpus);
/*
* Wait until all 'active_cpus' have suspended themselves.
*
* Since a VM may be suspended at any time including when one or
* more vcpus are doing a rendezvous we need to call the rendezvous
* handler while we are waiting to prevent a deadlock.
*/
vcpu_lock(vcpu);
while (error == 0) {
if (CPU_CMP(&vm->suspended_cpus, &vm->active_cpus) == 0) {
VMM_CTR0(vcpu, "All vcpus suspended");
break;
}
if (vm->rendezvous_func == NULL) {
VMM_CTR0(vcpu, "Sleeping during suspend");
vcpu_require_state_locked(vcpu, VCPU_SLEEPING);
msleep_spin(vcpu, &vcpu->mtx, "vmsusp", hz);
vcpu_require_state_locked(vcpu, VCPU_FROZEN);
if (td_ast_pending(td, TDA_SUSPEND)) {
vcpu_unlock(vcpu);
error = thread_check_susp(td, false);
vcpu_lock(vcpu);
}
} else {
VMM_CTR0(vcpu, "Rendezvous during suspend");
vcpu_unlock(vcpu);
error = vm_handle_rendezvous(vcpu);
vcpu_lock(vcpu);
}
}
vcpu_unlock(vcpu);
/*
* Wakeup the other sleeping vcpus and return to userspace.
*/
for (i = 0; i < vm->maxcpus; i++) {
if (CPU_ISSET(i, &vm->suspended_cpus)) {
vcpu_notify_event(vm_vcpu(vm, i), false);
}
}
*retu = true;
return (error);
}
static int
vm_handle_reqidle(struct vcpu *vcpu, bool *retu)
{
vcpu_lock(vcpu);
KASSERT(vcpu->reqidle, ("invalid vcpu reqidle %d", vcpu->reqidle));
vcpu->reqidle = 0;
vcpu_unlock(vcpu);
*retu = true;
return (0);
}
int
vm_suspend(struct vm *vm, enum vm_suspend_how how)
{
int i;
if (how <= VM_SUSPEND_NONE || how >= VM_SUSPEND_LAST)
return (EINVAL);
if (atomic_cmpset_int(&vm->suspend, 0, how) == 0) {
VM_CTR2(vm, "virtual machine already suspended %d/%d",
vm->suspend, how);
return (EALREADY);
}
VM_CTR1(vm, "virtual machine successfully suspended %d", how);
/*
* Notify all active vcpus that they are now suspended.
*/
for (i = 0; i < vm->maxcpus; i++) {
if (CPU_ISSET(i, &vm->active_cpus))
vcpu_notify_event(vm_vcpu(vm, i), false);
}
return (0);
}
void
vm_exit_suspended(struct vcpu *vcpu, uint64_t rip)
{
struct vm *vm = vcpu->vm;
struct vm_exit *vmexit;
KASSERT(vm->suspend > VM_SUSPEND_NONE && vm->suspend < VM_SUSPEND_LAST,
("vm_exit_suspended: invalid suspend type %d", vm->suspend));
vmexit = vm_exitinfo(vcpu);
vmexit->rip = rip;
vmexit->inst_length = 0;
vmexit->exitcode = VM_EXITCODE_SUSPENDED;
vmexit->u.suspended.how = vm->suspend;
}
void
vm_exit_debug(struct vcpu *vcpu, uint64_t rip)
{
struct vm_exit *vmexit;
vmexit = vm_exitinfo(vcpu);
vmexit->rip = rip;
vmexit->inst_length = 0;
vmexit->exitcode = VM_EXITCODE_DEBUG;
}
void
vm_exit_rendezvous(struct vcpu *vcpu, uint64_t rip)
{
struct vm_exit *vmexit;
vmexit = vm_exitinfo(vcpu);
vmexit->rip = rip;
vmexit->inst_length = 0;
vmexit->exitcode = VM_EXITCODE_RENDEZVOUS;
vmm_stat_incr(vcpu, VMEXIT_RENDEZVOUS, 1);
}
void
vm_exit_reqidle(struct vcpu *vcpu, uint64_t rip)
{
struct vm_exit *vmexit;
vmexit = vm_exitinfo(vcpu);
vmexit->rip = rip;
vmexit->inst_length = 0;
vmexit->exitcode = VM_EXITCODE_REQIDLE;
vmm_stat_incr(vcpu, VMEXIT_REQIDLE, 1);
}
void
vm_exit_astpending(struct vcpu *vcpu, uint64_t rip)
{
struct vm_exit *vmexit;
vmexit = vm_exitinfo(vcpu);
vmexit->rip = rip;
vmexit->inst_length = 0;
vmexit->exitcode = VM_EXITCODE_BOGUS;
vmm_stat_incr(vcpu, VMEXIT_ASTPENDING, 1);
}
int
vm_run(struct vcpu *vcpu)
{
struct vm *vm = vcpu->vm;
struct vm_eventinfo evinfo;
int error, vcpuid;
struct pcb *pcb;
uint64_t tscval;
struct vm_exit *vme;
bool retu, intr_disabled;
pmap_t pmap;
vcpuid = vcpu->vcpuid;
if (!CPU_ISSET(vcpuid, &vm->active_cpus))
return (EINVAL);
if (CPU_ISSET(vcpuid, &vm->suspended_cpus))
return (EINVAL);
pmap = vmspace_pmap(vm->vmspace);
vme = &vcpu->exitinfo;
evinfo.rptr = &vm->rendezvous_req_cpus;
evinfo.sptr = &vm->suspend;
evinfo.iptr = &vcpu->reqidle;
restart:
critical_enter();
KASSERT(!CPU_ISSET(curcpu, &pmap->pm_active),
("vm_run: absurd pm_active"));
tscval = rdtsc();
pcb = PCPU_GET(curpcb);
set_pcb_flags(pcb, PCB_FULL_IRET);
restore_guest_fpustate(vcpu);
vcpu_require_state(vcpu, VCPU_RUNNING);
error = vmmops_run(vcpu->cookie, vcpu->nextrip, pmap, &evinfo);
vcpu_require_state(vcpu, VCPU_FROZEN);
save_guest_fpustate(vcpu);
vmm_stat_incr(vcpu, VCPU_TOTAL_RUNTIME, rdtsc() - tscval);
critical_exit();
if (error == 0) {
retu = false;
vcpu->nextrip = vme->rip + vme->inst_length;
switch (vme->exitcode) {
case VM_EXITCODE_REQIDLE:
error = vm_handle_reqidle(vcpu, &retu);
break;
case VM_EXITCODE_SUSPENDED:
error = vm_handle_suspend(vcpu, &retu);
break;
case VM_EXITCODE_IOAPIC_EOI:
vioapic_process_eoi(vm, vme->u.ioapic_eoi.vector);
break;
case VM_EXITCODE_RENDEZVOUS:
error = vm_handle_rendezvous(vcpu);
break;
case VM_EXITCODE_HLT:
intr_disabled = ((vme->u.hlt.rflags & PSL_I) == 0);
error = vm_handle_hlt(vcpu, intr_disabled, &retu);
break;
case VM_EXITCODE_PAGING:
error = vm_handle_paging(vcpu, &retu);
break;
case VM_EXITCODE_INST_EMUL:
error = vm_handle_inst_emul(vcpu, &retu);
break;
case VM_EXITCODE_INOUT:
case VM_EXITCODE_INOUT_STR:
error = vm_handle_inout(vcpu, vme, &retu);
break;
case VM_EXITCODE_MONITOR:
case VM_EXITCODE_MWAIT:
case VM_EXITCODE_VMINSN:
vm_inject_ud(vcpu);
break;
default:
retu = true; /* handled in userland */
break;
}
}
/*
* VM_EXITCODE_INST_EMUL could access the apic which could transform the
* exit code into VM_EXITCODE_IPI.
*/
if (error == 0 && vme->exitcode == VM_EXITCODE_IPI)
error = vm_handle_ipi(vcpu, vme, &retu);
if (error == 0 && retu == false)
goto restart;
vmm_stat_incr(vcpu, VMEXIT_USERSPACE, 1);
VMM_CTR2(vcpu, "retu %d/%d", error, vme->exitcode);
return (error);
}
int
vm_restart_instruction(struct vcpu *vcpu)
{
enum vcpu_state state;
uint64_t rip;
int error __diagused;
state = vcpu_get_state(vcpu, NULL);
if (state == VCPU_RUNNING) {
/*
* When a vcpu is "running" the next instruction is determined
* by adding 'rip' and 'inst_length' in the vcpu's 'exitinfo'.
* Thus setting 'inst_length' to zero will cause the current
* instruction to be restarted.
*/
vcpu->exitinfo.inst_length = 0;
VMM_CTR1(vcpu, "restarting instruction at %#lx by "
"setting inst_length to zero", vcpu->exitinfo.rip);
} else if (state == VCPU_FROZEN) {
/*
* When a vcpu is "frozen" it is outside the critical section
* around vmmops_run() and 'nextrip' points to the next
* instruction. Thus instruction restart is achieved by setting
* 'nextrip' to the vcpu's %rip.
*/
error = vm_get_register(vcpu, VM_REG_GUEST_RIP, &rip);
KASSERT(!error, ("%s: error %d getting rip", __func__, error));
VMM_CTR2(vcpu, "restarting instruction by updating "
"nextrip from %#lx to %#lx", vcpu->nextrip, rip);
vcpu->nextrip = rip;
} else {
panic("%s: invalid state %d", __func__, state);
}
return (0);
}
int
vm_exit_intinfo(struct vcpu *vcpu, uint64_t info)
{
int type, vector;
if (info & VM_INTINFO_VALID) {
type = info & VM_INTINFO_TYPE;
vector = info & 0xff;
if (type == VM_INTINFO_NMI && vector != IDT_NMI)
return (EINVAL);
if (type == VM_INTINFO_HWEXCEPTION && vector >= 32)
return (EINVAL);
if (info & VM_INTINFO_RSVD)
return (EINVAL);
} else {
info = 0;
}
VMM_CTR2(vcpu, "%s: info1(%#lx)", __func__, info);
vcpu->exitintinfo = info;
return (0);
}
enum exc_class {
EXC_BENIGN,
EXC_CONTRIBUTORY,
EXC_PAGEFAULT
};
#define IDT_VE 20 /* Virtualization Exception (Intel specific) */
static enum exc_class
exception_class(uint64_t info)
{
int type, vector;
KASSERT(info & VM_INTINFO_VALID, ("intinfo must be valid: %#lx", info));
type = info & VM_INTINFO_TYPE;
vector = info & 0xff;
/* Table 6-4, "Interrupt and Exception Classes", Intel SDM, Vol 3 */
switch (type) {
case VM_INTINFO_HWINTR:
case VM_INTINFO_SWINTR:
case VM_INTINFO_NMI:
return (EXC_BENIGN);
default:
/*
* Hardware exception.
*
* SVM and VT-x use identical type values to represent NMI,
* hardware interrupt and software interrupt.
*
* SVM uses type '3' for all exceptions. VT-x uses type '3'
* for exceptions except #BP and #OF. #BP and #OF use a type
* value of '5' or '6'. Therefore we don't check for explicit
* values of 'type' to classify 'intinfo' into a hardware
* exception.
*/
break;
}
switch (vector) {
case IDT_PF:
case IDT_VE:
return (EXC_PAGEFAULT);
case IDT_DE:
case IDT_TS:
case IDT_NP:
case IDT_SS:
case IDT_GP:
return (EXC_CONTRIBUTORY);
default:
return (EXC_BENIGN);
}
}
static int
nested_fault(struct vcpu *vcpu, uint64_t info1, uint64_t info2,
uint64_t *retinfo)
{
enum exc_class exc1, exc2;
int type1, vector1;
KASSERT(info1 & VM_INTINFO_VALID, ("info1 %#lx is not valid", info1));
KASSERT(info2 & VM_INTINFO_VALID, ("info2 %#lx is not valid", info2));
/*
* If an exception occurs while attempting to call the double-fault
* handler the processor enters shutdown mode (aka triple fault).
*/
type1 = info1 & VM_INTINFO_TYPE;
vector1 = info1 & 0xff;
if (type1 == VM_INTINFO_HWEXCEPTION && vector1 == IDT_DF) {
VMM_CTR2(vcpu, "triple fault: info1(%#lx), info2(%#lx)",
info1, info2);
vm_suspend(vcpu->vm, VM_SUSPEND_TRIPLEFAULT);
*retinfo = 0;
return (0);
}
/*
* Table 6-5 "Conditions for Generating a Double Fault", Intel SDM, Vol3
*/
exc1 = exception_class(info1);
exc2 = exception_class(info2);
if ((exc1 == EXC_CONTRIBUTORY && exc2 == EXC_CONTRIBUTORY) ||
(exc1 == EXC_PAGEFAULT && exc2 != EXC_BENIGN)) {
/* Convert nested fault into a double fault. */
*retinfo = IDT_DF;
*retinfo |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
*retinfo |= VM_INTINFO_DEL_ERRCODE;
} else {
/* Handle exceptions serially */
*retinfo = info2;
}
return (1);
}
static uint64_t
vcpu_exception_intinfo(struct vcpu *vcpu)
{
uint64_t info = 0;
if (vcpu->exception_pending) {
info = vcpu->exc_vector & 0xff;
info |= VM_INTINFO_VALID | VM_INTINFO_HWEXCEPTION;
if (vcpu->exc_errcode_valid) {
info |= VM_INTINFO_DEL_ERRCODE;
info |= (uint64_t)vcpu->exc_errcode << 32;
}
}
return (info);
}
int
vm_entry_intinfo(struct vcpu *vcpu, uint64_t *retinfo)
{
uint64_t info1, info2;
int valid;
info1 = vcpu->exitintinfo;
vcpu->exitintinfo = 0;
info2 = 0;
if (vcpu->exception_pending) {
info2 = vcpu_exception_intinfo(vcpu);
vcpu->exception_pending = 0;
VMM_CTR2(vcpu, "Exception %d delivered: %#lx",
vcpu->exc_vector, info2);
}
if ((info1 & VM_INTINFO_VALID) && (info2 & VM_INTINFO_VALID)) {
valid = nested_fault(vcpu, info1, info2, retinfo);
} else if (info1 & VM_INTINFO_VALID) {
*retinfo = info1;
valid = 1;
} else if (info2 & VM_INTINFO_VALID) {
*retinfo = info2;
valid = 1;
} else {
valid = 0;
}
if (valid) {
VMM_CTR4(vcpu, "%s: info1(%#lx), info2(%#lx), "
"retinfo(%#lx)", __func__, info1, info2, *retinfo);
}
return (valid);
}
int
vm_get_intinfo(struct vcpu *vcpu, uint64_t *info1, uint64_t *info2)
{
*info1 = vcpu->exitintinfo;
*info2 = vcpu_exception_intinfo(vcpu);
return (0);
}
int
vm_inject_exception(struct vcpu *vcpu, int vector, int errcode_valid,
uint32_t errcode, int restart_instruction)
{
uint64_t regval;
int error __diagused;
if (vector < 0 || vector >= 32)
return (EINVAL);
/*
* A double fault exception should never be injected directly into
* the guest. It is a derived exception that results from specific
* combinations of nested faults.
*/
if (vector == IDT_DF)
return (EINVAL);
if (vcpu->exception_pending) {
VMM_CTR2(vcpu, "Unable to inject exception %d due to "
"pending exception %d", vector, vcpu->exc_vector);
return (EBUSY);
}
if (errcode_valid) {
/*
* Exceptions don't deliver an error code in real mode.
*/
error = vm_get_register(vcpu, VM_REG_GUEST_CR0, ®val);
KASSERT(!error, ("%s: error %d getting CR0", __func__, error));
if (!(regval & CR0_PE))
errcode_valid = 0;
}
/*
* From section 26.6.1 "Interruptibility State" in Intel SDM:
*
* Event blocking by "STI" or "MOV SS" is cleared after guest executes
* one instruction or incurs an exception.
*/
error = vm_set_register(vcpu, VM_REG_GUEST_INTR_SHADOW, 0);
KASSERT(error == 0, ("%s: error %d clearing interrupt shadow",
__func__, error));
if (restart_instruction)
vm_restart_instruction(vcpu);
vcpu->exception_pending = 1;
vcpu->exc_vector = vector;
vcpu->exc_errcode = errcode;
vcpu->exc_errcode_valid = errcode_valid;
VMM_CTR1(vcpu, "Exception %d pending", vector);
return (0);
}
void
vm_inject_fault(struct vcpu *vcpu, int vector, int errcode_valid, int errcode)
{
int error __diagused, restart_instruction;
restart_instruction = 1;
error = vm_inject_exception(vcpu, vector, errcode_valid,
errcode, restart_instruction);
KASSERT(error == 0, ("vm_inject_exception error %d", error));
}
void
vm_inject_pf(struct vcpu *vcpu, int error_code, uint64_t cr2)
{
int error __diagused;
VMM_CTR2(vcpu, "Injecting page fault: error_code %#x, cr2 %#lx",
error_code, cr2);
error = vm_set_register(vcpu, VM_REG_GUEST_CR2, cr2);
KASSERT(error == 0, ("vm_set_register(cr2) error %d", error));
vm_inject_fault(vcpu, IDT_PF, 1, error_code);
}
static VMM_STAT(VCPU_NMI_COUNT, "number of NMIs delivered to vcpu");
int
vm_inject_nmi(struct vcpu *vcpu)
{
vcpu->nmi_pending = 1;
vcpu_notify_event(vcpu, false);
return (0);
}
int
vm_nmi_pending(struct vcpu *vcpu)
{
return (vcpu->nmi_pending);
}
void
vm_nmi_clear(struct vcpu *vcpu)
{
if (vcpu->nmi_pending == 0)
panic("vm_nmi_clear: inconsistent nmi_pending state");
vcpu->nmi_pending = 0;
vmm_stat_incr(vcpu, VCPU_NMI_COUNT, 1);
}
static VMM_STAT(VCPU_EXTINT_COUNT, "number of ExtINTs delivered to vcpu");
int
vm_inject_extint(struct vcpu *vcpu)
{
vcpu->extint_pending = 1;
vcpu_notify_event(vcpu, false);
return (0);
}
int
vm_extint_pending(struct vcpu *vcpu)
{
return (vcpu->extint_pending);
}
void
vm_extint_clear(struct vcpu *vcpu)
{
if (vcpu->extint_pending == 0)
panic("vm_extint_clear: inconsistent extint_pending state");
vcpu->extint_pending = 0;
vmm_stat_incr(vcpu, VCPU_EXTINT_COUNT, 1);
}
int
vm_get_capability(struct vcpu *vcpu, int type, int *retval)
{
if (type < 0 || type >= VM_CAP_MAX)
return (EINVAL);
return (vmmops_getcap(vcpu->cookie, type, retval));
}
int
vm_set_capability(struct vcpu *vcpu, int type, int val)
{
if (type < 0 || type >= VM_CAP_MAX)
return (EINVAL);
return (vmmops_setcap(vcpu->cookie, type, val));
}
struct vm *
vcpu_vm(struct vcpu *vcpu)
{
return (vcpu->vm);
}
int
vcpu_vcpuid(struct vcpu *vcpu)
{
return (vcpu->vcpuid);
}
struct vcpu *
vm_vcpu(struct vm *vm, int vcpuid)
{
return (vm->vcpu[vcpuid]);
}
struct vlapic *
vm_lapic(struct vcpu *vcpu)
{
return (vcpu->vlapic);
}
struct vioapic *
vm_ioapic(struct vm *vm)
{
return (vm->vioapic);
}
struct vhpet *
vm_hpet(struct vm *vm)
{
return (vm->vhpet);
}
bool
vmm_is_pptdev(int bus, int slot, int func)
{
int b, f, i, n, s;
char *val, *cp, *cp2;
bool found;
/*
* XXX
* The length of an environment variable is limited to 128 bytes which
* puts an upper limit on the number of passthru devices that may be
* specified using a single environment variable.
*
* Work around this by scanning multiple environment variable
* names instead of a single one - yuck!
*/
const char *names[] = { "pptdevs", "pptdevs2", "pptdevs3", NULL };
/* set pptdevs="1/2/3 4/5/6 7/8/9 10/11/12" */
found = false;
for (i = 0; names[i] != NULL && !found; i++) {
cp = val = kern_getenv(names[i]);
while (cp != NULL && *cp != '\0') {
if ((cp2 = strchr(cp, ' ')) != NULL)
*cp2 = '\0';
n = sscanf(cp, "%d/%d/%d", &b, &s, &f);
if (n == 3 && bus == b && slot == s && func == f) {
found = true;
break;
}
if (cp2 != NULL)
*cp2++ = ' ';
cp = cp2;
}
freeenv(val);
}
return (found);
}
void *
vm_iommu_domain(struct vm *vm)
{
return (vm->iommu);
}
int
vcpu_set_state(struct vcpu *vcpu, enum vcpu_state newstate, bool from_idle)
{
int error;
vcpu_lock(vcpu);
error = vcpu_set_state_locked(vcpu, newstate, from_idle);
vcpu_unlock(vcpu);
return (error);
}
enum vcpu_state
vcpu_get_state(struct vcpu *vcpu, int *hostcpu)
{
enum vcpu_state state;
vcpu_lock(vcpu);
state = vcpu->state;
if (hostcpu != NULL)
*hostcpu = vcpu->hostcpu;
vcpu_unlock(vcpu);
return (state);
}
int
vm_activate_cpu(struct vcpu *vcpu)
{
struct vm *vm = vcpu->vm;
if (CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
return (EBUSY);
VMM_CTR0(vcpu, "activated");
CPU_SET_ATOMIC(vcpu->vcpuid, &vm->active_cpus);
return (0);
}
int
vm_suspend_cpu(struct vm *vm, struct vcpu *vcpu)
{
if (vcpu == NULL) {
vm->debug_cpus = vm->active_cpus;
for (int i = 0; i < vm->maxcpus; i++) {
if (CPU_ISSET(i, &vm->active_cpus))
vcpu_notify_event(vm_vcpu(vm, i), false);
}
} else {
if (!CPU_ISSET(vcpu->vcpuid, &vm->active_cpus))
return (EINVAL);
CPU_SET_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
vcpu_notify_event(vcpu, false);
}
return (0);
}
int
vm_resume_cpu(struct vm *vm, struct vcpu *vcpu)
{
if (vcpu == NULL) {
CPU_ZERO(&vm->debug_cpus);
} else {
if (!CPU_ISSET(vcpu->vcpuid, &vm->debug_cpus))
return (EINVAL);
CPU_CLR_ATOMIC(vcpu->vcpuid, &vm->debug_cpus);
}
return (0);
}
int
vcpu_debugged(struct vcpu *vcpu)
{
return (CPU_ISSET(vcpu->vcpuid, &vcpu->vm->debug_cpus));
}
cpuset_t
vm_active_cpus(struct vm *vm)
{
return (vm->active_cpus);
}
cpuset_t
vm_debug_cpus(struct vm *vm)
{
return (vm->debug_cpus);
}
cpuset_t
vm_suspended_cpus(struct vm *vm)
{
return (vm->suspended_cpus);
}
/*
* Returns the subset of vCPUs in tostart that are awaiting startup.
* These vCPUs are also marked as no longer awaiting startup.
*/
cpuset_t
vm_start_cpus(struct vm *vm, const cpuset_t *tostart)
{
cpuset_t set;
mtx_lock(&vm->rendezvous_mtx);
CPU_AND(&set, &vm->startup_cpus, tostart);
CPU_ANDNOT(&vm->startup_cpus, &vm->startup_cpus, &set);
mtx_unlock(&vm->rendezvous_mtx);
return (set);
}
void
vm_await_start(struct vm *vm, const cpuset_t *waiting)
{
mtx_lock(&vm->rendezvous_mtx);
CPU_OR(&vm->startup_cpus, &vm->startup_cpus, waiting);
mtx_unlock(&vm->rendezvous_mtx);
}
void *
vcpu_stats(struct vcpu *vcpu)
{
return (vcpu->stats);
}
int
vm_get_x2apic_state(struct vcpu *vcpu, enum x2apic_state *state)
{
*state = vcpu->x2apic_state;
return (0);
}
int
vm_set_x2apic_state(struct vcpu *vcpu, enum x2apic_state state)
{
if (state >= X2APIC_STATE_LAST)
return (EINVAL);
vcpu->x2apic_state = state;
vlapic_set_x2apic_state(vcpu, state);
return (0);
}
/*
* This function is called to ensure that a vcpu "sees" a pending event
* as soon as possible:
* - If the vcpu thread is sleeping then it is woken up.
* - If the vcpu is running on a different host_cpu then an IPI will be directed
* to the host_cpu to cause the vcpu to trap into the hypervisor.
*/
static void
vcpu_notify_event_locked(struct vcpu *vcpu, bool lapic_intr)
{
int hostcpu;
hostcpu = vcpu->hostcpu;
if (vcpu->state == VCPU_RUNNING) {
KASSERT(hostcpu != NOCPU, ("vcpu running on invalid hostcpu"));
if (hostcpu != curcpu) {
if (lapic_intr) {
vlapic_post_intr(vcpu->vlapic, hostcpu,
vmm_ipinum);
} else {
ipi_cpu(hostcpu, vmm_ipinum);
}
} else {
/*
* If the 'vcpu' is running on 'curcpu' then it must
* be sending a notification to itself (e.g. SELF_IPI).
* The pending event will be picked up when the vcpu
* transitions back to guest context.
*/
}
} else {
KASSERT(hostcpu == NOCPU, ("vcpu state %d not consistent "
"with hostcpu %d", vcpu->state, hostcpu));
if (vcpu->state == VCPU_SLEEPING)
wakeup_one(vcpu);
}
}
void
vcpu_notify_event(struct vcpu *vcpu, bool lapic_intr)
{
vcpu_lock(vcpu);
vcpu_notify_event_locked(vcpu, lapic_intr);
vcpu_unlock(vcpu);
}
struct vmspace *
vm_get_vmspace(struct vm *vm)
{
return (vm->vmspace);
}
int
vm_apicid2vcpuid(struct vm *vm, int apicid)
{
/*
* XXX apic id is assumed to be numerically identical to vcpu id
*/
return (apicid);
}
int
vm_smp_rendezvous(struct vcpu *vcpu, cpuset_t dest,
vm_rendezvous_func_t func, void *arg)
{
struct vm *vm = vcpu->vm;
int error, i;
/*
* Enforce that this function is called without any locks
*/
WITNESS_WARN(WARN_PANIC, NULL, "vm_smp_rendezvous");
restart:
mtx_lock(&vm->rendezvous_mtx);
if (vm->rendezvous_func != NULL) {
/*
* If a rendezvous is already in progress then we need to
* call the rendezvous handler in case this 'vcpu' is one
* of the targets of the rendezvous.
*/
VMM_CTR0(vcpu, "Rendezvous already in progress");
mtx_unlock(&vm->rendezvous_mtx);
error = vm_handle_rendezvous(vcpu);
if (error != 0)
return (error);
goto restart;
}
KASSERT(vm->rendezvous_func == NULL, ("vm_smp_rendezvous: previous "
"rendezvous is still in progress"));
VMM_CTR0(vcpu, "Initiating rendezvous");
vm->rendezvous_req_cpus = dest;
CPU_ZERO(&vm->rendezvous_done_cpus);
vm->rendezvous_arg = arg;
vm->rendezvous_func = func;
mtx_unlock(&vm->rendezvous_mtx);
/*
* Wake up any sleeping vcpus and trigger a VM-exit in any running
* vcpus so they handle the rendezvous as soon as possible.
*/
for (i = 0; i < vm->maxcpus; i++) {
if (CPU_ISSET(i, &dest))
vcpu_notify_event(vm_vcpu(vm, i), false);
}
return (vm_handle_rendezvous(vcpu));
}
struct vatpic *
vm_atpic(struct vm *vm)
{
return (vm->vatpic);
}
struct vatpit *
vm_atpit(struct vm *vm)
{
return (vm->vatpit);
}
struct vpmtmr *
vm_pmtmr(struct vm *vm)
{
return (vm->vpmtmr);
}
struct vrtc *
vm_rtc(struct vm *vm)
{
return (vm->vrtc);
}
enum vm_reg_name
vm_segment_name(int seg)
{
static enum vm_reg_name seg_names[] = {
VM_REG_GUEST_ES,
VM_REG_GUEST_CS,
VM_REG_GUEST_SS,
VM_REG_GUEST_DS,
VM_REG_GUEST_FS,
VM_REG_GUEST_GS
};
KASSERT(seg >= 0 && seg < nitems(seg_names),
("%s: invalid segment encoding %d", __func__, seg));
return (seg_names[seg]);
}
void
vm_copy_teardown(struct vm_copyinfo *copyinfo, int num_copyinfo)
{
int idx;
for (idx = 0; idx < num_copyinfo; idx++) {
if (copyinfo[idx].cookie != NULL)
vm_gpa_release(copyinfo[idx].cookie);
}
bzero(copyinfo, num_copyinfo * sizeof(struct vm_copyinfo));
}
int
vm_copy_setup(struct vcpu *vcpu, struct vm_guest_paging *paging,
uint64_t gla, size_t len, int prot, struct vm_copyinfo *copyinfo,
int num_copyinfo, int *fault)
{
int error, idx, nused;
size_t n, off, remaining;
void *hva, *cookie;
uint64_t gpa;
bzero(copyinfo, sizeof(struct vm_copyinfo) * num_copyinfo);
nused = 0;
remaining = len;
while (remaining > 0) {
KASSERT(nused < num_copyinfo, ("insufficient vm_copyinfo"));
error = vm_gla2gpa(vcpu, paging, gla, prot, &gpa, fault);
if (error || *fault)
return (error);
off = gpa & PAGE_MASK;
n = min(remaining, PAGE_SIZE - off);
copyinfo[nused].gpa = gpa;
copyinfo[nused].len = n;
remaining -= n;
gla += n;
nused++;
}
for (idx = 0; idx < nused; idx++) {
hva = vm_gpa_hold(vcpu, copyinfo[idx].gpa,
copyinfo[idx].len, prot, &cookie);
if (hva == NULL)
break;
copyinfo[idx].hva = hva;
copyinfo[idx].cookie = cookie;
}
if (idx != nused) {
vm_copy_teardown(copyinfo, num_copyinfo);
return (EFAULT);
} else {
*fault = 0;
return (0);
}
}
void
vm_copyin(struct vm_copyinfo *copyinfo, void *kaddr, size_t len)
{
char *dst;
int idx;
dst = kaddr;
idx = 0;
while (len > 0) {
bcopy(copyinfo[idx].hva, dst, copyinfo[idx].len);
len -= copyinfo[idx].len;
dst += copyinfo[idx].len;
idx++;
}
}
void
vm_copyout(const void *kaddr, struct vm_copyinfo *copyinfo, size_t len)
{
const char *src;
int idx;
src = kaddr;
idx = 0;
while (len > 0) {
bcopy(src, copyinfo[idx].hva, copyinfo[idx].len);
len -= copyinfo[idx].len;
src += copyinfo[idx].len;
idx++;
}
}
/*
* Return the amount of in-use and wired memory for the VM. Since
* these are global stats, only return the values with for vCPU 0
*/
VMM_STAT_DECLARE(VMM_MEM_RESIDENT);
VMM_STAT_DECLARE(VMM_MEM_WIRED);
static void
vm_get_rescnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
{
if (vcpu->vcpuid == 0) {
vmm_stat_set(vcpu, VMM_MEM_RESIDENT, PAGE_SIZE *
vmspace_resident_count(vcpu->vm->vmspace));
}
}
static void
vm_get_wiredcnt(struct vcpu *vcpu, struct vmm_stat_type *stat)
{
if (vcpu->vcpuid == 0) {
vmm_stat_set(vcpu, VMM_MEM_WIRED, PAGE_SIZE *
pmap_wired_count(vmspace_pmap(vcpu->vm->vmspace)));
}
}
VMM_STAT_FUNC(VMM_MEM_RESIDENT, "Resident memory", vm_get_rescnt);
VMM_STAT_FUNC(VMM_MEM_WIRED, "Wired memory", vm_get_wiredcnt);
#ifdef BHYVE_SNAPSHOT
static int
vm_snapshot_vcpus(struct vm *vm, struct vm_snapshot_meta *meta)
{
uint64_t tsc, now;
int ret;
struct vcpu *vcpu;
uint16_t i, maxcpus;
now = rdtsc();
maxcpus = vm_get_maxcpus(vm);
for (i = 0; i < maxcpus; i++) {
vcpu = vm->vcpu[i];
if (vcpu == NULL)
continue;
SNAPSHOT_VAR_OR_LEAVE(vcpu->x2apic_state, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(vcpu->exitintinfo, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_vector, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode_valid, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(vcpu->exc_errcode, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(vcpu->guest_xcr0, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(vcpu->exitinfo, meta, ret, done);
SNAPSHOT_VAR_OR_LEAVE(vcpu->nextrip, meta, ret, done);
/*
* Save the absolute TSC value by adding now to tsc_offset.
*
* It will be turned turned back into an actual offset when the
* TSC restore function is called
*/
tsc = now + vcpu->tsc_offset;
SNAPSHOT_VAR_OR_LEAVE(tsc, meta, ret, done);
if (meta->op == VM_SNAPSHOT_RESTORE)
vcpu->tsc_offset = tsc;
}
done:
return (ret);
}
static int
vm_snapshot_vm(struct vm *vm, struct vm_snapshot_meta *meta)
{
int ret;
ret = vm_snapshot_vcpus(vm, meta);
if (ret != 0)
goto done;
SNAPSHOT_VAR_OR_LEAVE(vm->startup_cpus, meta, ret, done);
done:
return (ret);
}
static int
vm_snapshot_vcpu(struct vm *vm, struct vm_snapshot_meta *meta)
{
int error;
struct vcpu *vcpu;
uint16_t i, maxcpus;
error = 0;
maxcpus = vm_get_maxcpus(vm);
for (i = 0; i < maxcpus; i++) {
vcpu = vm->vcpu[i];
if (vcpu == NULL)
continue;
error = vmmops_vcpu_snapshot(vcpu->cookie, meta);
if (error != 0) {
printf("%s: failed to snapshot vmcs/vmcb data for "
"vCPU: %d; error: %d\n", __func__, i, error);
goto done;
}
}
done:
return (error);
}
/*
* Save kernel-side structures to user-space for snapshotting.
*/
int
vm_snapshot_req(struct vm *vm, struct vm_snapshot_meta *meta)
{
int ret = 0;
switch (meta->dev_req) {
case STRUCT_VMCX:
ret = vm_snapshot_vcpu(vm, meta);
break;
case STRUCT_VM:
ret = vm_snapshot_vm(vm, meta);
break;
case STRUCT_VIOAPIC:
ret = vioapic_snapshot(vm_ioapic(vm), meta);
break;
case STRUCT_VLAPIC:
ret = vlapic_snapshot(vm, meta);
break;
case STRUCT_VHPET:
ret = vhpet_snapshot(vm_hpet(vm), meta);
break;
case STRUCT_VATPIC:
ret = vatpic_snapshot(vm_atpic(vm), meta);
break;
case STRUCT_VATPIT:
ret = vatpit_snapshot(vm_atpit(vm), meta);
break;
case STRUCT_VPMTMR:
ret = vpmtmr_snapshot(vm_pmtmr(vm), meta);
break;
case STRUCT_VRTC:
ret = vrtc_snapshot(vm_rtc(vm), meta);
break;
default:
printf("%s: failed to find the requested type %#x\n",
__func__, meta->dev_req);
ret = (EINVAL);
}
return (ret);
}
void
vm_set_tsc_offset(struct vcpu *vcpu, uint64_t offset)
{
vcpu->tsc_offset = offset;
}
int
vm_restore_time(struct vm *vm)
{
int error;
uint64_t now;
struct vcpu *vcpu;
uint16_t i, maxcpus;
now = rdtsc();
error = vhpet_restore_time(vm_hpet(vm));
if (error)
return (error);
maxcpus = vm_get_maxcpus(vm);
for (i = 0; i < maxcpus; i++) {
vcpu = vm->vcpu[i];
if (vcpu == NULL)
continue;
error = vmmops_restore_tsc(vcpu->cookie,
vcpu->tsc_offset - now);
if (error)
return (error);
}
return (0);
}
#endif