/*- * CAM IO Scheduler Interface * * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2015 Netflix, Inc. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include "opt_cam.h" #include "opt_ddb.h" #include <sys/cdefs.h> #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/bio.h> #include <sys/lock.h> #include <sys/malloc.h> #include <sys/mutex.h> #include <sys/sbuf.h> #include <sys/sysctl.h> #include <cam/cam.h> #include <cam/cam_ccb.h> #include <cam/cam_periph.h> #include <cam/cam_xpt_periph.h> #include <cam/cam_xpt_internal.h> #include <cam/cam_iosched.h> #include <ddb/ddb.h> static MALLOC_DEFINE(M_CAMSCHED, "CAM I/O Scheduler", "CAM I/O Scheduler buffers"); static SYSCTL_NODE(_kern_cam, OID_AUTO, iosched, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "CAM I/O Scheduler parameters"); /* * Default I/O scheduler for FreeBSD. This implementation is just a thin-vineer * over the bioq_* interface, with notions of separate calls for normal I/O and * for trims. * * When CAM_IOSCHED_DYNAMIC is defined, the scheduler is enhanced to dynamically * steer the rate of one type of traffic to help other types of traffic (eg * limit writes when read latency deteriorates on SSDs). */ #ifdef CAM_IOSCHED_DYNAMIC static bool do_dynamic_iosched = true; SYSCTL_BOOL(_kern_cam_iosched, OID_AUTO, dynamic, CTLFLAG_RDTUN, &do_dynamic_iosched, 1, "Enable Dynamic I/O scheduler optimizations."); /* * For an EMA, with an alpha of alpha, we know * alpha = 2 / (N + 1) * or * N = 1 + (2 / alpha) * where N is the number of samples that 86% of the current * EMA is derived from. * * So we invent[*] alpha_bits: * alpha_bits = -log_2(alpha) * alpha = 2^-alpha_bits * So * N = 1 + 2^(alpha_bits + 1) * * The default 9 gives a 1025 lookback for 86% of the data. * For a brief intro: https://en.wikipedia.org/wiki/Moving_average * * [*] Steal from the load average code and many other places. * Note: See computation of EMA and EMVAR for acceptable ranges of alpha. */ static int alpha_bits = 9; SYSCTL_INT(_kern_cam_iosched, OID_AUTO, alpha_bits, CTLFLAG_RWTUN, &alpha_bits, 1, "Bits in EMA's alpha."); /* * Different parameters for the buckets of latency we keep track of. These are all * published read-only since at present they are compile time constants. * * Bucket base is the upper bounds of the first latency bucket. It's currently 20us. * With 20 buckets (see below), that leads to a geometric progression with a max size * of 5.2s which is safeily larger than 1s to help diagnose extreme outliers better. */ #ifndef BUCKET_BASE #define BUCKET_BASE ((SBT_1S / 50000) + 1) /* 20us */ #endif static sbintime_t bucket_base = BUCKET_BASE; SYSCTL_SBINTIME_USEC(_kern_cam_iosched, OID_AUTO, bucket_base_us, CTLFLAG_RD, &bucket_base, "Size of the smallest latency bucket"); /* * Bucket ratio is the geometric progression for the bucket. For a bucket b_n * the size of bucket b_n+1 is b_n * bucket_ratio / 100. */ static int bucket_ratio = 200; /* Rather hard coded at the moment */ SYSCTL_INT(_kern_cam_iosched, OID_AUTO, bucket_ratio, CTLFLAG_RD, &bucket_ratio, 200, "Latency Bucket Ratio for geometric progression."); /* * Number of total buckets. Starting at BUCKET_BASE, each one is a power of 2. */ #ifndef LAT_BUCKETS #define LAT_BUCKETS 20 /* < 20us < 40us ... < 2^(n-1)*20us >= 2^(n-1)*20us */ #endif static int lat_buckets = LAT_BUCKETS; SYSCTL_INT(_kern_cam_iosched, OID_AUTO, buckets, CTLFLAG_RD, &lat_buckets, LAT_BUCKETS, "Total number of latency buckets published"); /* * Read bias: how many reads do we favor before scheduling a write * when we have a choice. */ static int default_read_bias = 0; SYSCTL_INT(_kern_cam_iosched, OID_AUTO, read_bias, CTLFLAG_RWTUN, &default_read_bias, 0, "Default read bias for new devices."); struct iop_stats; struct cam_iosched_softc; int iosched_debug = 0; typedef enum { none = 0, /* No limits */ queue_depth, /* Limit how many ops we queue to SIM */ iops, /* Limit # of IOPS to the drive */ bandwidth, /* Limit bandwidth to the drive */ limiter_max } io_limiter; static const char *cam_iosched_limiter_names[] = { "none", "queue_depth", "iops", "bandwidth" }; /* * Called to initialize the bits of the iop_stats structure relevant to the * limiter. Called just after the limiter is set. */ typedef int l_init_t(struct iop_stats *); /* * Called every tick. */ typedef int l_tick_t(struct iop_stats *); /* * Called to see if the limiter thinks this IOP can be allowed to * proceed. If so, the limiter assumes that the IOP proceeded * and makes any accounting of it that's needed. */ typedef int l_iop_t(struct iop_stats *, struct bio *); /* * Called when an I/O completes so the limiter can update its * accounting. Pending I/Os may complete in any order (even when * sent to the hardware at the same time), so the limiter may not * make any assumptions other than this I/O has completed. If it * returns 1, then xpt_schedule() needs to be called again. */ typedef int l_iodone_t(struct iop_stats *, struct bio *); static l_iop_t cam_iosched_qd_iop; static l_iop_t cam_iosched_qd_caniop; static l_iodone_t cam_iosched_qd_iodone; static l_init_t cam_iosched_iops_init; static l_tick_t cam_iosched_iops_tick; static l_iop_t cam_iosched_iops_caniop; static l_iop_t cam_iosched_iops_iop; static l_init_t cam_iosched_bw_init; static l_tick_t cam_iosched_bw_tick; static l_iop_t cam_iosched_bw_caniop; static l_iop_t cam_iosched_bw_iop; struct limswitch { l_init_t *l_init; l_tick_t *l_tick; l_iop_t *l_iop; l_iop_t *l_caniop; l_iodone_t *l_iodone; } limsw[] = { { /* none */ .l_init = NULL, .l_tick = NULL, .l_iop = NULL, .l_iodone= NULL, }, { /* queue_depth */ .l_init = NULL, .l_tick = NULL, .l_caniop = cam_iosched_qd_caniop, .l_iop = cam_iosched_qd_iop, .l_iodone= cam_iosched_qd_iodone, }, { /* iops */ .l_init = cam_iosched_iops_init, .l_tick = cam_iosched_iops_tick, .l_caniop = cam_iosched_iops_caniop, .l_iop = cam_iosched_iops_iop, .l_iodone= NULL, }, { /* bandwidth */ .l_init = cam_iosched_bw_init, .l_tick = cam_iosched_bw_tick, .l_caniop = cam_iosched_bw_caniop, .l_iop = cam_iosched_bw_iop, .l_iodone= NULL, }, }; struct iop_stats { /* * sysctl state for this subnode. */ struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; /* * Information about the current rate limiters, if any */ io_limiter limiter; /* How are I/Os being limited */ int min; /* Low range of limit */ int max; /* High range of limit */ int current; /* Current rate limiter */ int l_value1; /* per-limiter scratch value 1. */ int l_value2; /* per-limiter scratch value 2. */ /* * Debug information about counts of I/Os that have gone through the * scheduler. */ int pending; /* I/Os pending in the hardware */ int queued; /* number currently in the queue */ int total; /* Total for all time -- wraps */ int in; /* number queued all time -- wraps */ int out; /* number completed all time -- wraps */ int errs; /* Number of I/Os completed with error -- wraps */ /* * Statistics on different bits of the process. */ /* Exp Moving Average, see alpha_bits for more details */ sbintime_t ema; sbintime_t emvar; sbintime_t sd; /* Last computed sd */ uint32_t state_flags; #define IOP_RATE_LIMITED 1u uint64_t latencies[LAT_BUCKETS]; struct cam_iosched_softc *softc; }; typedef enum { set_max = 0, /* current = max */ read_latency, /* Steer read latency by throttling writes */ cl_max /* Keep last */ } control_type; static const char *cam_iosched_control_type_names[] = { "set_max", "read_latency" }; struct control_loop { /* * sysctl state for this subnode. */ struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; sbintime_t next_steer; /* Time of next steer */ sbintime_t steer_interval; /* How often do we steer? */ sbintime_t lolat; sbintime_t hilat; int alpha; control_type type; /* What type of control? */ int last_count; /* Last I/O count */ struct cam_iosched_softc *softc; }; #endif struct cam_iosched_softc { struct bio_queue_head bio_queue; struct bio_queue_head trim_queue; /* scheduler flags < 16, user flags >= 16 */ uint32_t flags; int sort_io_queue; int trim_goal; /* # of trims to queue before sending */ int trim_ticks; /* Max ticks to hold trims */ int last_trim_tick; /* Last 'tick' time ld a trim */ int queued_trims; /* Number of trims in the queue */ #ifdef CAM_IOSCHED_DYNAMIC int read_bias; /* Read bias setting */ int current_read_bias; /* Current read bias state */ int total_ticks; int load; /* EMA of 'load average' of disk / 2^16 */ struct bio_queue_head write_queue; struct iop_stats read_stats, write_stats, trim_stats; struct sysctl_ctx_list sysctl_ctx; struct sysctl_oid *sysctl_tree; int quanta; /* Number of quanta per second */ struct callout ticker; /* Callout for our quota system */ struct cam_periph *periph; /* cam periph associated with this device */ uint32_t this_frac; /* Fraction of a second (1024ths) for this tick */ sbintime_t last_time; /* Last time we ticked */ struct control_loop cl; sbintime_t max_lat; /* when != 0, if iop latency > max_lat, call max_lat_fcn */ cam_iosched_latfcn_t latfcn; void *latarg; #endif }; #ifdef CAM_IOSCHED_DYNAMIC /* * helper functions to call the limsw functions. */ static int cam_iosched_limiter_init(struct iop_stats *ios) { int lim = ios->limiter; /* maybe this should be a kassert */ if (lim < none || lim >= limiter_max) return EINVAL; if (limsw[lim].l_init) return limsw[lim].l_init(ios); return 0; } static int cam_iosched_limiter_tick(struct iop_stats *ios) { int lim = ios->limiter; /* maybe this should be a kassert */ if (lim < none || lim >= limiter_max) return EINVAL; if (limsw[lim].l_tick) return limsw[lim].l_tick(ios); return 0; } static int cam_iosched_limiter_iop(struct iop_stats *ios, struct bio *bp) { int lim = ios->limiter; /* maybe this should be a kassert */ if (lim < none || lim >= limiter_max) return EINVAL; if (limsw[lim].l_iop) return limsw[lim].l_iop(ios, bp); return 0; } static int cam_iosched_limiter_caniop(struct iop_stats *ios, struct bio *bp) { int lim = ios->limiter; /* maybe this should be a kassert */ if (lim < none || lim >= limiter_max) return EINVAL; if (limsw[lim].l_caniop) return limsw[lim].l_caniop(ios, bp); return 0; } static int cam_iosched_limiter_iodone(struct iop_stats *ios, struct bio *bp) { int lim = ios->limiter; /* maybe this should be a kassert */ if (lim < none || lim >= limiter_max) return 0; if (limsw[lim].l_iodone) return limsw[lim].l_iodone(ios, bp); return 0; } /* * Functions to implement the different kinds of limiters */ static int cam_iosched_qd_iop(struct iop_stats *ios, struct bio *bp) { if (ios->current <= 0 || ios->pending < ios->current) return 0; return EAGAIN; } static int cam_iosched_qd_caniop(struct iop_stats *ios, struct bio *bp) { if (ios->current <= 0 || ios->pending < ios->current) return 0; return EAGAIN; } static int cam_iosched_qd_iodone(struct iop_stats *ios, struct bio *bp) { if (ios->current <= 0 || ios->pending != ios->current) return 0; return 1; } static int cam_iosched_iops_init(struct iop_stats *ios) { ios->l_value1 = ios->current / ios->softc->quanta; if (ios->l_value1 <= 0) ios->l_value1 = 1; ios->l_value2 = 0; return 0; } static int cam_iosched_iops_tick(struct iop_stats *ios) { int new_ios; /* * Allow at least one IO per tick until all * the IOs for this interval have been spent. */ new_ios = (int)((ios->current * (uint64_t)ios->softc->this_frac) >> 16); if (new_ios < 1 && ios->l_value2 < ios->current) { new_ios = 1; ios->l_value2++; } /* * If this a new accounting interval, discard any "unspent" ios * granted in the previous interval. Otherwise add the new ios to * the previously granted ones that haven't been spent yet. */ if ((ios->softc->total_ticks % ios->softc->quanta) == 0) { ios->l_value1 = new_ios; ios->l_value2 = 1; } else { ios->l_value1 += new_ios; } return 0; } static int cam_iosched_iops_caniop(struct iop_stats *ios, struct bio *bp) { /* * So if we have any more IOPs left, allow it, * otherwise wait. If current iops is 0, treat that * as unlimited as a failsafe. */ if (ios->current > 0 && ios->l_value1 <= 0) return EAGAIN; return 0; } static int cam_iosched_iops_iop(struct iop_stats *ios, struct bio *bp) { int rv; rv = cam_iosched_limiter_caniop(ios, bp); if (rv == 0) ios->l_value1--; return rv; } static int cam_iosched_bw_init(struct iop_stats *ios) { /* ios->current is in kB/s, so scale to bytes */ ios->l_value1 = ios->current * 1000 / ios->softc->quanta; return 0; } static int cam_iosched_bw_tick(struct iop_stats *ios) { int bw; /* * If we're in the hole for available quota from * the last time, then add the quantum for this. * If we have any left over from last quantum, * then too bad, that's lost. Also, ios->current * is in kB/s, so scale. * * We also allow up to 4 quanta of credits to * accumulate to deal with burstiness. 4 is extremely * arbitrary. */ bw = (int)((ios->current * 1000ull * (uint64_t)ios->softc->this_frac) >> 16); if (ios->l_value1 < bw * 4) ios->l_value1 += bw; return 0; } static int cam_iosched_bw_caniop(struct iop_stats *ios, struct bio *bp) { /* * So if we have any more bw quota left, allow it, * otherwise wait. Note, we'll go negative and that's * OK. We'll just get a little less next quota. * * Note on going negative: that allows us to process * requests in order better, since we won't allow * shorter reads to get around the long one that we * don't have the quota to do just yet. It also prevents * starvation by being a little more permissive about * what we let through this quantum (to prevent the * starvation), at the cost of getting a little less * next quantum. * * Also note that if the current limit is <= 0, * we treat it as unlimited as a failsafe. */ if (ios->current > 0 && ios->l_value1 <= 0) return EAGAIN; return 0; } static int cam_iosched_bw_iop(struct iop_stats *ios, struct bio *bp) { int rv; rv = cam_iosched_limiter_caniop(ios, bp); if (rv == 0) ios->l_value1 -= bp->bio_length; return rv; } static void cam_iosched_cl_maybe_steer(struct control_loop *clp); static void cam_iosched_ticker(void *arg) { struct cam_iosched_softc *isc = arg; sbintime_t now, delta; int pending; callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc); now = sbinuptime(); delta = now - isc->last_time; isc->this_frac = (uint32_t)delta >> 16; /* Note: discards seconds -- should be 0 harmless if not */ isc->last_time = now; cam_iosched_cl_maybe_steer(&isc->cl); cam_iosched_limiter_tick(&isc->read_stats); cam_iosched_limiter_tick(&isc->write_stats); cam_iosched_limiter_tick(&isc->trim_stats); cam_iosched_schedule(isc, isc->periph); /* * isc->load is an EMA of the pending I/Os at each tick. The number of * pending I/Os is the sum of the I/Os queued to the hardware, and those * in the software queue that could be queued to the hardware if there * were slots. * * ios_stats.pending is a count of requests in the SIM right now for * each of these types of I/O. So the total pending count is the sum of * these I/Os and the sum of the queued I/Os still in the software queue * for those operations that aren't being rate limited at the moment. * * The reason for the rate limiting bit is because those I/Os * aren't part of the software queued load (since we could * give them to hardware, but choose not to). * * Note: due to a bug in counting pending TRIM in the device, we * don't include them in this count. We count each BIO_DELETE in * the pending count, but the periph drivers collapse them down * into one TRIM command. That one trim command gets the completion * so the counts get off. */ pending = isc->read_stats.pending + isc->write_stats.pending /* + isc->trim_stats.pending */; pending += !!(isc->read_stats.state_flags & IOP_RATE_LIMITED) * isc->read_stats.queued + !!(isc->write_stats.state_flags & IOP_RATE_LIMITED) * isc->write_stats.queued /* + !!(isc->trim_stats.state_flags & IOP_RATE_LIMITED) * isc->trim_stats.queued */ ; pending <<= 16; pending /= isc->periph->path->device->ccbq.total_openings; isc->load = (pending + (isc->load << 13) - isc->load) >> 13; /* see above: 13 -> 16139 / 200/s = ~81s ~1 minute */ isc->total_ticks++; } static void cam_iosched_cl_init(struct control_loop *clp, struct cam_iosched_softc *isc) { clp->next_steer = sbinuptime(); clp->softc = isc; clp->steer_interval = SBT_1S * 5; /* Let's start out steering every 5s */ clp->lolat = 5 * SBT_1MS; clp->hilat = 15 * SBT_1MS; clp->alpha = 20; /* Alpha == gain. 20 = .2 */ clp->type = set_max; } static void cam_iosched_cl_maybe_steer(struct control_loop *clp) { struct cam_iosched_softc *isc; sbintime_t now, lat; int old; isc = clp->softc; now = isc->last_time; if (now < clp->next_steer) return; clp->next_steer = now + clp->steer_interval; switch (clp->type) { case set_max: if (isc->write_stats.current != isc->write_stats.max) printf("Steering write from %d kBps to %d kBps\n", isc->write_stats.current, isc->write_stats.max); isc->read_stats.current = isc->read_stats.max; isc->write_stats.current = isc->write_stats.max; isc->trim_stats.current = isc->trim_stats.max; break; case read_latency: old = isc->write_stats.current; lat = isc->read_stats.ema; /* * Simple PLL-like engine. Since we're steering to a range for * the SP (set point) that makes things a little more * complicated. In addition, we're not directly controlling our * PV (process variable), the read latency, but instead are * manipulating the write bandwidth limit for our MV * (manipulation variable), analysis of this code gets a bit * messy. Also, the MV is a very noisy control surface for read * latency since it is affected by many hidden processes inside * the device which change how responsive read latency will be * in reaction to changes in write bandwidth. Unlike the classic * boiler control PLL. this may result in over-steering while * the SSD takes its time to react to the new, lower load. This * is why we use a relatively low alpha of between .1 and .25 to * compensate for this effect. At .1, it takes ~22 steering * intervals to back off by a factor of 10. At .2 it only takes * ~10. At .25 it only takes ~8. However some preliminary data * from the SSD drives suggests a reasponse time in 10's of * seconds before latency drops regardless of the new write * rate. Careful observation will be required to tune this * effectively. * * Also, when there's no read traffic, we jack up the write * limit too regardless of the last read latency. 10 is * somewhat arbitrary. */ if (lat < clp->lolat || isc->read_stats.total - clp->last_count < 10) isc->write_stats.current = isc->write_stats.current * (100 + clp->alpha) / 100; /* Scale up */ else if (lat > clp->hilat) isc->write_stats.current = isc->write_stats.current * (100 - clp->alpha) / 100; /* Scale down */ clp->last_count = isc->read_stats.total; /* * Even if we don't steer, per se, enforce the min/max limits as * those may have changed. */ if (isc->write_stats.current < isc->write_stats.min) isc->write_stats.current = isc->write_stats.min; if (isc->write_stats.current > isc->write_stats.max) isc->write_stats.current = isc->write_stats.max; if (old != isc->write_stats.current && iosched_debug) printf("Steering write from %d kBps to %d kBps due to latency of %jdus\n", old, isc->write_stats.current, (uintmax_t)((uint64_t)1000000 * (uint32_t)lat) >> 32); break; case cl_max: break; } } #endif /* * Trim or similar currently pending completion. Should only be set for * those drivers wishing only one Trim active at a time. */ #define CAM_IOSCHED_FLAG_TRIM_ACTIVE (1ul << 0) /* Callout active, and needs to be torn down */ #define CAM_IOSCHED_FLAG_CALLOUT_ACTIVE (1ul << 1) /* Periph drivers set these flags to indicate work */ #define CAM_IOSCHED_FLAG_WORK_FLAGS ((0xffffu) << 16) #ifdef CAM_IOSCHED_DYNAMIC static void cam_iosched_io_metric_update(struct cam_iosched_softc *isc, sbintime_t sim_latency, int cmd, size_t size); #endif static inline bool cam_iosched_has_flagged_work(struct cam_iosched_softc *isc) { return !!(isc->flags & CAM_IOSCHED_FLAG_WORK_FLAGS); } static inline bool cam_iosched_has_io(struct cam_iosched_softc *isc) { #ifdef CAM_IOSCHED_DYNAMIC if (do_dynamic_iosched) { struct bio *rbp = bioq_first(&isc->bio_queue); struct bio *wbp = bioq_first(&isc->write_queue); bool can_write = wbp != NULL && cam_iosched_limiter_caniop(&isc->write_stats, wbp) == 0; bool can_read = rbp != NULL && cam_iosched_limiter_caniop(&isc->read_stats, rbp) == 0; if (iosched_debug > 2) { printf("can write %d: pending_writes %d max_writes %d\n", can_write, isc->write_stats.pending, isc->write_stats.max); printf("can read %d: read_stats.pending %d max_reads %d\n", can_read, isc->read_stats.pending, isc->read_stats.max); printf("Queued reads %d writes %d\n", isc->read_stats.queued, isc->write_stats.queued); } return can_read || can_write; } #endif return bioq_first(&isc->bio_queue) != NULL; } static inline bool cam_iosched_has_more_trim(struct cam_iosched_softc *isc) { struct bio *bp; bp = bioq_first(&isc->trim_queue); #ifdef CAM_IOSCHED_DYNAMIC if (do_dynamic_iosched) { /* * If we're limiting trims, then defer action on trims * for a bit. */ if (bp == NULL || cam_iosched_limiter_caniop(&isc->trim_stats, bp) != 0) return false; } #endif /* * If we've set a trim_goal, then if we exceed that allow trims * to be passed back to the driver. If we've also set a tick timeout * allow trims back to the driver. Otherwise, don't allow trims yet. */ if (isc->trim_goal > 0) { if (isc->queued_trims >= isc->trim_goal) return true; if (isc->queued_trims > 0 && isc->trim_ticks > 0 && ticks - isc->last_trim_tick > isc->trim_ticks) return true; return false; } /* NB: Should perhaps have a max trim active independent of I/O limiters */ return !(isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) && bp != NULL; } #define cam_iosched_sort_queue(isc) ((isc)->sort_io_queue >= 0 ? \ (isc)->sort_io_queue : cam_sort_io_queues) static inline bool cam_iosched_has_work(struct cam_iosched_softc *isc) { #ifdef CAM_IOSCHED_DYNAMIC if (iosched_debug > 2) printf("has work: %d %d %d\n", cam_iosched_has_io(isc), cam_iosched_has_more_trim(isc), cam_iosched_has_flagged_work(isc)); #endif return cam_iosched_has_io(isc) || cam_iosched_has_more_trim(isc) || cam_iosched_has_flagged_work(isc); } #ifdef CAM_IOSCHED_DYNAMIC static void cam_iosched_iop_stats_init(struct cam_iosched_softc *isc, struct iop_stats *ios) { ios->limiter = none; ios->in = 0; ios->max = ios->current = 300000; ios->min = 1; ios->out = 0; ios->errs = 0; ios->pending = 0; ios->queued = 0; ios->total = 0; ios->ema = 0; ios->emvar = 0; ios->softc = isc; cam_iosched_limiter_init(ios); } static int cam_iosched_limiter_sysctl(SYSCTL_HANDLER_ARGS) { char buf[16]; struct iop_stats *ios; struct cam_iosched_softc *isc; int value, i, error; const char *p; ios = arg1; isc = ios->softc; value = ios->limiter; if (value < none || value >= limiter_max) p = "UNKNOWN"; else p = cam_iosched_limiter_names[value]; strlcpy(buf, p, sizeof(buf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return error; cam_periph_lock(isc->periph); for (i = none; i < limiter_max; i++) { if (strcmp(buf, cam_iosched_limiter_names[i]) != 0) continue; ios->limiter = i; error = cam_iosched_limiter_init(ios); if (error != 0) { ios->limiter = value; cam_periph_unlock(isc->periph); return error; } /* Note: disk load averate requires ticker to be always running */ callout_reset(&isc->ticker, hz / isc->quanta, cam_iosched_ticker, isc); isc->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE; cam_periph_unlock(isc->periph); return 0; } cam_periph_unlock(isc->periph); return EINVAL; } static int cam_iosched_control_type_sysctl(SYSCTL_HANDLER_ARGS) { char buf[16]; struct control_loop *clp; struct cam_iosched_softc *isc; int value, i, error; const char *p; clp = arg1; isc = clp->softc; value = clp->type; if (value < none || value >= cl_max) p = "UNKNOWN"; else p = cam_iosched_control_type_names[value]; strlcpy(buf, p, sizeof(buf)); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return error; for (i = set_max; i < cl_max; i++) { if (strcmp(buf, cam_iosched_control_type_names[i]) != 0) continue; cam_periph_lock(isc->periph); clp->type = i; cam_periph_unlock(isc->periph); return 0; } return EINVAL; } static int cam_iosched_sbintime_sysctl(SYSCTL_HANDLER_ARGS) { char buf[16]; sbintime_t value; int error; uint64_t us; value = *(sbintime_t *)arg1; us = (uint64_t)value / SBT_1US; snprintf(buf, sizeof(buf), "%ju", (intmax_t)us); error = sysctl_handle_string(oidp, buf, sizeof(buf), req); if (error != 0 || req->newptr == NULL) return error; us = strtoul(buf, NULL, 10); if (us == 0) return EINVAL; *(sbintime_t *)arg1 = us * SBT_1US; return 0; } static int cam_iosched_sysctl_latencies(SYSCTL_HANDLER_ARGS) { int i, error; struct sbuf sb; uint64_t *latencies; latencies = arg1; sbuf_new_for_sysctl(&sb, NULL, LAT_BUCKETS * 16, req); for (i = 0; i < LAT_BUCKETS - 1; i++) sbuf_printf(&sb, "%jd,", (intmax_t)latencies[i]); sbuf_printf(&sb, "%jd", (intmax_t)latencies[LAT_BUCKETS - 1]); error = sbuf_finish(&sb); sbuf_delete(&sb); return (error); } static int cam_iosched_quanta_sysctl(SYSCTL_HANDLER_ARGS) { int *quanta; int error, value; quanta = (unsigned *)arg1; value = *quanta; error = sysctl_handle_int(oidp, (int *)&value, 0, req); if ((error != 0) || (req->newptr == NULL)) return (error); if (value < 1 || value > hz) return (EINVAL); *quanta = value; return (0); } static void cam_iosched_iop_stats_sysctl_init(struct cam_iosched_softc *isc, struct iop_stats *ios, char *name) { struct sysctl_oid_list *n; struct sysctl_ctx_list *ctx; ios->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx, SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, name, CTLFLAG_RD | CTLFLAG_MPSAFE, 0, name); n = SYSCTL_CHILDREN(ios->sysctl_tree); ctx = &ios->sysctl_ctx; SYSCTL_ADD_UQUAD(ctx, n, OID_AUTO, "ema", CTLFLAG_RD, &ios->ema, "Fast Exponentially Weighted Moving Average"); SYSCTL_ADD_UQUAD(ctx, n, OID_AUTO, "emvar", CTLFLAG_RD, &ios->emvar, "Fast Exponentially Weighted Moving Variance"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "pending", CTLFLAG_RD, &ios->pending, 0, "Instantaneous # of pending transactions"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "count", CTLFLAG_RD, &ios->total, 0, "# of transactions submitted to hardware"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "queued", CTLFLAG_RD, &ios->queued, 0, "# of transactions in the queue"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "in", CTLFLAG_RD, &ios->in, 0, "# of transactions queued to driver"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "out", CTLFLAG_RD, &ios->out, 0, "# of transactions completed (including with error)"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "errs", CTLFLAG_RD, &ios->errs, 0, "# of transactions completed with an error"); SYSCTL_ADD_PROC(ctx, n, OID_AUTO, "limiter", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, ios, 0, cam_iosched_limiter_sysctl, "A", "Current limiting type."); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "min", CTLFLAG_RW, &ios->min, 0, "min resource"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "max", CTLFLAG_RW, &ios->max, 0, "max resource"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "current", CTLFLAG_RW, &ios->current, 0, "current resource"); SYSCTL_ADD_PROC(ctx, n, OID_AUTO, "latencies", CTLTYPE_STRING | CTLFLAG_RD | CTLFLAG_MPSAFE, &ios->latencies, 0, cam_iosched_sysctl_latencies, "A", "Array of power of 2 latency from 1ms to 1.024s"); } static void cam_iosched_iop_stats_fini(struct iop_stats *ios) { if (ios->sysctl_tree) if (sysctl_ctx_free(&ios->sysctl_ctx) != 0) printf("can't remove iosched sysctl stats context\n"); } static void cam_iosched_cl_sysctl_init(struct cam_iosched_softc *isc) { struct sysctl_oid_list *n; struct sysctl_ctx_list *ctx; struct control_loop *clp; clp = &isc->cl; clp->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx, SYSCTL_CHILDREN(isc->sysctl_tree), OID_AUTO, "control", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "Control loop info"); n = SYSCTL_CHILDREN(clp->sysctl_tree); ctx = &clp->sysctl_ctx; SYSCTL_ADD_PROC(ctx, n, OID_AUTO, "type", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, clp, 0, cam_iosched_control_type_sysctl, "A", "Control loop algorithm"); SYSCTL_ADD_PROC(ctx, n, OID_AUTO, "steer_interval", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, &clp->steer_interval, 0, cam_iosched_sbintime_sysctl, "A", "How often to steer (in us)"); SYSCTL_ADD_PROC(ctx, n, OID_AUTO, "lolat", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, &clp->lolat, 0, cam_iosched_sbintime_sysctl, "A", "Low water mark for Latency (in us)"); SYSCTL_ADD_PROC(ctx, n, OID_AUTO, "hilat", CTLTYPE_STRING | CTLFLAG_RW | CTLFLAG_MPSAFE, &clp->hilat, 0, cam_iosched_sbintime_sysctl, "A", "Hi water mark for Latency (in us)"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "alpha", CTLFLAG_RW, &clp->alpha, 0, "Alpha for PLL (x100) aka gain"); } static void cam_iosched_cl_sysctl_fini(struct control_loop *clp) { if (clp->sysctl_tree) if (sysctl_ctx_free(&clp->sysctl_ctx) != 0) printf("can't remove iosched sysctl control loop context\n"); } #endif /* * Allocate the iosched structure. This also insulates callers from knowing * sizeof struct cam_iosched_softc. */ int cam_iosched_init(struct cam_iosched_softc **iscp, struct cam_periph *periph) { *iscp = malloc(sizeof(**iscp), M_CAMSCHED, M_NOWAIT | M_ZERO); if (*iscp == NULL) return ENOMEM; #ifdef CAM_IOSCHED_DYNAMIC if (iosched_debug) printf("CAM IOSCHEDULER Allocating entry at %p\n", *iscp); #endif (*iscp)->sort_io_queue = -1; bioq_init(&(*iscp)->bio_queue); bioq_init(&(*iscp)->trim_queue); #ifdef CAM_IOSCHED_DYNAMIC if (do_dynamic_iosched) { bioq_init(&(*iscp)->write_queue); (*iscp)->read_bias = default_read_bias; (*iscp)->current_read_bias = 0; (*iscp)->quanta = min(hz, 200); cam_iosched_iop_stats_init(*iscp, &(*iscp)->read_stats); cam_iosched_iop_stats_init(*iscp, &(*iscp)->write_stats); cam_iosched_iop_stats_init(*iscp, &(*iscp)->trim_stats); (*iscp)->trim_stats.max = 1; /* Trims are special: one at a time for now */ (*iscp)->last_time = sbinuptime(); callout_init_mtx(&(*iscp)->ticker, cam_periph_mtx(periph), 0); (*iscp)->periph = periph; cam_iosched_cl_init(&(*iscp)->cl, *iscp); callout_reset(&(*iscp)->ticker, hz / (*iscp)->quanta, cam_iosched_ticker, *iscp); (*iscp)->flags |= CAM_IOSCHED_FLAG_CALLOUT_ACTIVE; } #endif return 0; } /* * Reclaim all used resources. This assumes that other folks have * drained the requests in the hardware. Maybe an unwise assumption. */ void cam_iosched_fini(struct cam_iosched_softc *isc) { if (isc) { cam_iosched_flush(isc, NULL, ENXIO); #ifdef CAM_IOSCHED_DYNAMIC cam_iosched_iop_stats_fini(&isc->read_stats); cam_iosched_iop_stats_fini(&isc->write_stats); cam_iosched_iop_stats_fini(&isc->trim_stats); cam_iosched_cl_sysctl_fini(&isc->cl); if (isc->sysctl_tree) if (sysctl_ctx_free(&isc->sysctl_ctx) != 0) printf("can't remove iosched sysctl stats context\n"); if (isc->flags & CAM_IOSCHED_FLAG_CALLOUT_ACTIVE) { callout_drain(&isc->ticker); isc->flags &= ~ CAM_IOSCHED_FLAG_CALLOUT_ACTIVE; } #endif free(isc, M_CAMSCHED); } } /* * After we're sure we're attaching a device, go ahead and add * hooks for any sysctl we may wish to honor. */ void cam_iosched_sysctl_init(struct cam_iosched_softc *isc, struct sysctl_ctx_list *ctx, struct sysctl_oid *node) { struct sysctl_oid_list *n; n = SYSCTL_CHILDREN(node); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "sort_io_queue", CTLFLAG_RW | CTLFLAG_MPSAFE, &isc->sort_io_queue, 0, "Sort IO queue to try and optimise disk access patterns"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "trim_goal", CTLFLAG_RW, &isc->trim_goal, 0, "Number of trims to try to accumulate before sending to hardware"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "trim_ticks", CTLFLAG_RW, &isc->trim_goal, 0, "IO Schedul qaunta to hold back trims for when accumulating"); #ifdef CAM_IOSCHED_DYNAMIC if (!do_dynamic_iosched) return; isc->sysctl_tree = SYSCTL_ADD_NODE(&isc->sysctl_ctx, SYSCTL_CHILDREN(node), OID_AUTO, "iosched", CTLFLAG_RD | CTLFLAG_MPSAFE, 0, "I/O scheduler statistics"); n = SYSCTL_CHILDREN(isc->sysctl_tree); ctx = &isc->sysctl_ctx; cam_iosched_iop_stats_sysctl_init(isc, &isc->read_stats, "read"); cam_iosched_iop_stats_sysctl_init(isc, &isc->write_stats, "write"); cam_iosched_iop_stats_sysctl_init(isc, &isc->trim_stats, "trim"); cam_iosched_cl_sysctl_init(isc); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "read_bias", CTLFLAG_RW, &isc->read_bias, default_read_bias, "How biased towards read should we be independent of limits"); SYSCTL_ADD_PROC(ctx, n, OID_AUTO, "quanta", CTLTYPE_UINT | CTLFLAG_RW | CTLFLAG_MPSAFE, &isc->quanta, 0, cam_iosched_quanta_sysctl, "I", "How many quanta per second do we slice the I/O up into"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "total_ticks", CTLFLAG_RD, &isc->total_ticks, 0, "Total number of ticks we've done"); SYSCTL_ADD_INT(ctx, n, OID_AUTO, "load", CTLFLAG_RD, &isc->load, 0, "scaled load average / 100"); SYSCTL_ADD_U64(ctx, n, OID_AUTO, "latency_trigger", CTLFLAG_RW, &isc->max_lat, 0, "Latency treshold to trigger callbacks"); #endif } void cam_iosched_set_latfcn(struct cam_iosched_softc *isc, cam_iosched_latfcn_t fnp, void *argp) { #ifdef CAM_IOSCHED_DYNAMIC isc->latfcn = fnp; isc->latarg = argp; #endif } /* * Client drivers can set two parameters. "goal" is the number of BIO_DELETEs * that will be queued up before iosched will "release" the trims to the client * driver to wo with what they will (usually combine as many as possible). If we * don't get this many, after trim_ticks we'll submit the I/O anyway with * whatever we have. We do need an I/O of some kind of to clock the deferred * trims out to disk. Since we will eventually get a write for the super block * or something before we shutdown, the trims will complete. To be safe, when a * BIO_FLUSH is presented to the iosched work queue, we set the ticks time far * enough in the past so we'll present the BIO_DELETEs to the client driver. * There might be a race if no BIO_DELETESs were queued, a BIO_FLUSH comes in * and then a BIO_DELETE is sent down. No know client does this, and there's * already a race between an ordered BIO_FLUSH and any BIO_DELETEs in flight, * but no client depends on the ordering being honored. * * XXX I'm not sure what the interaction between UFS direct BIOs and the BUF * flushing on shutdown. I think there's bufs that would be dependent on the BIO * finishing to write out at least metadata, so we'll be fine. To be safe, keep * the number of ticks low (less than maybe 10s) to avoid shutdown races. */ void cam_iosched_set_trim_goal(struct cam_iosched_softc *isc, int goal) { isc->trim_goal = goal; } void cam_iosched_set_trim_ticks(struct cam_iosched_softc *isc, int trim_ticks) { isc->trim_ticks = trim_ticks; } /* * Flush outstanding I/O. Consumers of this library don't know all the * queues we may keep, so this allows all I/O to be flushed in one * convenient call. */ void cam_iosched_flush(struct cam_iosched_softc *isc, struct devstat *stp, int err) { bioq_flush(&isc->bio_queue, stp, err); bioq_flush(&isc->trim_queue, stp, err); #ifdef CAM_IOSCHED_DYNAMIC if (do_dynamic_iosched) bioq_flush(&isc->write_queue, stp, err); #endif } #ifdef CAM_IOSCHED_DYNAMIC static struct bio * cam_iosched_get_write(struct cam_iosched_softc *isc) { struct bio *bp; /* * We control the write rate by controlling how many requests we send * down to the drive at any one time. Fewer requests limits the * effects of both starvation when the requests take a while and write * amplification when each request is causing more than one write to * the NAND media. Limiting the queue depth like this will also limit * the write throughput and give and reads that want to compete to * compete unfairly. */ bp = bioq_first(&isc->write_queue); if (bp == NULL) { if (iosched_debug > 3) printf("No writes present in write_queue\n"); return NULL; } /* * If pending read, prefer that based on current read bias * setting. */ if (bioq_first(&isc->bio_queue) && isc->current_read_bias) { if (iosched_debug) printf( "Reads present and current_read_bias is %d queued " "writes %d queued reads %d\n", isc->current_read_bias, isc->write_stats.queued, isc->read_stats.queued); isc->current_read_bias--; /* We're not limiting writes, per se, just doing reads first */ return NULL; } /* * See if our current limiter allows this I/O. */ if (cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) { if (iosched_debug) printf("Can't write because limiter says no.\n"); isc->write_stats.state_flags |= IOP_RATE_LIMITED; return NULL; } /* * Let's do this: We've passed all the gates and we're a go * to schedule the I/O in the SIM. */ isc->current_read_bias = isc->read_bias; bioq_remove(&isc->write_queue, bp); if (bp->bio_cmd == BIO_WRITE) { isc->write_stats.queued--; isc->write_stats.total++; isc->write_stats.pending++; } if (iosched_debug > 9) printf("HWQ : %p %#x\n", bp, bp->bio_cmd); isc->write_stats.state_flags &= ~IOP_RATE_LIMITED; return bp; } #endif /* * Put back a trim that you weren't able to actually schedule this time. */ void cam_iosched_put_back_trim(struct cam_iosched_softc *isc, struct bio *bp) { bioq_insert_head(&isc->trim_queue, bp); if (isc->queued_trims == 0) isc->last_trim_tick = ticks; isc->queued_trims++; #ifdef CAM_IOSCHED_DYNAMIC isc->trim_stats.queued++; isc->trim_stats.total--; /* since we put it back, don't double count */ isc->trim_stats.pending--; #endif } /* * gets the next trim from the trim queue. * * Assumes we're called with the periph lock held. It removes this * trim from the queue and the device must explicitly reinsert it * should the need arise. */ struct bio * cam_iosched_next_trim(struct cam_iosched_softc *isc) { struct bio *bp; bp = bioq_first(&isc->trim_queue); if (bp == NULL) return NULL; bioq_remove(&isc->trim_queue, bp); isc->queued_trims--; isc->last_trim_tick = ticks; /* Reset the tick timer when we take trims */ #ifdef CAM_IOSCHED_DYNAMIC isc->trim_stats.queued--; isc->trim_stats.total++; isc->trim_stats.pending++; #endif return bp; } /* * gets an available trim from the trim queue, if there's no trim * already pending. It removes this trim from the queue and the device * must explicitly reinsert it should the need arise. * * Assumes we're called with the periph lock held. */ struct bio * cam_iosched_get_trim(struct cam_iosched_softc *isc) { #ifdef CAM_IOSCHED_DYNAMIC struct bio *bp; #endif if (!cam_iosched_has_more_trim(isc)) return NULL; #ifdef CAM_IOSCHED_DYNAMIC bp = bioq_first(&isc->trim_queue); if (bp == NULL) return NULL; /* * If pending read, prefer that based on current read bias setting. The * read bias is shared for both writes and TRIMs, but on TRIMs the bias * is for a combined TRIM not a single TRIM request that's come in. */ if (do_dynamic_iosched) { if (bioq_first(&isc->bio_queue) && isc->current_read_bias) { if (iosched_debug) printf("Reads present and current_read_bias is %d" " queued trims %d queued reads %d\n", isc->current_read_bias, isc->trim_stats.queued, isc->read_stats.queued); isc->current_read_bias--; /* We're not limiting TRIMS, per se, just doing reads first */ return NULL; } /* * We're going to do a trim, so reset the bias. */ isc->current_read_bias = isc->read_bias; } /* * See if our current limiter allows this I/O. Because we only call this * here, and not in next_trim, the 'bandwidth' limits for trims won't * work, while the iops or max queued limits will work. It's tricky * because we want the limits to be from the perspective of the * "commands sent to the device." To make iops work, we need to check * only here (since we want all the ops we combine to count as one). To * make bw limits work, we'd need to check in next_trim, but that would * have the effect of limiting the iops as seen from the upper layers. */ if (cam_iosched_limiter_iop(&isc->trim_stats, bp) != 0) { if (iosched_debug) printf("Can't trim because limiter says no.\n"); isc->trim_stats.state_flags |= IOP_RATE_LIMITED; return NULL; } isc->current_read_bias = isc->read_bias; isc->trim_stats.state_flags &= ~IOP_RATE_LIMITED; /* cam_iosched_next_trim below keeps proper book */ #endif return cam_iosched_next_trim(isc); } #ifdef CAM_IOSCHED_DYNAMIC static struct bio * bio_next(struct bio *bp) { bp = TAILQ_NEXT(bp, bio_queue); /* * After the first commands, the ordered bit terminates * our search because BIO_ORDERED acts like a barrier. */ if (bp == NULL || bp->bio_flags & BIO_ORDERED) return NULL; return bp; } static bool cam_iosched_rate_limited(struct iop_stats *ios) { return ios->state_flags & IOP_RATE_LIMITED; } #endif /* * Determine what the next bit of work to do is for the periph. The * default implementation looks to see if we have trims to do, but no * trims outstanding. If so, we do that. Otherwise we see if we have * other work. If we do, then we do that. Otherwise why were we called? */ struct bio * cam_iosched_next_bio(struct cam_iosched_softc *isc) { struct bio *bp; /* * See if we have a trim that can be scheduled. We can only send one * at a time down, so this takes that into account. * * XXX newer TRIM commands are queueable. Revisit this when we * implement them. */ if ((bp = cam_iosched_get_trim(isc)) != NULL) return bp; #ifdef CAM_IOSCHED_DYNAMIC /* * See if we have any pending writes, room in the queue for them, * and no pending reads (unless we've scheduled too many). * if so, those are next. */ if (do_dynamic_iosched) { if ((bp = cam_iosched_get_write(isc)) != NULL) return bp; } #endif /* * next, see if there's other, normal I/O waiting. If so return that. */ #ifdef CAM_IOSCHED_DYNAMIC if (do_dynamic_iosched) { for (bp = bioq_first(&isc->bio_queue); bp != NULL; bp = bio_next(bp)) { /* * For the dynamic scheduler with a read bias, bio_queue * is only for reads. However, without one, all * operations are queued. Enforce limits here for any * operation we find here. */ if (bp->bio_cmd == BIO_READ) { if (cam_iosched_rate_limited(&isc->read_stats) || cam_iosched_limiter_iop(&isc->read_stats, bp) != 0) { isc->read_stats.state_flags |= IOP_RATE_LIMITED; continue; } isc->read_stats.state_flags &= ~IOP_RATE_LIMITED; } /* * There can only be write requests on the queue when * the read bias is 0, but we need to process them * here. We do not assert for read bias == 0, however, * since it is dynamic and we can have WRITE operations * in the queue after we transition from 0 to non-zero. */ if (bp->bio_cmd == BIO_WRITE) { if (cam_iosched_rate_limited(&isc->write_stats) || cam_iosched_limiter_iop(&isc->write_stats, bp) != 0) { isc->write_stats.state_flags |= IOP_RATE_LIMITED; continue; } isc->write_stats.state_flags &= ~IOP_RATE_LIMITED; } /* * here we know we have a bp that's != NULL, that's not rate limited * and can be the next I/O. */ break; } } else #endif bp = bioq_first(&isc->bio_queue); if (bp == NULL) return (NULL); bioq_remove(&isc->bio_queue, bp); #ifdef CAM_IOSCHED_DYNAMIC if (do_dynamic_iosched) { if (bp->bio_cmd == BIO_READ) { isc->read_stats.queued--; isc->read_stats.total++; isc->read_stats.pending++; } else if (bp->bio_cmd == BIO_WRITE) { isc->write_stats.queued--; isc->write_stats.total++; isc->write_stats.pending++; } } if (iosched_debug > 9) printf("HWQ : %p %#x\n", bp, bp->bio_cmd); #endif return bp; } /* * Driver has been given some work to do by the block layer. Tell the * scheduler about it and have it queue the work up. The scheduler module * will then return the currently most useful bit of work later, possibly * deferring work for various reasons. */ void cam_iosched_queue_work(struct cam_iosched_softc *isc, struct bio *bp) { /* * A BIO_SPEEDUP from the upper layers means that they have a block * shortage. At the present, this is only sent when we're trying to * allocate blocks, but have a shortage before giving up. bio_length is * the size of their shortage. We will complete just enough BIO_DELETEs * in the queue to satisfy the need. If bio_length is 0, we'll complete * them all. This allows the scheduler to delay BIO_DELETEs to improve * read/write performance without worrying about the upper layers. When * it's possibly a problem, we respond by pretending the BIO_DELETEs * just worked. We can't do anything about the BIO_DELETEs in the * hardware, though. We have to wait for them to complete. */ if (bp->bio_cmd == BIO_SPEEDUP) { off_t len; struct bio *nbp; len = 0; while (bioq_first(&isc->trim_queue) && (bp->bio_length == 0 || len < bp->bio_length)) { nbp = bioq_takefirst(&isc->trim_queue); len += nbp->bio_length; nbp->bio_error = 0; biodone(nbp); } if (bp->bio_length > 0) { if (bp->bio_length > len) bp->bio_resid = bp->bio_length - len; else bp->bio_resid = 0; } bp->bio_error = 0; biodone(bp); return; } /* * If we get a BIO_FLUSH, and we're doing delayed BIO_DELETEs then we * set the last tick time to one less than the current ticks minus the * delay to force the BIO_DELETEs to be presented to the client driver. */ if (bp->bio_cmd == BIO_FLUSH && isc->trim_ticks > 0) isc->last_trim_tick = ticks - isc->trim_ticks - 1; /* * Put all trims on the trim queue. Otherwise put the work on the bio * queue. */ if (bp->bio_cmd == BIO_DELETE) { bioq_insert_tail(&isc->trim_queue, bp); if (isc->queued_trims == 0) isc->last_trim_tick = ticks; isc->queued_trims++; #ifdef CAM_IOSCHED_DYNAMIC isc->trim_stats.in++; isc->trim_stats.queued++; #endif } #ifdef CAM_IOSCHED_DYNAMIC else if (do_dynamic_iosched && isc->read_bias != 0 && (bp->bio_cmd != BIO_READ)) { if (cam_iosched_sort_queue(isc)) bioq_disksort(&isc->write_queue, bp); else bioq_insert_tail(&isc->write_queue, bp); if (iosched_debug > 9) printf("Qw : %p %#x\n", bp, bp->bio_cmd); if (bp->bio_cmd == BIO_WRITE) { isc->write_stats.in++; isc->write_stats.queued++; } } #endif else { if (cam_iosched_sort_queue(isc)) bioq_disksort(&isc->bio_queue, bp); else bioq_insert_tail(&isc->bio_queue, bp); #ifdef CAM_IOSCHED_DYNAMIC if (iosched_debug > 9) printf("Qr : %p %#x\n", bp, bp->bio_cmd); if (bp->bio_cmd == BIO_READ) { isc->read_stats.in++; isc->read_stats.queued++; } else if (bp->bio_cmd == BIO_WRITE) { isc->write_stats.in++; isc->write_stats.queued++; } #endif } } /* * If we have work, get it scheduled. Called with the periph lock held. */ void cam_iosched_schedule(struct cam_iosched_softc *isc, struct cam_periph *periph) { if (cam_iosched_has_work(isc)) xpt_schedule(periph, CAM_PRIORITY_NORMAL); } /* * Complete a trim request. Mark that we no longer have one in flight. */ void cam_iosched_trim_done(struct cam_iosched_softc *isc) { isc->flags &= ~CAM_IOSCHED_FLAG_TRIM_ACTIVE; } /* * Complete a bio. Called before we release the ccb with xpt_release_ccb so we * might use notes in the ccb for statistics. */ int cam_iosched_bio_complete(struct cam_iosched_softc *isc, struct bio *bp, union ccb *done_ccb) { int retval = 0; #ifdef CAM_IOSCHED_DYNAMIC if (!do_dynamic_iosched) return retval; if (iosched_debug > 10) printf("done: %p %#x\n", bp, bp->bio_cmd); if (bp->bio_cmd == BIO_WRITE) { retval = cam_iosched_limiter_iodone(&isc->write_stats, bp); if ((bp->bio_flags & BIO_ERROR) != 0) isc->write_stats.errs++; isc->write_stats.out++; isc->write_stats.pending--; } else if (bp->bio_cmd == BIO_READ) { retval = cam_iosched_limiter_iodone(&isc->read_stats, bp); if ((bp->bio_flags & BIO_ERROR) != 0) isc->read_stats.errs++; isc->read_stats.out++; isc->read_stats.pending--; } else if (bp->bio_cmd == BIO_DELETE) { if ((bp->bio_flags & BIO_ERROR) != 0) isc->trim_stats.errs++; isc->trim_stats.out++; isc->trim_stats.pending--; } else if (bp->bio_cmd != BIO_FLUSH) { if (iosched_debug) printf("Completing command with bio_cmd == %#x\n", bp->bio_cmd); } if ((bp->bio_flags & BIO_ERROR) == 0 && done_ccb != NULL && (done_ccb->ccb_h.status & CAM_QOS_VALID) != 0) { sbintime_t sim_latency; sim_latency = cam_iosched_sbintime_t(done_ccb->ccb_h.qos.periph_data); cam_iosched_io_metric_update(isc, sim_latency, bp->bio_cmd, bp->bio_bcount); /* * Debugging code: allow callbacks to the periph driver when latency max * is exceeded. This can be useful for triggering external debugging actions. */ if (isc->latfcn && isc->max_lat != 0 && sim_latency > isc->max_lat) isc->latfcn(isc->latarg, sim_latency, bp); } #endif return retval; } /* * Tell the io scheduler that you've pushed a trim down into the sim. * This also tells the I/O scheduler not to push any more trims down, so * some periphs do not call it if they can cope with multiple trims in flight. */ void cam_iosched_submit_trim(struct cam_iosched_softc *isc) { isc->flags |= CAM_IOSCHED_FLAG_TRIM_ACTIVE; } /* * Change the sorting policy hint for I/O transactions for this device. */ void cam_iosched_set_sort_queue(struct cam_iosched_softc *isc, int val) { isc->sort_io_queue = val; } int cam_iosched_has_work_flags(struct cam_iosched_softc *isc, uint32_t flags) { return isc->flags & flags; } void cam_iosched_set_work_flags(struct cam_iosched_softc *isc, uint32_t flags) { isc->flags |= flags; } void cam_iosched_clr_work_flags(struct cam_iosched_softc *isc, uint32_t flags) { isc->flags &= ~flags; } #ifdef CAM_IOSCHED_DYNAMIC /* * After the method presented in Jack Crenshaw's 1998 article "Integer * Square Roots," reprinted at * http://www.embedded.com/electronics-blogs/programmer-s-toolbox/4219659/Integer-Square-Roots * and well worth the read. Briefly, we find the power of 4 that's the * largest smaller than val. We then check each smaller power of 4 to * see if val is still bigger. The right shifts at each step divide * the result by 2 which after successive application winds up * accumulating the right answer. It could also have been accumulated * using a separate root counter, but this code is smaller and faster * than that method. This method is also integer size invariant. * It returns floor(sqrt((float)val)), or the largest integer less than * or equal to the square root. */ static uint64_t isqrt64(uint64_t val) { uint64_t res = 0; uint64_t bit = 1ULL << (sizeof(uint64_t) * NBBY - 2); /* * Find the largest power of 4 smaller than val. */ while (bit > val) bit >>= 2; /* * Accumulate the answer, one bit at a time (we keep moving * them over since 2 is the square root of 4 and we test * powers of 4). We accumulate where we find the bit, but * the successive shifts land the bit in the right place * by the end. */ while (bit != 0) { if (val >= res + bit) { val -= res + bit; res = (res >> 1) + bit; } else res >>= 1; bit >>= 2; } return res; } static sbintime_t latencies[LAT_BUCKETS - 1] = { BUCKET_BASE << 0, /* 20us */ BUCKET_BASE << 1, BUCKET_BASE << 2, BUCKET_BASE << 3, BUCKET_BASE << 4, BUCKET_BASE << 5, BUCKET_BASE << 6, BUCKET_BASE << 7, BUCKET_BASE << 8, BUCKET_BASE << 9, BUCKET_BASE << 10, BUCKET_BASE << 11, BUCKET_BASE << 12, BUCKET_BASE << 13, BUCKET_BASE << 14, BUCKET_BASE << 15, BUCKET_BASE << 16, BUCKET_BASE << 17, BUCKET_BASE << 18 /* 5,242,880us */ }; static void cam_iosched_update(struct iop_stats *iop, sbintime_t sim_latency) { sbintime_t y, deltasq, delta; int i; /* * Keep counts for latency. We do it by power of two buckets. * This helps us spot outlier behavior obscured by averages. */ for (i = 0; i < LAT_BUCKETS - 1; i++) { if (sim_latency < latencies[i]) { iop->latencies[i]++; break; } } if (i == LAT_BUCKETS - 1) iop->latencies[i]++; /* Put all > 8192ms values into the last bucket. */ /* * Classic exponentially decaying average with a tiny alpha * (2 ^ -alpha_bits). For more info see the NIST statistical * handbook. * * ema_t = y_t * alpha + ema_t-1 * (1 - alpha) [nist] * ema_t = y_t * alpha + ema_t-1 - alpha * ema_t-1 * ema_t = alpha * y_t - alpha * ema_t-1 + ema_t-1 * alpha = 1 / (1 << alpha_bits) * sub e == ema_t-1, b == 1/alpha (== 1 << alpha_bits), d == y_t - ema_t-1 * = y_t/b - e/b + be/b * = (y_t - e + be) / b * = (e + d) / b * * Since alpha is a power of two, we can compute this w/o any mult or * division. * * Variance can also be computed. Usually, it would be expressed as follows: * diff_t = y_t - ema_t-1 * emvar_t = (1 - alpha) * (emavar_t-1 + diff_t^2 * alpha) * = emavar_t-1 - alpha * emavar_t-1 + delta_t^2 * alpha - (delta_t * alpha)^2 * sub b == 1/alpha (== 1 << alpha_bits), e == emavar_t-1, d = delta_t^2 * = e - e/b + dd/b + dd/bb * = (bbe - be + bdd + dd) / bb * = (bbe + b(dd-e) + dd) / bb (which is expanded below bb = 1<<(2*alpha_bits)) */ /* * XXX possible numeric issues * o We assume right shifted integers do the right thing, since that's * implementation defined. You can change the right shifts to / (1LL << alpha). * o alpha_bits = 9 gives ema ceiling of 23 bits of seconds for ema and 14 bits * for emvar. This puts a ceiling of 13 bits on alpha since we need a * few tens of seconds of representation. * o We mitigate alpha issues by never setting it too high. */ y = sim_latency; delta = (y - iop->ema); /* d */ iop->ema = ((iop->ema << alpha_bits) + delta) >> alpha_bits; /* * Were we to naively plow ahead at this point, we wind up with many numerical * issues making any SD > ~3ms unreliable. So, we shift right by 12. This leaves * us with microsecond level precision in the input, so the same in the * output. It means we can't overflow deltasq unless delta > 4k seconds. It * also means that emvar can be up 46 bits 40 of which are fraction, which * gives us a way to measure up to ~8s in the SD before the computation goes * unstable. Even the worst hard disk rarely has > 1s service time in the * drive. It does mean we have to shift left 12 bits after taking the * square root to compute the actual standard deviation estimate. This loss of * precision is preferable to needing int128 types to work. The above numbers * assume alpha=9. 10 or 11 are ok, but we start to run into issues at 12, * so 12 or 13 is OK for EMA, EMVAR and SD will be wrong in those cases. */ delta >>= 12; deltasq = delta * delta; /* dd */ iop->emvar = ((iop->emvar << (2 * alpha_bits)) + /* bbe */ ((deltasq - iop->emvar) << alpha_bits) + /* b(dd-e) */ deltasq) /* dd */ >> (2 * alpha_bits); /* div bb */ iop->sd = (sbintime_t)isqrt64((uint64_t)iop->emvar) << 12; } static void cam_iosched_io_metric_update(struct cam_iosched_softc *isc, sbintime_t sim_latency, int cmd, size_t size) { /* xxx Do we need to scale based on the size of the I/O ? */ switch (cmd) { case BIO_READ: cam_iosched_update(&isc->read_stats, sim_latency); break; case BIO_WRITE: cam_iosched_update(&isc->write_stats, sim_latency); break; case BIO_DELETE: cam_iosched_update(&isc->trim_stats, sim_latency); break; default: break; } } #ifdef DDB static int biolen(struct bio_queue_head *bq) { int i = 0; struct bio *bp; TAILQ_FOREACH(bp, &bq->queue, bio_queue) { i++; } return i; } /* * Show the internal state of the I/O scheduler. */ DB_SHOW_COMMAND(iosched, cam_iosched_db_show) { struct cam_iosched_softc *isc; if (!have_addr) { db_printf("Need addr\n"); return; } isc = (struct cam_iosched_softc *)addr; db_printf("pending_reads: %d\n", isc->read_stats.pending); db_printf("min_reads: %d\n", isc->read_stats.min); db_printf("max_reads: %d\n", isc->read_stats.max); db_printf("reads: %d\n", isc->read_stats.total); db_printf("in_reads: %d\n", isc->read_stats.in); db_printf("out_reads: %d\n", isc->read_stats.out); db_printf("queued_reads: %d\n", isc->read_stats.queued); db_printf("Read Q len %d\n", biolen(&isc->bio_queue)); db_printf("pending_writes: %d\n", isc->write_stats.pending); db_printf("min_writes: %d\n", isc->write_stats.min); db_printf("max_writes: %d\n", isc->write_stats.max); db_printf("writes: %d\n", isc->write_stats.total); db_printf("in_writes: %d\n", isc->write_stats.in); db_printf("out_writes: %d\n", isc->write_stats.out); db_printf("queued_writes: %d\n", isc->write_stats.queued); db_printf("Write Q len %d\n", biolen(&isc->write_queue)); db_printf("pending_trims: %d\n", isc->trim_stats.pending); db_printf("min_trims: %d\n", isc->trim_stats.min); db_printf("max_trims: %d\n", isc->trim_stats.max); db_printf("trims: %d\n", isc->trim_stats.total); db_printf("in_trims: %d\n", isc->trim_stats.in); db_printf("out_trims: %d\n", isc->trim_stats.out); db_printf("queued_trims: %d\n", isc->trim_stats.queued); db_printf("Trim Q len %d\n", biolen(&isc->trim_queue)); db_printf("read_bias: %d\n", isc->read_bias); db_printf("current_read_bias: %d\n", isc->current_read_bias); db_printf("Trim active? %s\n", (isc->flags & CAM_IOSCHED_FLAG_TRIM_ACTIVE) ? "yes" : "no"); } #endif #endif