/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2003-2009 Silicon Graphics International Corp. * Copyright (c) 2011 Spectra Logic Corporation * Copyright (c) 2014-2015 Alexander Motin <mav@FreeBSD.org> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions, and the following disclaimer, * without modification. * 2. Redistributions in binary form must reproduce at minimum a disclaimer * substantially similar to the "NO WARRANTY" disclaimer below * ("Disclaimer") and any redistribution must be conditioned upon * including a substantially similar Disclaimer requirement for further * binary redistribution. * * NO WARRANTY * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTIBILITY AND FITNESS FOR * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT * HOLDERS OR CONTRIBUTORS BE LIABLE FOR SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, * STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING * IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE * POSSIBILITY OF SUCH DAMAGES. * * $Id: //depot/users/kenm/FreeBSD-test2/sys/cam/ctl/ctl_error.c#2 $ */ /* * CAM Target Layer error reporting routines. * * Author: Ken Merry <ken@FreeBSD.org> */ #include <sys/cdefs.h> #include <sys/param.h> #include <sys/systm.h> #include <sys/kernel.h> #include <sys/types.h> #include <sys/malloc.h> #include <sys/lock.h> #include <sys/mutex.h> #include <sys/condvar.h> #include <sys/stddef.h> #include <sys/ctype.h> #include <sys/sysctl.h> #include <machine/stdarg.h> #include <cam/scsi/scsi_all.h> #include <cam/scsi/scsi_da.h> #include <cam/ctl/ctl_io.h> #include <cam/ctl/ctl.h> #include <cam/ctl/ctl_frontend.h> #include <cam/ctl/ctl_backend.h> #include <cam/ctl/ctl_ioctl.h> #include <cam/ctl/ctl_error.h> #include <cam/ctl/ctl_ha.h> #include <cam/ctl/ctl_private.h> void ctl_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len, void *lunptr, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, va_list ap) { struct ctl_lun *lun; lun = (struct ctl_lun *)lunptr; /* * Determine whether to return fixed or descriptor format sense * data. */ if (sense_format == SSD_TYPE_NONE) { /* * SPC-3 and up require some UAs to be returned as fixed. */ if (asc == 0x29 || (asc == 0x2A && ascq == 0x01)) sense_format = SSD_TYPE_FIXED; else /* * If the format isn't specified, we only return descriptor * sense if the LUN exists and descriptor sense is turned * on for that LUN. */ if ((lun != NULL) && (lun->MODE_CTRL.rlec & SCP_DSENSE)) sense_format = SSD_TYPE_DESC; else sense_format = SSD_TYPE_FIXED; } /* * Determine maximum sense data length to return. */ if (*sense_len == 0) { if ((lun != NULL) && (lun->MODE_CTRLE.max_sense != 0)) *sense_len = lun->MODE_CTRLE.max_sense; else *sense_len = SSD_FULL_SIZE; } scsi_set_sense_data_va(sense_data, sense_len, sense_format, current_error, sense_key, asc, ascq, ap); } void ctl_set_sense_data(struct scsi_sense_data *sense_data, u_int *sense_len, void *lunptr, scsi_sense_data_type sense_format, int current_error, int sense_key, int asc, int ascq, ...) { va_list ap; va_start(ap, ascq); ctl_set_sense_data_va(sense_data, sense_len, lunptr, sense_format, current_error, sense_key, asc, ascq, ap); va_end(ap); } void ctl_set_sense(struct ctl_scsiio *ctsio, int current_error, int sense_key, int asc, int ascq, ...) { va_list ap; struct ctl_lun *lun; u_int sense_len; /* * The LUN can't go away until all of the commands have been * completed. Therefore we can safely access the LUN structure and * flags without the lock. */ lun = CTL_LUN(ctsio); va_start(ap, ascq); sense_len = 0; ctl_set_sense_data_va(&ctsio->sense_data, &sense_len, lun, SSD_TYPE_NONE, current_error, sense_key, asc, ascq, ap); va_end(ap); ctsio->scsi_status = SCSI_STATUS_CHECK_COND; ctsio->sense_len = sense_len; ctsio->io_hdr.status = CTL_SCSI_ERROR | CTL_AUTOSENSE; } /* * Transform fixed sense data into descriptor sense data. * * For simplicity's sake, we assume that both sense structures are * SSD_FULL_SIZE. Otherwise, the logic gets more complicated. */ void ctl_sense_to_desc(struct scsi_sense_data_fixed *sense_src, struct scsi_sense_data_desc *sense_dest) { struct scsi_sense_stream stream_sense; int current_error; u_int sense_len; uint8_t stream_bits; bzero(sense_dest, sizeof(*sense_dest)); if ((sense_src->error_code & SSD_ERRCODE) == SSD_DEFERRED_ERROR) current_error = 0; else current_error = 1; bzero(&stream_sense, sizeof(stream_sense)); /* * Check to see whether any of the tape-specific bits are set. If * so, we'll need a stream sense descriptor. */ if (sense_src->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK)) stream_bits = sense_src->flags & ~SSD_KEY; else stream_bits = 0; /* * Utilize our sense setting routine to do the transform. If a * value is set in the fixed sense data, set it in the descriptor * data. Otherwise, skip it. */ sense_len = SSD_FULL_SIZE; ctl_set_sense_data((struct scsi_sense_data *)sense_dest, &sense_len, /*lun*/ NULL, /*sense_format*/ SSD_TYPE_DESC, current_error, /*sense_key*/ sense_src->flags & SSD_KEY, /*asc*/ sense_src->add_sense_code, /*ascq*/ sense_src->add_sense_code_qual, /* Information Bytes */ (sense_src->error_code & SSD_ERRCODE_VALID) ? SSD_ELEM_INFO : SSD_ELEM_SKIP, sizeof(sense_src->info), sense_src->info, /* Command specific bytes */ (scsi_4btoul(sense_src->cmd_spec_info) != 0) ? SSD_ELEM_COMMAND : SSD_ELEM_SKIP, sizeof(sense_src->cmd_spec_info), sense_src->cmd_spec_info, /* FRU */ (sense_src->fru != 0) ? SSD_ELEM_FRU : SSD_ELEM_SKIP, sizeof(sense_src->fru), &sense_src->fru, /* Sense Key Specific */ (sense_src->sense_key_spec[0] & SSD_SCS_VALID) ? SSD_ELEM_SKS : SSD_ELEM_SKIP, sizeof(sense_src->sense_key_spec), sense_src->sense_key_spec, /* Tape bits */ (stream_bits != 0) ? SSD_ELEM_STREAM : SSD_ELEM_SKIP, sizeof(stream_bits), &stream_bits, SSD_ELEM_NONE); } /* * Transform descriptor format sense data into fixed sense data. * * Some data may be lost in translation, because there are descriptors * thant can't be represented as fixed sense data. * * For simplicity's sake, we assume that both sense structures are * SSD_FULL_SIZE. Otherwise, the logic gets more complicated. */ void ctl_sense_to_fixed(struct scsi_sense_data_desc *sense_src, struct scsi_sense_data_fixed *sense_dest) { int current_error; uint8_t *info_ptr = NULL, *cmd_ptr = NULL, *fru_ptr = NULL; uint8_t *sks_ptr = NULL, *stream_ptr = NULL; int info_size = 0, cmd_size = 0, fru_size = 0; int sks_size = 0, stream_size = 0; int pos; u_int sense_len; if ((sense_src->error_code & SSD_ERRCODE) == SSD_DESC_CURRENT_ERROR) current_error = 1; else current_error = 0; for (pos = 0; pos < (int)(sense_src->extra_len - 1);) { struct scsi_sense_desc_header *header; header = (struct scsi_sense_desc_header *) &sense_src->sense_desc[pos]; /* * See if this record goes past the end of the sense data. * It shouldn't, but check just in case. */ if ((pos + header->length + sizeof(*header)) > sense_src->extra_len) break; switch (sense_src->sense_desc[pos]) { case SSD_DESC_INFO: { struct scsi_sense_info *info; info = (struct scsi_sense_info *)header; info_ptr = info->info; info_size = sizeof(info->info); pos += info->length + sizeof(struct scsi_sense_desc_header); break; } case SSD_DESC_COMMAND: { struct scsi_sense_command *cmd; cmd = (struct scsi_sense_command *)header; cmd_ptr = cmd->command_info; cmd_size = sizeof(cmd->command_info); pos += cmd->length + sizeof(struct scsi_sense_desc_header); break; } case SSD_DESC_FRU: { struct scsi_sense_fru *fru; fru = (struct scsi_sense_fru *)header; fru_ptr = &fru->fru; fru_size = sizeof(fru->fru); pos += fru->length + sizeof(struct scsi_sense_desc_header); break; } case SSD_DESC_SKS: { struct scsi_sense_sks *sks; sks = (struct scsi_sense_sks *)header; sks_ptr = sks->sense_key_spec; sks_size = sizeof(sks->sense_key_spec); pos = sks->length + sizeof(struct scsi_sense_desc_header); break; } case SSD_DESC_STREAM: { struct scsi_sense_stream *stream_sense; stream_sense = (struct scsi_sense_stream *)header; stream_ptr = &stream_sense->byte3; stream_size = sizeof(stream_sense->byte3); pos = stream_sense->length + sizeof(struct scsi_sense_desc_header); break; } default: /* * We don't recognize this particular sense * descriptor type, so just skip it. */ pos += sizeof(*header) + header->length; break; } } sense_len = SSD_FULL_SIZE; ctl_set_sense_data((struct scsi_sense_data *)sense_dest, &sense_len, /*lun*/ NULL, /*sense_format*/ SSD_TYPE_FIXED, current_error, /*sense_key*/ sense_src->sense_key & SSD_KEY, /*asc*/ sense_src->add_sense_code, /*ascq*/ sense_src->add_sense_code_qual, /* Information Bytes */ (info_ptr != NULL) ? SSD_ELEM_INFO : SSD_ELEM_SKIP, info_size, info_ptr, /* Command specific bytes */ (cmd_ptr != NULL) ? SSD_ELEM_COMMAND : SSD_ELEM_SKIP, cmd_size, cmd_ptr, /* FRU */ (fru_ptr != NULL) ? SSD_ELEM_FRU : SSD_ELEM_SKIP, fru_size, fru_ptr, /* Sense Key Specific */ (sks_ptr != NULL) ? SSD_ELEM_SKS : SSD_ELEM_SKIP, sks_size, sks_ptr, /* Tape bits */ (stream_ptr != NULL) ? SSD_ELEM_STREAM : SSD_ELEM_SKIP, stream_size, stream_ptr, SSD_ELEM_NONE); } void ctl_set_ua(struct ctl_scsiio *ctsio, int asc, int ascq) { ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_UNIT_ATTENTION, asc, ascq, SSD_ELEM_NONE); } static void ctl_ua_to_ascq(struct ctl_lun *lun, ctl_ua_type ua_to_build, int *asc, int *ascq, ctl_ua_type *ua_to_clear, uint8_t **info) { switch (ua_to_build) { case CTL_UA_POWERON: /* 29h/01h POWER ON OCCURRED */ *asc = 0x29; *ascq = 0x01; *ua_to_clear = ~0; break; case CTL_UA_BUS_RESET: /* 29h/02h SCSI BUS RESET OCCURRED */ *asc = 0x29; *ascq = 0x02; *ua_to_clear = ~0; break; case CTL_UA_TARG_RESET: /* 29h/03h BUS DEVICE RESET FUNCTION OCCURRED*/ *asc = 0x29; *ascq = 0x03; *ua_to_clear = ~0; break; case CTL_UA_I_T_NEXUS_LOSS: /* 29h/07h I_T NEXUS LOSS OCCURRED */ *asc = 0x29; *ascq = 0x07; *ua_to_clear = ~0; break; case CTL_UA_LUN_RESET: /* 29h/00h POWER ON, RESET, OR BUS DEVICE RESET OCCURRED */ /* * Since we don't have a specific ASC/ASCQ pair for a LUN * reset, just return the generic reset code. */ *asc = 0x29; *ascq = 0x00; break; case CTL_UA_LUN_CHANGE: /* 3Fh/0Eh REPORTED LUNS DATA HAS CHANGED */ *asc = 0x3F; *ascq = 0x0E; break; case CTL_UA_MODE_CHANGE: /* 2Ah/01h MODE PARAMETERS CHANGED */ *asc = 0x2A; *ascq = 0x01; break; case CTL_UA_LOG_CHANGE: /* 2Ah/02h LOG PARAMETERS CHANGED */ *asc = 0x2A; *ascq = 0x02; break; case CTL_UA_INQ_CHANGE: /* 3Fh/03h INQUIRY DATA HAS CHANGED */ *asc = 0x3F; *ascq = 0x03; break; case CTL_UA_RES_PREEMPT: /* 2Ah/03h RESERVATIONS PREEMPTED */ *asc = 0x2A; *ascq = 0x03; break; case CTL_UA_RES_RELEASE: /* 2Ah/04h RESERVATIONS RELEASED */ *asc = 0x2A; *ascq = 0x04; break; case CTL_UA_REG_PREEMPT: /* 2Ah/05h REGISTRATIONS PREEMPTED */ *asc = 0x2A; *ascq = 0x05; break; case CTL_UA_ASYM_ACC_CHANGE: /* 2Ah/06h ASYMMETRIC ACCESS STATE CHANGED */ *asc = 0x2A; *ascq = 0x06; break; case CTL_UA_CAPACITY_CHANGE: /* 2Ah/09h CAPACITY DATA HAS CHANGED */ *asc = 0x2A; *ascq = 0x09; break; case CTL_UA_THIN_PROV_THRES: /* 38h/07h THIN PROVISIONING SOFT THRESHOLD REACHED */ *asc = 0x38; *ascq = 0x07; *info = lun->ua_tpt_info; break; case CTL_UA_MEDIUM_CHANGE: /* 28h/00h NOT READY TO READY CHANGE, MEDIUM MAY HAVE CHANGED */ *asc = 0x28; *ascq = 0x00; break; case CTL_UA_IE: /* Informational exception */ *asc = lun->ie_asc; *ascq = lun->ie_ascq; break; default: panic("%s: Unknown UA %x", __func__, ua_to_build); } } ctl_ua_type ctl_build_qae(struct ctl_lun *lun, uint32_t initidx, uint8_t *resp) { ctl_ua_type ua; ctl_ua_type ua_to_build, ua_to_clear; uint8_t *info; int asc, ascq; uint32_t p, i; mtx_assert(&lun->lun_lock, MA_OWNED); p = initidx / CTL_MAX_INIT_PER_PORT; i = initidx % CTL_MAX_INIT_PER_PORT; if (lun->pending_ua[p] == NULL) ua = CTL_UA_POWERON; else ua = lun->pending_ua[p][i]; if (ua == CTL_UA_NONE) return (CTL_UA_NONE); ua_to_build = (1 << (ffs(ua) - 1)); ua_to_clear = ua_to_build; info = NULL; ctl_ua_to_ascq(lun, ua_to_build, &asc, &ascq, &ua_to_clear, &info); resp[0] = SSD_KEY_UNIT_ATTENTION; if (ua_to_build == ua) resp[0] |= 0x10; else resp[0] |= 0x20; resp[1] = asc; resp[2] = ascq; return (ua_to_build); } ctl_ua_type ctl_build_ua(struct ctl_lun *lun, uint32_t initidx, struct scsi_sense_data *sense, u_int *sense_len, scsi_sense_data_type sense_format) { ctl_ua_type *ua; ctl_ua_type ua_to_build, ua_to_clear; uint8_t *info; int asc, ascq; uint32_t p, i; mtx_assert(&lun->lun_lock, MA_OWNED); mtx_assert(&lun->ctl_softc->ctl_lock, MA_NOTOWNED); p = initidx / CTL_MAX_INIT_PER_PORT; if ((ua = lun->pending_ua[p]) == NULL) { mtx_unlock(&lun->lun_lock); ua = malloc(sizeof(ctl_ua_type) * CTL_MAX_INIT_PER_PORT, M_CTL, M_WAITOK); mtx_lock(&lun->lun_lock); if (lun->pending_ua[p] == NULL) { lun->pending_ua[p] = ua; for (i = 0; i < CTL_MAX_INIT_PER_PORT; i++) ua[i] = CTL_UA_POWERON; } else { free(ua, M_CTL); ua = lun->pending_ua[p]; } } i = initidx % CTL_MAX_INIT_PER_PORT; if (ua[i] == CTL_UA_NONE) return (CTL_UA_NONE); ua_to_build = (1 << (ffs(ua[i]) - 1)); ua_to_clear = ua_to_build; info = NULL; ctl_ua_to_ascq(lun, ua_to_build, &asc, &ascq, &ua_to_clear, &info); ctl_set_sense_data(sense, sense_len, lun, sense_format, 1, /*sense_key*/ SSD_KEY_UNIT_ATTENTION, asc, ascq, ((info != NULL) ? SSD_ELEM_INFO : SSD_ELEM_SKIP), 8, info, SSD_ELEM_NONE); /* We're reporting this UA, so clear it */ ua[i] &= ~ua_to_clear; if (ua_to_build == CTL_UA_LUN_CHANGE) { mtx_unlock(&lun->lun_lock); mtx_lock(&lun->ctl_softc->ctl_lock); ctl_clr_ua_allluns(lun->ctl_softc, initidx, ua_to_build); mtx_unlock(&lun->ctl_softc->ctl_lock); mtx_lock(&lun->lun_lock); } else if (ua_to_build == CTL_UA_THIN_PROV_THRES && (lun->MODE_LBP.main.flags & SLBPP_SITUA) != 0) { ctl_clr_ua_all(lun, -1, ua_to_build); } return (ua_to_build); } void ctl_set_overlapped_cmd(struct ctl_scsiio *ctsio) { /* OVERLAPPED COMMANDS ATTEMPTED */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ILLEGAL_REQUEST, /*asc*/ 0x4E, /*ascq*/ 0x00, SSD_ELEM_NONE); } void ctl_set_overlapped_tag(struct ctl_scsiio *ctsio, uint8_t tag) { /* TAGGED OVERLAPPED COMMANDS (NN = QUEUE TAG) */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ILLEGAL_REQUEST, /*asc*/ 0x4D, /*ascq*/ tag, SSD_ELEM_NONE); } /* * Tell the user that there was a problem with the command or data he sent. */ void ctl_set_invalid_field(struct ctl_scsiio *ctsio, int sks_valid, int command, int field, int bit_valid, int bit) { uint8_t sks[3]; int asc; if (command != 0) { /* "Invalid field in CDB" */ asc = 0x24; } else { /* "Invalid field in parameter list" */ asc = 0x26; } if (sks_valid) { sks[0] = SSD_SCS_VALID; if (command) sks[0] |= SSD_FIELDPTR_CMD; scsi_ulto2b(field, &sks[1]); if (bit_valid) sks[0] |= SSD_BITPTR_VALID | bit; } ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ILLEGAL_REQUEST, asc, /*ascq*/ 0x00, /*type*/ (sks_valid != 0) ? SSD_ELEM_SKS : SSD_ELEM_SKIP, /*size*/ sizeof(sks), /*data*/ sks, SSD_ELEM_NONE); } void ctl_set_invalid_field_ciu(struct ctl_scsiio *ctsio) { /* "Invalid field in command information unit" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ABORTED_COMMAND, /*ascq*/ 0x0E, /*ascq*/ 0x03, SSD_ELEM_NONE); } void ctl_set_invalid_opcode(struct ctl_scsiio *ctsio) { uint8_t sks[3]; sks[0] = SSD_SCS_VALID | SSD_FIELDPTR_CMD; scsi_ulto2b(0, &sks[1]); /* "Invalid command operation code" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ILLEGAL_REQUEST, /*asc*/ 0x20, /*ascq*/ 0x00, /*type*/ SSD_ELEM_SKS, /*size*/ sizeof(sks), /*data*/ sks, SSD_ELEM_NONE); } void ctl_set_param_len_error(struct ctl_scsiio *ctsio) { /* "Parameter list length error" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ILLEGAL_REQUEST, /*asc*/ 0x1a, /*ascq*/ 0x00, SSD_ELEM_NONE); } void ctl_set_already_locked(struct ctl_scsiio *ctsio) { /* Vendor unique "Somebody already is locked" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ILLEGAL_REQUEST, /*asc*/ 0x81, /*ascq*/ 0x00, SSD_ELEM_NONE); } void ctl_set_unsupported_lun(struct ctl_scsiio *ctsio) { /* "Logical unit not supported" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ILLEGAL_REQUEST, /*asc*/ 0x25, /*ascq*/ 0x00, SSD_ELEM_NONE); } void ctl_set_internal_failure(struct ctl_scsiio *ctsio, int sks_valid, uint16_t retry_count) { uint8_t sks[3]; if (sks_valid) { sks[0] = SSD_SCS_VALID; sks[1] = (retry_count >> 8) & 0xff; sks[2] = retry_count & 0xff; } /* "Internal target failure" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_HARDWARE_ERROR, /*asc*/ 0x44, /*ascq*/ 0x00, /*type*/ (sks_valid != 0) ? SSD_ELEM_SKS : SSD_ELEM_SKIP, /*size*/ sizeof(sks), /*data*/ sks, SSD_ELEM_NONE); } void ctl_set_medium_error(struct ctl_scsiio *ctsio, int read) { if (read) { /* "Unrecovered read error" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_MEDIUM_ERROR, /*asc*/ 0x11, /*ascq*/ 0x00, SSD_ELEM_NONE); } else { /* "Write error - auto reallocation failed" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_MEDIUM_ERROR, /*asc*/ 0x0C, /*ascq*/ 0x02, SSD_ELEM_NONE); } } void ctl_set_aborted(struct ctl_scsiio *ctsio) { ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ABORTED_COMMAND, /*asc*/ 0x45, /*ascq*/ 0x00, SSD_ELEM_NONE); } void ctl_set_lba_out_of_range(struct ctl_scsiio *ctsio, uint64_t lba) { uint8_t info[8]; scsi_u64to8b(lba, info); /* "Logical block address out of range" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ILLEGAL_REQUEST, /*asc*/ 0x21, /*ascq*/ 0x00, /*type*/ (lba != 0) ? SSD_ELEM_INFO : SSD_ELEM_SKIP, /*size*/ sizeof(info), /*data*/ &info, SSD_ELEM_NONE); } void ctl_set_lun_stopped(struct ctl_scsiio *ctsio) { /* "Logical unit not ready, initializing cmd. required" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_NOT_READY, /*asc*/ 0x04, /*ascq*/ 0x02, SSD_ELEM_NONE); } void ctl_set_lun_int_reqd(struct ctl_scsiio *ctsio) { /* "Logical unit not ready, manual intervention required" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_NOT_READY, /*asc*/ 0x04, /*ascq*/ 0x03, SSD_ELEM_NONE); } void ctl_set_lun_ejected(struct ctl_scsiio *ctsio) { /* "Medium not present - tray open" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_NOT_READY, /*asc*/ 0x3A, /*ascq*/ 0x02, SSD_ELEM_NONE); } void ctl_set_lun_no_media(struct ctl_scsiio *ctsio) { /* "Medium not present - tray closed" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_NOT_READY, /*asc*/ 0x3A, /*ascq*/ 0x01, SSD_ELEM_NONE); } void ctl_set_illegal_pr_release(struct ctl_scsiio *ctsio) { /* "Invalid release of persistent reservation" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_ILLEGAL_REQUEST, /*asc*/ 0x26, /*ascq*/ 0x04, SSD_ELEM_NONE); } void ctl_set_lun_transit(struct ctl_scsiio *ctsio) { /* "Logical unit not ready, asymmetric access state transition" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_NOT_READY, /*asc*/ 0x04, /*ascq*/ 0x0a, SSD_ELEM_NONE); } void ctl_set_lun_standby(struct ctl_scsiio *ctsio) { /* "Logical unit not ready, target port in standby state" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_NOT_READY, /*asc*/ 0x04, /*ascq*/ 0x0b, SSD_ELEM_NONE); } void ctl_set_lun_unavail(struct ctl_scsiio *ctsio) { /* "Logical unit not ready, target port in unavailable state" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_NOT_READY, /*asc*/ 0x04, /*ascq*/ 0x0c, SSD_ELEM_NONE); } void ctl_set_medium_format_corrupted(struct ctl_scsiio *ctsio) { /* "Medium format corrupted" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_MEDIUM_ERROR, /*asc*/ 0x31, /*ascq*/ 0x00, SSD_ELEM_NONE); } void ctl_set_medium_magazine_inaccessible(struct ctl_scsiio *ctsio) { /* "Medium magazine not accessible" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_NOT_READY, /*asc*/ 0x3b, /*ascq*/ 0x11, SSD_ELEM_NONE); } void ctl_set_data_phase_error(struct ctl_scsiio *ctsio) { /* "Data phase error" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_NOT_READY, /*asc*/ 0x4b, /*ascq*/ 0x00, SSD_ELEM_NONE); } void ctl_set_reservation_conflict(struct ctl_scsiio *ctsio) { ctsio->scsi_status = SCSI_STATUS_RESERV_CONFLICT; ctsio->sense_len = 0; ctsio->io_hdr.status = CTL_SCSI_ERROR; } void ctl_set_queue_full(struct ctl_scsiio *ctsio) { ctsio->scsi_status = SCSI_STATUS_QUEUE_FULL; ctsio->sense_len = 0; ctsio->io_hdr.status = CTL_SCSI_ERROR; } void ctl_set_busy(struct ctl_scsiio *ctsio) { ctsio->scsi_status = SCSI_STATUS_BUSY; ctsio->sense_len = 0; ctsio->io_hdr.status = CTL_SCSI_ERROR; } void ctl_set_task_aborted(struct ctl_scsiio *ctsio) { ctsio->scsi_status = SCSI_STATUS_TASK_ABORTED; ctsio->sense_len = 0; ctsio->io_hdr.status = CTL_CMD_ABORTED; } void ctl_set_hw_write_protected(struct ctl_scsiio *ctsio) { /* "Hardware write protected" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_DATA_PROTECT, /*asc*/ 0x27, /*ascq*/ 0x01, SSD_ELEM_NONE); } void ctl_set_space_alloc_fail(struct ctl_scsiio *ctsio) { /* "Space allocation failed write protect" */ ctl_set_sense(ctsio, /*current_error*/ 1, /*sense_key*/ SSD_KEY_DATA_PROTECT, /*asc*/ 0x27, /*ascq*/ 0x07, SSD_ELEM_NONE); } void ctl_set_success(struct ctl_scsiio *ctsio) { ctsio->scsi_status = SCSI_STATUS_OK; ctsio->sense_len = 0; ctsio->io_hdr.status = CTL_SUCCESS; }