/*-
* Implementation of Utility functions for all SCSI device types.
*
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 1997, 1998, 1999 Justin T. Gibbs.
* Copyright (c) 1997, 1998, 2003 Kenneth D. Merry.
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions, and the following disclaimer,
* without modification, immediately at the beginning of the file.
* 2. The name of the author may not be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE FOR
* ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/types.h>
#include <sys/stdint.h>
#ifdef _KERNEL
#include "opt_scsi.h"
#include <sys/systm.h>
#include <sys/libkern.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/mutex.h>
#include <sys/sysctl.h>
#include <sys/ctype.h>
#else
#include <errno.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <ctype.h>
#endif
#include <cam/cam.h>
#include <cam/cam_ccb.h>
#include <cam/cam_queue.h>
#include <cam/cam_xpt.h>
#include <cam/scsi/scsi_all.h>
#include <sys/ata.h>
#include <sys/sbuf.h>
#ifdef _KERNEL
#include <cam/cam_periph.h>
#include <cam/cam_xpt_sim.h>
#include <cam/cam_xpt_periph.h>
#include <cam/cam_xpt_internal.h>
#else
#include <camlib.h>
#include <stddef.h>
#ifndef FALSE
#define FALSE 0
#endif /* FALSE */
#ifndef TRUE
#define TRUE 1
#endif /* TRUE */
#define ERESTART -1 /* restart syscall */
#define EJUSTRETURN -2 /* don't modify regs, just return */
#endif /* !_KERNEL */
/*
* This is the default number of milliseconds we wait for devices to settle
* after a SCSI bus reset.
*/
#ifndef SCSI_DELAY
#define SCSI_DELAY 2000
#endif
/*
* All devices need _some_ sort of bus settle delay, so we'll set it to
* a minimum value of 100ms. Note that this is pertinent only for SPI-
* not transport like Fibre Channel or iSCSI where 'delay' is completely
* meaningless.
*/
#ifndef SCSI_MIN_DELAY
#define SCSI_MIN_DELAY 100
#endif
/*
* Make sure the user isn't using seconds instead of milliseconds.
*/
#if (SCSI_DELAY < SCSI_MIN_DELAY && SCSI_DELAY != 0)
#error "SCSI_DELAY is in milliseconds, not seconds! Please use a larger value"
#endif
int scsi_delay;
static int ascentrycomp(const void *key, const void *member);
static int senseentrycomp(const void *key, const void *member);
static void fetchtableentries(int sense_key, int asc, int ascq,
struct scsi_inquiry_data *,
const struct sense_key_table_entry **,
const struct asc_table_entry **);
#ifdef _KERNEL
static void init_scsi_delay(void);
static int sysctl_scsi_delay(SYSCTL_HANDLER_ARGS);
static int set_scsi_delay(int delay);
#endif
#if !defined(SCSI_NO_OP_STRINGS)
#define D (1 << T_DIRECT)
#define T (1 << T_SEQUENTIAL)
#define L (1 << T_PRINTER)
#define P (1 << T_PROCESSOR)
#define W (1 << T_WORM)
#define R (1 << T_CDROM)
#define O (1 << T_OPTICAL)
#define M (1 << T_CHANGER)
#define A (1 << T_STORARRAY)
#define E (1 << T_ENCLOSURE)
#define B (1 << T_RBC)
#define K (1 << T_OCRW)
#define V (1 << T_ADC)
#define F (1 << T_OSD)
#define S (1 << T_SCANNER)
#define C (1 << T_COMM)
#define ALL (D | T | L | P | W | R | O | M | A | E | B | K | V | F | S | C)
static struct op_table_entry plextor_cd_ops[] = {
{ 0xD8, R, "CD-DA READ" }
};
static struct scsi_op_quirk_entry scsi_op_quirk_table[] = {
{
/*
* I believe that 0xD8 is the Plextor proprietary command
* to read CD-DA data. I'm not sure which Plextor CDROM
* models support the command, though. I know for sure
* that the 4X, 8X, and 12X models do, and presumably the
* 12-20X does. I don't know about any earlier models,
* though. If anyone has any more complete information,
* feel free to change this quirk entry.
*/
{T_CDROM, SIP_MEDIA_REMOVABLE, "PLEXTOR", "CD-ROM PX*", "*"},
nitems(plextor_cd_ops),
plextor_cd_ops
}
};
static struct op_table_entry scsi_op_codes[] = {
/*
* From: http://www.t10.org/lists/op-num.txt
* Modifications by Kenneth Merry (ken@FreeBSD.ORG)
* and Jung-uk Kim (jkim@FreeBSD.org)
*
* Note: order is important in this table, scsi_op_desc() currently
* depends on the opcodes in the table being in order to save
* search time.
* Note: scanner and comm. devices are carried over from the previous
* version because they were removed in the latest spec.
*/
/* File: OP-NUM.TXT
*
* SCSI Operation Codes
* Numeric Sorted Listing
* as of 5/26/15
*
* D - DIRECT ACCESS DEVICE (SBC-2) device column key
* .T - SEQUENTIAL ACCESS DEVICE (SSC-2) -----------------
* . L - PRINTER DEVICE (SSC) M = Mandatory
* . P - PROCESSOR DEVICE (SPC) O = Optional
* . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2) V = Vendor spec.
* . . R - CD/DVE DEVICE (MMC-3) Z = Obsolete
* . . O - OPTICAL MEMORY DEVICE (SBC-2)
* . . .M - MEDIA CHANGER DEVICE (SMC-2)
* . . . A - STORAGE ARRAY DEVICE (SCC-2)
* . . . .E - ENCLOSURE SERVICES DEVICE (SES)
* . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
* . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
* . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
* . . . . .F - OBJECT-BASED STORAGE (OSD)
* OP DTLPWROMAEBKVF Description
* -- -------------- ---------------------------------------------- */
/* 00 MMMMMMMMMMMMMM TEST UNIT READY */
{ 0x00, ALL, "TEST UNIT READY" },
/* 01 M REWIND */
{ 0x01, T, "REWIND" },
/* 01 Z V ZZZZ REZERO UNIT */
{ 0x01, D | W | R | O | M, "REZERO UNIT" },
/* 02 VVVVVV V */
/* 03 MMMMMMMMMMOMMM REQUEST SENSE */
{ 0x03, ALL, "REQUEST SENSE" },
/* 04 M OO FORMAT UNIT */
{ 0x04, D | R | O, "FORMAT UNIT" },
/* 04 O FORMAT MEDIUM */
{ 0x04, T, "FORMAT MEDIUM" },
/* 04 O FORMAT */
{ 0x04, L, "FORMAT" },
/* 05 VMVVVV V READ BLOCK LIMITS */
{ 0x05, T, "READ BLOCK LIMITS" },
/* 06 VVVVVV V */
/* 07 OVV O OV REASSIGN BLOCKS */
{ 0x07, D | W | O, "REASSIGN BLOCKS" },
/* 07 O INITIALIZE ELEMENT STATUS */
{ 0x07, M, "INITIALIZE ELEMENT STATUS" },
/* 08 MOV O OV READ(6) */
{ 0x08, D | T | W | O, "READ(6)" },
/* 08 O RECEIVE */
{ 0x08, P, "RECEIVE" },
/* 08 GET MESSAGE(6) */
{ 0x08, C, "GET MESSAGE(6)" },
/* 09 VVVVVV V */
/* 0A OO O OV WRITE(6) */
{ 0x0A, D | T | W | O, "WRITE(6)" },
/* 0A M SEND(6) */
{ 0x0A, P, "SEND(6)" },
/* 0A SEND MESSAGE(6) */
{ 0x0A, C, "SEND MESSAGE(6)" },
/* 0A M PRINT */
{ 0x0A, L, "PRINT" },
/* 0B Z ZOZV SEEK(6) */
{ 0x0B, D | W | R | O, "SEEK(6)" },
/* 0B O SET CAPACITY */
{ 0x0B, T, "SET CAPACITY" },
/* 0B O SLEW AND PRINT */
{ 0x0B, L, "SLEW AND PRINT" },
/* 0C VVVVVV V */
/* 0D VVVVVV V */
/* 0E VVVVVV V */
/* 0F VOVVVV V READ REVERSE(6) */
{ 0x0F, T, "READ REVERSE(6)" },
/* 10 VM VVV WRITE FILEMARKS(6) */
{ 0x10, T, "WRITE FILEMARKS(6)" },
/* 10 O SYNCHRONIZE BUFFER */
{ 0x10, L, "SYNCHRONIZE BUFFER" },
/* 11 VMVVVV SPACE(6) */
{ 0x11, T, "SPACE(6)" },
/* 12 MMMMMMMMMMMMMM INQUIRY */
{ 0x12, ALL, "INQUIRY" },
/* 13 V VVVV */
/* 13 O VERIFY(6) */
{ 0x13, T, "VERIFY(6)" },
/* 14 VOOVVV RECOVER BUFFERED DATA */
{ 0x14, T | L, "RECOVER BUFFERED DATA" },
/* 15 OMO O OOOO OO MODE SELECT(6) */
{ 0x15, ALL & ~(P | R | B | F), "MODE SELECT(6)" },
/* 16 ZZMZO OOOZ O RESERVE(6) */
{ 0x16, ALL & ~(R | B | V | F | C), "RESERVE(6)" },
/* 16 Z RESERVE ELEMENT(6) */
{ 0x16, M, "RESERVE ELEMENT(6)" },
/* 17 ZZMZO OOOZ O RELEASE(6) */
{ 0x17, ALL & ~(R | B | V | F | C), "RELEASE(6)" },
/* 17 Z RELEASE ELEMENT(6) */
{ 0x17, M, "RELEASE ELEMENT(6)" },
/* 18 ZZZZOZO Z COPY */
{ 0x18, D | T | L | P | W | R | O | K | S, "COPY" },
/* 19 VMVVVV ERASE(6) */
{ 0x19, T, "ERASE(6)" },
/* 1A OMO O OOOO OO MODE SENSE(6) */
{ 0x1A, ALL & ~(P | R | B | F), "MODE SENSE(6)" },
/* 1B O OOO O MO O START STOP UNIT */
{ 0x1B, D | W | R | O | A | B | K | F, "START STOP UNIT" },
/* 1B O M LOAD UNLOAD */
{ 0x1B, T | V, "LOAD UNLOAD" },
/* 1B SCAN */
{ 0x1B, S, "SCAN" },
/* 1B O STOP PRINT */
{ 0x1B, L, "STOP PRINT" },
/* 1B O OPEN/CLOSE IMPORT/EXPORT ELEMENT */
{ 0x1B, M, "OPEN/CLOSE IMPORT/EXPORT ELEMENT" },
/* 1C OOOOO OOOM OOO RECEIVE DIAGNOSTIC RESULTS */
{ 0x1C, ALL & ~(R | B), "RECEIVE DIAGNOSTIC RESULTS" },
/* 1D MMMMM MMOM MMM SEND DIAGNOSTIC */
{ 0x1D, ALL & ~(R | B), "SEND DIAGNOSTIC" },
/* 1E OO OOOO O O PREVENT ALLOW MEDIUM REMOVAL */
{ 0x1E, D | T | W | R | O | M | K | F, "PREVENT ALLOW MEDIUM REMOVAL" },
/* 1F */
/* 20 V VVV V */
/* 21 V VVV V */
/* 22 V VVV V */
/* 23 V V V V */
/* 23 O READ FORMAT CAPACITIES */
{ 0x23, R, "READ FORMAT CAPACITIES" },
/* 24 V VV SET WINDOW */
{ 0x24, S, "SET WINDOW" },
/* 25 M M M M READ CAPACITY(10) */
{ 0x25, D | W | O | B, "READ CAPACITY(10)" },
/* 25 O READ CAPACITY */
{ 0x25, R, "READ CAPACITY" },
/* 25 M READ CARD CAPACITY */
{ 0x25, K, "READ CARD CAPACITY" },
/* 25 GET WINDOW */
{ 0x25, S, "GET WINDOW" },
/* 26 V VV */
/* 27 V VV */
/* 28 M MOM MM READ(10) */
{ 0x28, D | W | R | O | B | K | S, "READ(10)" },
/* 28 GET MESSAGE(10) */
{ 0x28, C, "GET MESSAGE(10)" },
/* 29 V VVO READ GENERATION */
{ 0x29, O, "READ GENERATION" },
/* 2A O MOM MO WRITE(10) */
{ 0x2A, D | W | R | O | B | K, "WRITE(10)" },
/* 2A SEND(10) */
{ 0x2A, S, "SEND(10)" },
/* 2A SEND MESSAGE(10) */
{ 0x2A, C, "SEND MESSAGE(10)" },
/* 2B Z OOO O SEEK(10) */
{ 0x2B, D | W | R | O | K, "SEEK(10)" },
/* 2B O LOCATE(10) */
{ 0x2B, T, "LOCATE(10)" },
/* 2B O POSITION TO ELEMENT */
{ 0x2B, M, "POSITION TO ELEMENT" },
/* 2C V OO ERASE(10) */
{ 0x2C, R | O, "ERASE(10)" },
/* 2D O READ UPDATED BLOCK */
{ 0x2D, O, "READ UPDATED BLOCK" },
/* 2D V */
/* 2E O OOO MO WRITE AND VERIFY(10) */
{ 0x2E, D | W | R | O | B | K, "WRITE AND VERIFY(10)" },
/* 2F O OOO VERIFY(10) */
{ 0x2F, D | W | R | O, "VERIFY(10)" },
/* 30 Z ZZZ SEARCH DATA HIGH(10) */
{ 0x30, D | W | R | O, "SEARCH DATA HIGH(10)" },
/* 31 Z ZZZ SEARCH DATA EQUAL(10) */
{ 0x31, D | W | R | O, "SEARCH DATA EQUAL(10)" },
/* 31 OBJECT POSITION */
{ 0x31, S, "OBJECT POSITION" },
/* 32 Z ZZZ SEARCH DATA LOW(10) */
{ 0x32, D | W | R | O, "SEARCH DATA LOW(10)" },
/* 33 Z OZO SET LIMITS(10) */
{ 0x33, D | W | R | O, "SET LIMITS(10)" },
/* 34 O O O O PRE-FETCH(10) */
{ 0x34, D | W | O | K, "PRE-FETCH(10)" },
/* 34 M READ POSITION */
{ 0x34, T, "READ POSITION" },
/* 34 GET DATA BUFFER STATUS */
{ 0x34, S, "GET DATA BUFFER STATUS" },
/* 35 O OOO MO SYNCHRONIZE CACHE(10) */
{ 0x35, D | W | R | O | B | K, "SYNCHRONIZE CACHE(10)" },
/* 36 Z O O O LOCK UNLOCK CACHE(10) */
{ 0x36, D | W | O | K, "LOCK UNLOCK CACHE(10)" },
/* 37 O O READ DEFECT DATA(10) */
{ 0x37, D | O, "READ DEFECT DATA(10)" },
/* 37 O INITIALIZE ELEMENT STATUS WITH RANGE */
{ 0x37, M, "INITIALIZE ELEMENT STATUS WITH RANGE" },
/* 38 O O O MEDIUM SCAN */
{ 0x38, W | O | K, "MEDIUM SCAN" },
/* 39 ZZZZOZO Z COMPARE */
{ 0x39, D | T | L | P | W | R | O | K | S, "COMPARE" },
/* 3A ZZZZOZO Z COPY AND VERIFY */
{ 0x3A, D | T | L | P | W | R | O | K | S, "COPY AND VERIFY" },
/* 3B OOOOOOOOOOMOOO WRITE BUFFER */
{ 0x3B, ALL, "WRITE BUFFER" },
/* 3C OOOOOOOOOO OOO READ BUFFER */
{ 0x3C, ALL & ~(B), "READ BUFFER" },
/* 3D O UPDATE BLOCK */
{ 0x3D, O, "UPDATE BLOCK" },
/* 3E O O O READ LONG(10) */
{ 0x3E, D | W | O, "READ LONG(10)" },
/* 3F O O O WRITE LONG(10) */
{ 0x3F, D | W | O, "WRITE LONG(10)" },
/* 40 ZZZZOZOZ CHANGE DEFINITION */
{ 0x40, D | T | L | P | W | R | O | M | S | C, "CHANGE DEFINITION" },
/* 41 O WRITE SAME(10) */
{ 0x41, D, "WRITE SAME(10)" },
/* 42 O UNMAP */
{ 0x42, D, "UNMAP" },
/* 42 O READ SUB-CHANNEL */
{ 0x42, R, "READ SUB-CHANNEL" },
/* 43 O READ TOC/PMA/ATIP */
{ 0x43, R, "READ TOC/PMA/ATIP" },
/* 44 M M REPORT DENSITY SUPPORT */
{ 0x44, T | V, "REPORT DENSITY SUPPORT" },
/* 44 READ HEADER */
/* 45 O PLAY AUDIO(10) */
{ 0x45, R, "PLAY AUDIO(10)" },
/* 46 M GET CONFIGURATION */
{ 0x46, R, "GET CONFIGURATION" },
/* 47 O PLAY AUDIO MSF */
{ 0x47, R, "PLAY AUDIO MSF" },
/* 48 O SANITIZE */
{ 0x48, D, "SANITIZE" },
/* 49 */
/* 4A M GET EVENT STATUS NOTIFICATION */
{ 0x4A, R, "GET EVENT STATUS NOTIFICATION" },
/* 4B O PAUSE/RESUME */
{ 0x4B, R, "PAUSE/RESUME" },
/* 4C OOOOO OOOO OOO LOG SELECT */
{ 0x4C, ALL & ~(R | B), "LOG SELECT" },
/* 4D OOOOO OOOO OMO LOG SENSE */
{ 0x4D, ALL & ~(R | B), "LOG SENSE" },
/* 4E O STOP PLAY/SCAN */
{ 0x4E, R, "STOP PLAY/SCAN" },
/* 4F */
/* 50 O XDWRITE(10) */
{ 0x50, D, "XDWRITE(10)" },
/* 51 O XPWRITE(10) */
{ 0x51, D, "XPWRITE(10)" },
/* 51 O READ DISC INFORMATION */
{ 0x51, R, "READ DISC INFORMATION" },
/* 52 O XDREAD(10) */
{ 0x52, D, "XDREAD(10)" },
/* 52 O READ TRACK INFORMATION */
{ 0x52, R, "READ TRACK INFORMATION" },
/* 53 O XDWRITEREAD(10) */
{ 0x53, D, "XDWRITEREAD(10)" },
/* 53 O RESERVE TRACK */
{ 0x53, R, "RESERVE TRACK" },
/* 54 O SEND OPC INFORMATION */
{ 0x54, R, "SEND OPC INFORMATION" },
/* 55 OOO OMOOOOMOMO MODE SELECT(10) */
{ 0x55, ALL & ~(P), "MODE SELECT(10)" },
/* 56 ZZMZO OOOZ RESERVE(10) */
{ 0x56, ALL & ~(R | B | K | V | F | C), "RESERVE(10)" },
/* 56 Z RESERVE ELEMENT(10) */
{ 0x56, M, "RESERVE ELEMENT(10)" },
/* 57 ZZMZO OOOZ RELEASE(10) */
{ 0x57, ALL & ~(R | B | K | V | F | C), "RELEASE(10)" },
/* 57 Z RELEASE ELEMENT(10) */
{ 0x57, M, "RELEASE ELEMENT(10)" },
/* 58 O REPAIR TRACK */
{ 0x58, R, "REPAIR TRACK" },
/* 59 */
/* 5A OOO OMOOOOMOMO MODE SENSE(10) */
{ 0x5A, ALL & ~(P), "MODE SENSE(10)" },
/* 5B O CLOSE TRACK/SESSION */
{ 0x5B, R, "CLOSE TRACK/SESSION" },
/* 5C O READ BUFFER CAPACITY */
{ 0x5C, R, "READ BUFFER CAPACITY" },
/* 5D O SEND CUE SHEET */
{ 0x5D, R, "SEND CUE SHEET" },
/* 5E OOOOO OOOO M PERSISTENT RESERVE IN */
{ 0x5E, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE IN" },
/* 5F OOOOO OOOO M PERSISTENT RESERVE OUT */
{ 0x5F, ALL & ~(R | B | K | V | C), "PERSISTENT RESERVE OUT" },
/* 7E OO O OOOO O extended CDB */
{ 0x7E, D | T | R | M | A | E | B | V, "extended CDB" },
/* 7F O M variable length CDB (more than 16 bytes) */
{ 0x7F, D | F, "variable length CDB (more than 16 bytes)" },
/* 80 Z XDWRITE EXTENDED(16) */
{ 0x80, D, "XDWRITE EXTENDED(16)" },
/* 80 M WRITE FILEMARKS(16) */
{ 0x80, T, "WRITE FILEMARKS(16)" },
/* 81 Z REBUILD(16) */
{ 0x81, D, "REBUILD(16)" },
/* 81 O READ REVERSE(16) */
{ 0x81, T, "READ REVERSE(16)" },
/* 82 Z REGENERATE(16) */
{ 0x82, D, "REGENERATE(16)" },
/* 82 O ALLOW OVERWRITE */
{ 0x82, T, "ALLOW OVERWRITE" },
/* 83 OOOOO O OO EXTENDED COPY */
{ 0x83, D | T | L | P | W | O | K | V, "EXTENDED COPY" },
/* 84 OOOOO O OO RECEIVE COPY RESULTS */
{ 0x84, D | T | L | P | W | O | K | V, "RECEIVE COPY RESULTS" },
/* 85 O O O ATA COMMAND PASS THROUGH(16) */
{ 0x85, D | R | B, "ATA COMMAND PASS THROUGH(16)" },
/* 86 OO OO OOOOOOO ACCESS CONTROL IN */
{ 0x86, ALL & ~(L | R | F), "ACCESS CONTROL IN" },
/* 87 OO OO OOOOOOO ACCESS CONTROL OUT */
{ 0x87, ALL & ~(L | R | F), "ACCESS CONTROL OUT" },
/* 88 MM O O O READ(16) */
{ 0x88, D | T | W | O | B, "READ(16)" },
/* 89 O COMPARE AND WRITE*/
{ 0x89, D, "COMPARE AND WRITE" },
/* 8A OM O O O WRITE(16) */
{ 0x8A, D | T | W | O | B, "WRITE(16)" },
/* 8B O ORWRITE */
{ 0x8B, D, "ORWRITE" },
/* 8C OO O OO O M READ ATTRIBUTE */
{ 0x8C, D | T | W | O | M | B | V, "READ ATTRIBUTE" },
/* 8D OO O OO O O WRITE ATTRIBUTE */
{ 0x8D, D | T | W | O | M | B | V, "WRITE ATTRIBUTE" },
/* 8E O O O O WRITE AND VERIFY(16) */
{ 0x8E, D | W | O | B, "WRITE AND VERIFY(16)" },
/* 8F OO O O O VERIFY(16) */
{ 0x8F, D | T | W | O | B, "VERIFY(16)" },
/* 90 O O O O PRE-FETCH(16) */
{ 0x90, D | W | O | B, "PRE-FETCH(16)" },
/* 91 O O O O SYNCHRONIZE CACHE(16) */
{ 0x91, D | W | O | B, "SYNCHRONIZE CACHE(16)" },
/* 91 O SPACE(16) */
{ 0x91, T, "SPACE(16)" },
/* 92 Z O O LOCK UNLOCK CACHE(16) */
{ 0x92, D | W | O, "LOCK UNLOCK CACHE(16)" },
/* 92 O LOCATE(16) */
{ 0x92, T, "LOCATE(16)" },
/* 93 O WRITE SAME(16) */
{ 0x93, D, "WRITE SAME(16)" },
/* 93 M ERASE(16) */
{ 0x93, T, "ERASE(16)" },
/* 94 O ZBC OUT */
{ 0x94, ALL, "ZBC OUT" },
/* 95 O ZBC IN */
{ 0x95, ALL, "ZBC IN" },
/* 96 */
/* 97 */
/* 98 */
/* 99 */
/* 9A O WRITE STREAM(16) */
{ 0x9A, D, "WRITE STREAM(16)" },
/* 9B OOOOOOOOOO OOO READ BUFFER(16) */
{ 0x9B, ALL & ~(B) , "READ BUFFER(16)" },
/* 9C O WRITE ATOMIC(16) */
{ 0x9C, D, "WRITE ATOMIC(16)" },
/* 9D SERVICE ACTION BIDIRECTIONAL */
{ 0x9D, ALL, "SERVICE ACTION BIDIRECTIONAL" },
/* XXX KDM ALL for this? op-num.txt defines it for none.. */
/* 9E SERVICE ACTION IN(16) */
{ 0x9E, ALL, "SERVICE ACTION IN(16)" },
/* 9F M SERVICE ACTION OUT(16) */
{ 0x9F, ALL, "SERVICE ACTION OUT(16)" },
/* A0 MMOOO OMMM OMO REPORT LUNS */
{ 0xA0, ALL & ~(R | B), "REPORT LUNS" },
/* A1 O BLANK */
{ 0xA1, R, "BLANK" },
/* A1 O O ATA COMMAND PASS THROUGH(12) */
{ 0xA1, D | B, "ATA COMMAND PASS THROUGH(12)" },
/* A2 OO O O SECURITY PROTOCOL IN */
{ 0xA2, D | T | R | V, "SECURITY PROTOCOL IN" },
/* A3 OOO O OOMOOOM MAINTENANCE (IN) */
{ 0xA3, ALL & ~(P | R | F), "MAINTENANCE (IN)" },
/* A3 O SEND KEY */
{ 0xA3, R, "SEND KEY" },
/* A4 OOO O OOOOOOO MAINTENANCE (OUT) */
{ 0xA4, ALL & ~(P | R | F), "MAINTENANCE (OUT)" },
/* A4 O REPORT KEY */
{ 0xA4, R, "REPORT KEY" },
/* A5 O O OM MOVE MEDIUM */
{ 0xA5, T | W | O | M, "MOVE MEDIUM" },
/* A5 O PLAY AUDIO(12) */
{ 0xA5, R, "PLAY AUDIO(12)" },
/* A6 O EXCHANGE MEDIUM */
{ 0xA6, M, "EXCHANGE MEDIUM" },
/* A6 O LOAD/UNLOAD C/DVD */
{ 0xA6, R, "LOAD/UNLOAD C/DVD" },
/* A7 ZZ O O MOVE MEDIUM ATTACHED */
{ 0xA7, D | T | W | O, "MOVE MEDIUM ATTACHED" },
/* A7 O SET READ AHEAD */
{ 0xA7, R, "SET READ AHEAD" },
/* A8 O OOO READ(12) */
{ 0xA8, D | W | R | O, "READ(12)" },
/* A8 GET MESSAGE(12) */
{ 0xA8, C, "GET MESSAGE(12)" },
/* A9 O SERVICE ACTION OUT(12) */
{ 0xA9, V, "SERVICE ACTION OUT(12)" },
/* AA O OOO WRITE(12) */
{ 0xAA, D | W | R | O, "WRITE(12)" },
/* AA SEND MESSAGE(12) */
{ 0xAA, C, "SEND MESSAGE(12)" },
/* AB O O SERVICE ACTION IN(12) */
{ 0xAB, R | V, "SERVICE ACTION IN(12)" },
/* AC O ERASE(12) */
{ 0xAC, O, "ERASE(12)" },
/* AC O GET PERFORMANCE */
{ 0xAC, R, "GET PERFORMANCE" },
/* AD O READ DVD STRUCTURE */
{ 0xAD, R, "READ DVD STRUCTURE" },
/* AE O O O WRITE AND VERIFY(12) */
{ 0xAE, D | W | O, "WRITE AND VERIFY(12)" },
/* AF O OZO VERIFY(12) */
{ 0xAF, D | W | R | O, "VERIFY(12)" },
/* B0 ZZZ SEARCH DATA HIGH(12) */
{ 0xB0, W | R | O, "SEARCH DATA HIGH(12)" },
/* B1 ZZZ SEARCH DATA EQUAL(12) */
{ 0xB1, W | R | O, "SEARCH DATA EQUAL(12)" },
/* B2 ZZZ SEARCH DATA LOW(12) */
{ 0xB2, W | R | O, "SEARCH DATA LOW(12)" },
/* B3 Z OZO SET LIMITS(12) */
{ 0xB3, D | W | R | O, "SET LIMITS(12)" },
/* B4 ZZ OZO READ ELEMENT STATUS ATTACHED */
{ 0xB4, D | T | W | R | O, "READ ELEMENT STATUS ATTACHED" },
/* B5 OO O O SECURITY PROTOCOL OUT */
{ 0xB5, D | T | R | V, "SECURITY PROTOCOL OUT" },
/* B5 O REQUEST VOLUME ELEMENT ADDRESS */
{ 0xB5, M, "REQUEST VOLUME ELEMENT ADDRESS" },
/* B6 O SEND VOLUME TAG */
{ 0xB6, M, "SEND VOLUME TAG" },
/* B6 O SET STREAMING */
{ 0xB6, R, "SET STREAMING" },
/* B7 O O READ DEFECT DATA(12) */
{ 0xB7, D | O, "READ DEFECT DATA(12)" },
/* B8 O OZOM READ ELEMENT STATUS */
{ 0xB8, T | W | R | O | M, "READ ELEMENT STATUS" },
/* B9 O READ CD MSF */
{ 0xB9, R, "READ CD MSF" },
/* BA O O OOMO REDUNDANCY GROUP (IN) */
{ 0xBA, D | W | O | M | A | E, "REDUNDANCY GROUP (IN)" },
/* BA O SCAN */
{ 0xBA, R, "SCAN" },
/* BB O O OOOO REDUNDANCY GROUP (OUT) */
{ 0xBB, D | W | O | M | A | E, "REDUNDANCY GROUP (OUT)" },
/* BB O SET CD SPEED */
{ 0xBB, R, "SET CD SPEED" },
/* BC O O OOMO SPARE (IN) */
{ 0xBC, D | W | O | M | A | E, "SPARE (IN)" },
/* BD O O OOOO SPARE (OUT) */
{ 0xBD, D | W | O | M | A | E, "SPARE (OUT)" },
/* BD O MECHANISM STATUS */
{ 0xBD, R, "MECHANISM STATUS" },
/* BE O O OOMO VOLUME SET (IN) */
{ 0xBE, D | W | O | M | A | E, "VOLUME SET (IN)" },
/* BE O READ CD */
{ 0xBE, R, "READ CD" },
/* BF O O OOOO VOLUME SET (OUT) */
{ 0xBF, D | W | O | M | A | E, "VOLUME SET (OUT)" },
/* BF O SEND DVD STRUCTURE */
{ 0xBF, R, "SEND DVD STRUCTURE" }
};
const char *
scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
{
caddr_t match;
int i, j;
uint32_t opmask;
uint16_t pd_type;
int num_ops[2];
struct op_table_entry *table[2];
int num_tables;
/*
* If we've got inquiry data, use it to determine what type of
* device we're dealing with here. Otherwise, assume direct
* access.
*/
if (inq_data == NULL) {
pd_type = T_DIRECT;
match = NULL;
} else {
pd_type = SID_TYPE(inq_data);
match = cam_quirkmatch((caddr_t)inq_data,
(caddr_t)scsi_op_quirk_table,
nitems(scsi_op_quirk_table),
sizeof(*scsi_op_quirk_table),
scsi_inquiry_match);
}
if (match != NULL) {
table[0] = ((struct scsi_op_quirk_entry *)match)->op_table;
num_ops[0] = ((struct scsi_op_quirk_entry *)match)->num_ops;
table[1] = scsi_op_codes;
num_ops[1] = nitems(scsi_op_codes);
num_tables = 2;
} else {
/*
* If this is true, we have a vendor specific opcode that
* wasn't covered in the quirk table.
*/
if ((opcode > 0xBF) || ((opcode > 0x5F) && (opcode < 0x80)))
return("Vendor Specific Command");
table[0] = scsi_op_codes;
num_ops[0] = nitems(scsi_op_codes);
num_tables = 1;
}
/* RBC is 'Simplified' Direct Access Device */
if (pd_type == T_RBC)
pd_type = T_DIRECT;
/*
* Host managed drives are direct access for the most part.
*/
if (pd_type == T_ZBC_HM)
pd_type = T_DIRECT;
/* Map NODEVICE to Direct Access Device to handle REPORT LUNS, etc. */
if (pd_type == T_NODEVICE)
pd_type = T_DIRECT;
opmask = 1 << pd_type;
for (j = 0; j < num_tables; j++) {
for (i = 0;i < num_ops[j] && table[j][i].opcode <= opcode; i++){
if ((table[j][i].opcode == opcode)
&& ((table[j][i].opmask & opmask) != 0))
return(table[j][i].desc);
}
}
/*
* If we can't find a match for the command in the table, we just
* assume it's a vendor specifc command.
*/
return("Vendor Specific Command");
}
#else /* SCSI_NO_OP_STRINGS */
const char *
scsi_op_desc(uint16_t opcode, struct scsi_inquiry_data *inq_data)
{
return("");
}
#endif
#if !defined(SCSI_NO_SENSE_STRINGS)
#define SST(asc, ascq, action, desc) \
asc, ascq, action, desc
#else
const char empty_string[] = "";
#define SST(asc, ascq, action, desc) \
asc, ascq, action, empty_string
#endif
const struct sense_key_table_entry sense_key_table[] =
{
{ SSD_KEY_NO_SENSE, SS_NOP, "NO SENSE" },
{ SSD_KEY_RECOVERED_ERROR, SS_NOP|SSQ_PRINT_SENSE, "RECOVERED ERROR" },
{ SSD_KEY_NOT_READY, SS_RDEF, "NOT READY" },
{ SSD_KEY_MEDIUM_ERROR, SS_RDEF, "MEDIUM ERROR" },
{ SSD_KEY_HARDWARE_ERROR, SS_RDEF, "HARDWARE FAILURE" },
{ SSD_KEY_ILLEGAL_REQUEST, SS_FATAL|EINVAL, "ILLEGAL REQUEST" },
{ SSD_KEY_UNIT_ATTENTION, SS_FATAL|ENXIO, "UNIT ATTENTION" },
{ SSD_KEY_DATA_PROTECT, SS_FATAL|EACCES, "DATA PROTECT" },
{ SSD_KEY_BLANK_CHECK, SS_FATAL|ENOSPC, "BLANK CHECK" },
{ SSD_KEY_Vendor_Specific, SS_FATAL|EIO, "Vendor Specific" },
{ SSD_KEY_COPY_ABORTED, SS_FATAL|EIO, "COPY ABORTED" },
{ SSD_KEY_ABORTED_COMMAND, SS_RDEF, "ABORTED COMMAND" },
{ SSD_KEY_EQUAL, SS_NOP, "EQUAL" },
{ SSD_KEY_VOLUME_OVERFLOW, SS_FATAL|EIO, "VOLUME OVERFLOW" },
{ SSD_KEY_MISCOMPARE, SS_NOP, "MISCOMPARE" },
{ SSD_KEY_COMPLETED, SS_NOP, "COMPLETED" }
};
static struct asc_table_entry quantum_fireball_entries[] = {
{ SST(0x04, 0x0b, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
"Logical unit not ready, initializing cmd. required") }
};
static struct asc_table_entry sony_mo_entries[] = {
{ SST(0x04, 0x00, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
"Logical unit not ready, cause not reportable") }
};
static struct asc_table_entry hgst_entries[] = {
{ SST(0x04, 0xF0, SS_RDEF,
"Vendor Unique - Logical Unit Not Ready") },
{ SST(0x0A, 0x01, SS_RDEF,
"Unrecovered Super Certification Log Write Error") },
{ SST(0x0A, 0x02, SS_RDEF,
"Unrecovered Super Certification Log Read Error") },
{ SST(0x15, 0x03, SS_RDEF,
"Unrecovered Sector Error") },
{ SST(0x3E, 0x04, SS_RDEF,
"Unrecovered Self-Test Hard-Cache Test Fail") },
{ SST(0x3E, 0x05, SS_RDEF,
"Unrecovered Self-Test OTF-Cache Fail") },
{ SST(0x40, 0x00, SS_RDEF,
"Unrecovered SAT No Buffer Overflow Error") },
{ SST(0x40, 0x01, SS_RDEF,
"Unrecovered SAT Buffer Overflow Error") },
{ SST(0x40, 0x02, SS_RDEF,
"Unrecovered SAT No Buffer Overflow With ECS Fault") },
{ SST(0x40, 0x03, SS_RDEF,
"Unrecovered SAT Buffer Overflow With ECS Fault") },
{ SST(0x40, 0x81, SS_RDEF,
"DRAM Failure") },
{ SST(0x44, 0x0B, SS_RDEF,
"Vendor Unique - Internal Target Failure") },
{ SST(0x44, 0xF2, SS_RDEF,
"Vendor Unique - Internal Target Failure") },
{ SST(0x44, 0xF6, SS_RDEF,
"Vendor Unique - Internal Target Failure") },
{ SST(0x44, 0xF9, SS_RDEF,
"Vendor Unique - Internal Target Failure") },
{ SST(0x44, 0xFA, SS_RDEF,
"Vendor Unique - Internal Target Failure") },
{ SST(0x5D, 0x22, SS_RDEF,
"Extreme Over-Temperature Warning") },
{ SST(0x5D, 0x50, SS_RDEF,
"Load/Unload cycle Count Warning") },
{ SST(0x81, 0x00, SS_RDEF,
"Vendor Unique - Internal Logic Error") },
{ SST(0x85, 0x00, SS_RDEF,
"Vendor Unique - Internal Key Seed Error") },
};
static struct asc_table_entry seagate_entries[] = {
{ SST(0x04, 0xF0, SS_RDEF,
"Logical Unit Not Ready, super certify in Progress") },
{ SST(0x08, 0x86, SS_RDEF,
"Write Fault Data Corruption") },
{ SST(0x09, 0x0D, SS_RDEF,
"Tracking Failure") },
{ SST(0x09, 0x0E, SS_RDEF,
"ETF Failure") },
{ SST(0x0B, 0x5D, SS_RDEF,
"Pre-SMART Warning") },
{ SST(0x0B, 0x85, SS_RDEF,
"5V Voltage Warning") },
{ SST(0x0B, 0x8C, SS_RDEF,
"12V Voltage Warning") },
{ SST(0x0C, 0xFF, SS_RDEF,
"Write Error - Too many error recovery revs") },
{ SST(0x11, 0xFF, SS_RDEF,
"Unrecovered Read Error - Too many error recovery revs") },
{ SST(0x19, 0x0E, SS_RDEF,
"Fewer than 1/2 defect list copies") },
{ SST(0x20, 0xF3, SS_RDEF,
"Illegal CDB linked to skip mask cmd") },
{ SST(0x24, 0xF0, SS_RDEF,
"Illegal byte in CDB, LBA not matching") },
{ SST(0x24, 0xF1, SS_RDEF,
"Illegal byte in CDB, LEN not matching") },
{ SST(0x24, 0xF2, SS_RDEF,
"Mask not matching transfer length") },
{ SST(0x24, 0xF3, SS_RDEF,
"Drive formatted without plist") },
{ SST(0x26, 0x95, SS_RDEF,
"Invalid Field Parameter - CAP File") },
{ SST(0x26, 0x96, SS_RDEF,
"Invalid Field Parameter - RAP File") },
{ SST(0x26, 0x97, SS_RDEF,
"Invalid Field Parameter - TMS Firmware Tag") },
{ SST(0x26, 0x98, SS_RDEF,
"Invalid Field Parameter - Check Sum") },
{ SST(0x26, 0x99, SS_RDEF,
"Invalid Field Parameter - Firmware Tag") },
{ SST(0x29, 0x08, SS_RDEF,
"Write Log Dump data") },
{ SST(0x29, 0x09, SS_RDEF,
"Write Log Dump data") },
{ SST(0x29, 0x0A, SS_RDEF,
"Reserved disk space") },
{ SST(0x29, 0x0B, SS_RDEF,
"SDBP") },
{ SST(0x29, 0x0C, SS_RDEF,
"SDBP") },
{ SST(0x31, 0x91, SS_RDEF,
"Format Corrupted World Wide Name (WWN) is Invalid") },
{ SST(0x32, 0x03, SS_RDEF,
"Defect List - Length exceeds Command Allocated Length") },
{ SST(0x33, 0x00, SS_RDEF,
"Flash not ready for access") },
{ SST(0x3F, 0x70, SS_RDEF,
"Invalid RAP block") },
{ SST(0x3F, 0x71, SS_RDEF,
"RAP/ETF mismatch") },
{ SST(0x3F, 0x90, SS_RDEF,
"Invalid CAP block") },
{ SST(0x3F, 0x91, SS_RDEF,
"World Wide Name (WWN) Mismatch") },
{ SST(0x40, 0x01, SS_RDEF,
"DRAM Parity Error") },
{ SST(0x40, 0x02, SS_RDEF,
"DRAM Parity Error") },
{ SST(0x42, 0x0A, SS_RDEF,
"Loopback Test") },
{ SST(0x42, 0x0B, SS_RDEF,
"Loopback Test") },
{ SST(0x44, 0xF2, SS_RDEF,
"Compare error during data integrity check") },
{ SST(0x44, 0xF6, SS_RDEF,
"Unrecoverable error during data integrity check") },
{ SST(0x47, 0x80, SS_RDEF,
"Fibre Channel Sequence Error") },
{ SST(0x4E, 0x01, SS_RDEF,
"Information Unit Too Short") },
{ SST(0x80, 0x00, SS_RDEF,
"General Firmware Error / Command Timeout") },
{ SST(0x80, 0x01, SS_RDEF,
"Command Timeout") },
{ SST(0x80, 0x02, SS_RDEF,
"Command Timeout") },
{ SST(0x80, 0x80, SS_RDEF,
"FC FIFO Error During Read Transfer") },
{ SST(0x80, 0x81, SS_RDEF,
"FC FIFO Error During Write Transfer") },
{ SST(0x80, 0x82, SS_RDEF,
"DISC FIFO Error During Read Transfer") },
{ SST(0x80, 0x83, SS_RDEF,
"DISC FIFO Error During Write Transfer") },
{ SST(0x80, 0x84, SS_RDEF,
"LBA Seeded LRC Error on Read") },
{ SST(0x80, 0x85, SS_RDEF,
"LBA Seeded LRC Error on Write") },
{ SST(0x80, 0x86, SS_RDEF,
"IOEDC Error on Read") },
{ SST(0x80, 0x87, SS_RDEF,
"IOEDC Error on Write") },
{ SST(0x80, 0x88, SS_RDEF,
"Host Parity Check Failed") },
{ SST(0x80, 0x89, SS_RDEF,
"IOEDC error on read detected by formatter") },
{ SST(0x80, 0x8A, SS_RDEF,
"Host Parity Errors / Host FIFO Initialization Failed") },
{ SST(0x80, 0x8B, SS_RDEF,
"Host Parity Errors") },
{ SST(0x80, 0x8C, SS_RDEF,
"Host Parity Errors") },
{ SST(0x80, 0x8D, SS_RDEF,
"Host Parity Errors") },
{ SST(0x81, 0x00, SS_RDEF,
"LA Check Failed") },
{ SST(0x82, 0x00, SS_RDEF,
"Internal client detected insufficient buffer") },
{ SST(0x84, 0x00, SS_RDEF,
"Scheduled Diagnostic And Repair") },
};
static struct scsi_sense_quirk_entry sense_quirk_table[] = {
{
/*
* XXX The Quantum Fireball ST and SE like to return 0x04 0x0b
* when they really should return 0x04 0x02.
*/
{T_DIRECT, SIP_MEDIA_FIXED, "QUANTUM", "FIREBALL S*", "*"},
/*num_sense_keys*/0,
nitems(quantum_fireball_entries),
/*sense key entries*/NULL,
quantum_fireball_entries
},
{
/*
* This Sony MO drive likes to return 0x04, 0x00 when it
* isn't spun up.
*/
{T_DIRECT, SIP_MEDIA_REMOVABLE, "SONY", "SMO-*", "*"},
/*num_sense_keys*/0,
nitems(sony_mo_entries),
/*sense key entries*/NULL,
sony_mo_entries
},
{
/*
* HGST vendor-specific error codes
*/
{T_DIRECT, SIP_MEDIA_FIXED, "HGST", "*", "*"},
/*num_sense_keys*/0,
nitems(hgst_entries),
/*sense key entries*/NULL,
hgst_entries
},
{
/*
* SEAGATE vendor-specific error codes
*/
{T_DIRECT, SIP_MEDIA_FIXED, "SEAGATE", "*", "*"},
/*num_sense_keys*/0,
nitems(seagate_entries),
/*sense key entries*/NULL,
seagate_entries
}
};
const u_int sense_quirk_table_size = nitems(sense_quirk_table);
static struct asc_table_entry asc_table[] = {
/*
* From: http://www.t10.org/lists/asc-num.txt
* Modifications by Jung-uk Kim (jkim@FreeBSD.org)
*/
/*
* File: ASC-NUM.TXT
*
* SCSI ASC/ASCQ Assignments
* Numeric Sorted Listing
* as of Sat Mar 25 2023 at 04:30 (using old columns)
*
* D - DIRECT ACCESS DEVICE (SBC-2) device column key
* .T - SEQUENTIAL ACCESS DEVICE (SSC) -------------------
* . L - PRINTER DEVICE (SSC) blank = reserved
* . P - PROCESSOR DEVICE (SPC) not blank = allowed
* . .W - WRITE ONCE READ MULTIPLE DEVICE (SBC-2)
* . . R - CD DEVICE (MMC)
* . . O - OPTICAL MEMORY DEVICE (SBC-2)
* . . .M - MEDIA CHANGER DEVICE (SMC)
* . . . A - STORAGE ARRAY DEVICE (SCC)
* . . . E - ENCLOSURE SERVICES DEVICE (SES)
* . . . .B - SIMPLIFIED DIRECT-ACCESS DEVICE (RBC)
* . . . . K - OPTICAL CARD READER/WRITER DEVICE (OCRW)
* . . . . V - AUTOMATION/DRIVE INTERFACE (ADC)
* . . . . .F - OBJECT-BASED STORAGE (OSD)
* DTLPWROMAEBKVF
* ASC ASCQ Action
* Description
*/
/* DTLPWROMAEBKVF */
{ SST(0x00, 0x00, SS_NOP,
"No additional sense information") },
/* T */
{ SST(0x00, 0x01, SS_RDEF,
"Filemark detected") },
/* T */
{ SST(0x00, 0x02, SS_RDEF,
"End-of-partition/medium detected") },
/* T */
{ SST(0x00, 0x03, SS_RDEF,
"Setmark detected") },
/* T */
{ SST(0x00, 0x04, SS_RDEF,
"Beginning-of-partition/medium detected") },
/* TL */
{ SST(0x00, 0x05, SS_RDEF,
"End-of-data detected") },
/* DTLPWROMAEBKVF */
{ SST(0x00, 0x06, SS_RDEF,
"I/O process terminated") },
/* T */
{ SST(0x00, 0x07, SS_RDEF, /* XXX TBD */
"Programmable early warning detected") },
/* R */
{ SST(0x00, 0x11, SS_FATAL | EBUSY,
"Audio play operation in progress") },
/* R */
{ SST(0x00, 0x12, SS_NOP,
"Audio play operation paused") },
/* R */
{ SST(0x00, 0x13, SS_NOP,
"Audio play operation successfully completed") },
/* R */
{ SST(0x00, 0x14, SS_RDEF,
"Audio play operation stopped due to error") },
/* R */
{ SST(0x00, 0x15, SS_NOP,
"No current audio status to return") },
/* DTLPWROMAEBKVF */
{ SST(0x00, 0x16, SS_FATAL | EBUSY,
"Operation in progress") },
/* DTL WROMAEBKVF */
{ SST(0x00, 0x17, SS_RDEF,
"Cleaning requested") },
/* T */
{ SST(0x00, 0x18, SS_RDEF, /* XXX TBD */
"Erase operation in progress") },
/* T */
{ SST(0x00, 0x19, SS_RDEF, /* XXX TBD */
"Locate operation in progress") },
/* T */
{ SST(0x00, 0x1A, SS_RDEF, /* XXX TBD */
"Rewind operation in progress") },
/* T */
{ SST(0x00, 0x1B, SS_RDEF, /* XXX TBD */
"Set capacity operation in progress") },
/* T */
{ SST(0x00, 0x1C, SS_RDEF, /* XXX TBD */
"Verify operation in progress") },
/* DT B */
{ SST(0x00, 0x1D, SS_NOP,
"ATA pass through information available") },
/* DT R MAEBKV */
{ SST(0x00, 0x1E, SS_RDEF, /* XXX TBD */
"Conflicting SA creation request") },
/* DT B */
{ SST(0x00, 0x1F, SS_RDEF, /* XXX TBD */
"Logical unit transitioning to another power condition") },
/* DT P B */
{ SST(0x00, 0x20, SS_NOP,
"Extended copy information available") },
/* D */
{ SST(0x00, 0x21, SS_RDEF, /* XXX TBD */
"Atomic command aborted due to ACA") },
/* D */
{ SST(0x00, 0x22, SS_RDEF, /* XXX TBD */
"Deferred microcode is pending") },
/* D */
{ SST(0x00, 0x23, SS_RDEF, /* XXX TBD */
"Overlapping atomic command in progress") },
/* D W O BK */
{ SST(0x01, 0x00, SS_RDEF,
"No index/sector signal") },
/* D WRO BK */
{ SST(0x02, 0x00, SS_FATAL | EIO,
"No seek complete") },
/* DTL W O BK */
{ SST(0x03, 0x00, SS_RDEF,
"Peripheral device write fault") },
/* T */
{ SST(0x03, 0x01, SS_RDEF,
"No write current") },
/* T */
{ SST(0x03, 0x02, SS_RDEF,
"Excessive write errors") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x00, SS_RDEF,
"Logical unit not ready, cause not reportable") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x01, SS_WAIT | EBUSY,
"Logical unit is in process of becoming ready") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x02, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
"Logical unit not ready, initializing command required") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x03, SS_FATAL | ENXIO,
"Logical unit not ready, manual intervention required") },
/* DTL RO B */
{ SST(0x04, 0x04, SS_FATAL | EBUSY,
"Logical unit not ready, format in progress") },
/* DT W O A BK F */
{ SST(0x04, 0x05, SS_FATAL | EBUSY,
"Logical unit not ready, rebuild in progress") },
/* DT W O A BK */
{ SST(0x04, 0x06, SS_FATAL | EBUSY,
"Logical unit not ready, recalculation in progress") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x07, SS_FATAL | EBUSY,
"Logical unit not ready, operation in progress") },
/* R */
{ SST(0x04, 0x08, SS_FATAL | EBUSY,
"Logical unit not ready, long write in progress") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x09, SS_FATAL | EBUSY,
"Logical unit not ready, self-test in progress") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x0A, SS_WAIT | ENXIO,
"Logical unit not accessible, asymmetric access state transition")},
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x0B, SS_FATAL | ENXIO,
"Logical unit not accessible, target port in standby state") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x0C, SS_FATAL | ENXIO,
"Logical unit not accessible, target port in unavailable state") },
/* F */
{ SST(0x04, 0x0D, SS_RDEF, /* XXX TBD */
"Logical unit not ready, structure check required") },
/* DTL WR MAEBKVF */
{ SST(0x04, 0x0E, SS_RDEF, /* XXX TBD */
"Logical unit not ready, security session in progress") },
/* DT WROM B */
{ SST(0x04, 0x10, SS_FATAL | ENODEV,
"Logical unit not ready, auxiliary memory not accessible") },
/* DT WRO AEB VF */
{ SST(0x04, 0x11, SS_WAIT | ENXIO,
"Logical unit not ready, notify (enable spinup) required") },
/* M V */
{ SST(0x04, 0x12, SS_FATAL | ENXIO,
"Logical unit not ready, offline") },
/* DT R MAEBKV */
{ SST(0x04, 0x13, SS_WAIT | EBUSY,
"Logical unit not ready, SA creation in progress") },
/* D B */
{ SST(0x04, 0x14, SS_WAIT | ENOSPC,
"Logical unit not ready, space allocation in progress") },
/* M */
{ SST(0x04, 0x15, SS_FATAL | ENXIO,
"Logical unit not ready, robotics disabled") },
/* M */
{ SST(0x04, 0x16, SS_FATAL | ENXIO,
"Logical unit not ready, configuration required") },
/* M */
{ SST(0x04, 0x17, SS_FATAL | ENXIO,
"Logical unit not ready, calibration required") },
/* M */
{ SST(0x04, 0x18, SS_FATAL | ENXIO,
"Logical unit not ready, a door is open") },
/* M */
{ SST(0x04, 0x19, SS_FATAL | ENODEV,
"Logical unit not ready, operating in sequential mode") },
/* DT B */
{ SST(0x04, 0x1A, SS_WAIT | EBUSY,
"Logical unit not ready, START/STOP UNIT command in progress") },
/* D B */
{ SST(0x04, 0x1B, SS_WAIT | EBUSY,
"Logical unit not ready, sanitize in progress") },
/* DT MAEB */
{ SST(0x04, 0x1C, SS_START | SSQ_DECREMENT_COUNT | ENXIO,
"Logical unit not ready, additional power use not yet granted") },
/* D */
{ SST(0x04, 0x1D, SS_WAIT | EBUSY,
"Logical unit not ready, configuration in progress") },
/* D */
{ SST(0x04, 0x1E, SS_FATAL | ENXIO,
"Logical unit not ready, microcode activation required") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x1F, SS_FATAL | ENXIO,
"Logical unit not ready, microcode download required") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x20, SS_FATAL | ENXIO,
"Logical unit not ready, logical unit reset required") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x21, SS_FATAL | ENXIO,
"Logical unit not ready, hard reset required") },
/* DTLPWROMAEBKVF */
{ SST(0x04, 0x22, SS_FATAL | ENXIO,
"Logical unit not ready, power cycle required") },
/* D */
{ SST(0x04, 0x23, SS_FATAL | ENXIO,
"Logical unit not ready, affiliation required") },
/* D */
{ SST(0x04, 0x24, SS_FATAL | EBUSY,
"Depopulation in progress") },
/* D */
{ SST(0x04, 0x25, SS_FATAL | EBUSY,
"Depopulation restoration in progress") },
/* DTL WROMAEBKVF */
{ SST(0x05, 0x00, SS_RDEF,
"Logical unit does not respond to selection") },
/* D WROM BK */
{ SST(0x06, 0x00, SS_RDEF,
"No reference position found") },
/* DTL WROM BK */
{ SST(0x07, 0x00, SS_RDEF,
"Multiple peripheral devices selected") },
/* DTL WROMAEBKVF */
{ SST(0x08, 0x00, SS_RDEF,
"Logical unit communication failure") },
/* DTL WROMAEBKVF */
{ SST(0x08, 0x01, SS_RDEF,
"Logical unit communication time-out") },
/* DTL WROMAEBKVF */
{ SST(0x08, 0x02, SS_RDEF,
"Logical unit communication parity error") },
/* DT ROM BK */
{ SST(0x08, 0x03, SS_RDEF,
"Logical unit communication CRC error (Ultra-DMA/32)") },
/* DTLPWRO K */
{ SST(0x08, 0x04, SS_RDEF, /* XXX TBD */
"Unreachable copy target") },
/* DT WRO B */
{ SST(0x09, 0x00, SS_RDEF,
"Track following error") },
/* WRO K */
{ SST(0x09, 0x01, SS_RDEF,
"Tracking servo failure") },
/* WRO K */
{ SST(0x09, 0x02, SS_RDEF,
"Focus servo failure") },
/* WRO */
{ SST(0x09, 0x03, SS_RDEF,
"Spindle servo failure") },
/* DT WRO B */
{ SST(0x09, 0x04, SS_RDEF,
"Head select fault") },
/* DT RO B */
{ SST(0x09, 0x05, SS_RDEF,
"Vibration induced tracking error") },
/* DTLPWROMAEBKVF */
{ SST(0x0A, 0x00, SS_FATAL | ENOSPC,
"Error log overflow") },
/* DTLPWROMAEBKVF */
{ SST(0x0B, 0x00, SS_NOP | SSQ_PRINT_SENSE,
"Warning") },
/* DTLPWROMAEBKVF */
{ SST(0x0B, 0x01, SS_NOP | SSQ_PRINT_SENSE,
"Warning - specified temperature exceeded") },
/* DTLPWROMAEBKVF */
{ SST(0x0B, 0x02, SS_NOP | SSQ_PRINT_SENSE,
"Warning - enclosure degraded") },
/* DTLPWROMAEBKVF */
{ SST(0x0B, 0x03, SS_NOP | SSQ_PRINT_SENSE,
"Warning - background self-test failed") },
/* DTLPWRO AEBKVF */
{ SST(0x0B, 0x04, SS_NOP | SSQ_PRINT_SENSE,
"Warning - background pre-scan detected medium error") },
/* DTLPWRO AEBKVF */
{ SST(0x0B, 0x05, SS_NOP | SSQ_PRINT_SENSE,
"Warning - background medium scan detected medium error") },
/* DTLPWROMAEBKVF */
{ SST(0x0B, 0x06, SS_NOP | SSQ_PRINT_SENSE,
"Warning - non-volatile cache now volatile") },
/* DTLPWROMAEBKVF */
{ SST(0x0B, 0x07, SS_NOP | SSQ_PRINT_SENSE,
"Warning - degraded power to non-volatile cache") },
/* DTLPWROMAEBKVF */
{ SST(0x0B, 0x08, SS_NOP | SSQ_PRINT_SENSE,
"Warning - power loss expected") },
/* D */
{ SST(0x0B, 0x09, SS_NOP | SSQ_PRINT_SENSE,
"Warning - device statistics notification available") },
/* DTLPWROMAEBKV */
{ SST(0x0B, 0x0A, SS_NOP | SSQ_PRINT_SENSE,
"Warning - High critical temperature limit exceeded") },
/* DTLPWROMAEBKV */
{ SST(0x0B, 0x0B, SS_NOP | SSQ_PRINT_SENSE,
"Warning - Low critical temperature limit exceeded") },
/* DTLPWROMAEBKV */
{ SST(0x0B, 0x0C, SS_NOP | SSQ_PRINT_SENSE,
"Warning - High operating temperature limit exceeded") },
/* DTLPWROMAEBKV */
{ SST(0x0B, 0x0D, SS_NOP | SSQ_PRINT_SENSE,
"Warning - Low operating temperature limit exceeded") },
/* DTLPWROMAEBKV */
{ SST(0x0B, 0x0E, SS_NOP | SSQ_PRINT_SENSE,
"Warning - High citical humidity limit exceeded") },
/* DTLPWROMAEBKV */
{ SST(0x0B, 0x0F, SS_NOP | SSQ_PRINT_SENSE,
"Warning - Low citical humidity limit exceeded") },
/* DTLPWROMAEBKV */
{ SST(0x0B, 0x10, SS_NOP | SSQ_PRINT_SENSE,
"Warning - High operating humidity limit exceeded") },
/* DTLPWROMAEBKV */
{ SST(0x0B, 0x11, SS_NOP | SSQ_PRINT_SENSE,
"Warning - Low operating humidity limit exceeded") },
/* DTLPWROMAEBKVF */
{ SST(0x0B, 0x12, SS_NOP | SSQ_PRINT_SENSE,
"Warning - Microcode security at risk") },
/* DTLPWROMAEBKVF */
{ SST(0x0B, 0x13, SS_NOP | SSQ_PRINT_SENSE,
"Warning - Microcode digital signature validation failure") },
/* D */
{ SST(0x0B, 0x14, SS_NOP | SSQ_PRINT_SENSE,
"Warning - Physical element status change") },
/* T R */
{ SST(0x0C, 0x00, SS_RDEF,
"Write error") },
/* K */
{ SST(0x0C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
"Write error - recovered with auto reallocation") },
/* D W O BK */
{ SST(0x0C, 0x02, SS_RDEF,
"Write error - auto reallocation failed") },
/* D W O BK */
{ SST(0x0C, 0x03, SS_RDEF,
"Write error - recommend reassignment") },
/* DT W O B */
{ SST(0x0C, 0x04, SS_RDEF,
"Compression check miscompare error") },
/* DT W O B */
{ SST(0x0C, 0x05, SS_RDEF,
"Data expansion occurred during compression") },
/* DT W O B */
{ SST(0x0C, 0x06, SS_RDEF,
"Block not compressible") },
/* R */
{ SST(0x0C, 0x07, SS_RDEF,
"Write error - recovery needed") },
/* R */
{ SST(0x0C, 0x08, SS_RDEF,
"Write error - recovery failed") },
/* R */
{ SST(0x0C, 0x09, SS_RDEF,
"Write error - loss of streaming") },
/* R */
{ SST(0x0C, 0x0A, SS_RDEF,
"Write error - padding blocks added") },
/* DT WROM B */
{ SST(0x0C, 0x0B, SS_RDEF, /* XXX TBD */
"Auxiliary memory write error") },
/* DTLPWRO AEBKVF */
{ SST(0x0C, 0x0C, SS_RDEF, /* XXX TBD */
"Write error - unexpected unsolicited data") },
/* DTLPWRO AEBKVF */
{ SST(0x0C, 0x0D, SS_RDEF, /* XXX TBD */
"Write error - not enough unsolicited data") },
/* DT W O BK */
{ SST(0x0C, 0x0E, SS_RDEF, /* XXX TBD */
"Multiple write errors") },
/* R */
{ SST(0x0C, 0x0F, SS_RDEF, /* XXX TBD */
"Defects in error window") },
/* D */
{ SST(0x0C, 0x10, SS_RDEF, /* XXX TBD */
"Incomplete multiple atomic write operations") },
/* D */
{ SST(0x0C, 0x11, SS_RDEF, /* XXX TBD */
"Write error - recovery scan needed") },
/* D */
{ SST(0x0C, 0x12, SS_RDEF, /* XXX TBD */
"Write error - insufficient zone resources") },
/* DTLPWRO A K */
{ SST(0x0D, 0x00, SS_RDEF, /* XXX TBD */
"Error detected by third party temporary initiator") },
/* DTLPWRO A K */
{ SST(0x0D, 0x01, SS_RDEF, /* XXX TBD */
"Third party device failure") },
/* DTLPWRO A K */
{ SST(0x0D, 0x02, SS_RDEF, /* XXX TBD */
"Copy target device not reachable") },
/* DTLPWRO A K */
{ SST(0x0D, 0x03, SS_RDEF, /* XXX TBD */
"Incorrect copy target device type") },
/* DTLPWRO A K */
{ SST(0x0D, 0x04, SS_RDEF, /* XXX TBD */
"Copy target device data underrun") },
/* DTLPWRO A K */
{ SST(0x0D, 0x05, SS_RDEF, /* XXX TBD */
"Copy target device data overrun") },
/* DT PWROMAEBK F */
{ SST(0x0E, 0x00, SS_RDEF, /* XXX TBD */
"Invalid information unit") },
/* DT PWROMAEBK F */
{ SST(0x0E, 0x01, SS_RDEF, /* XXX TBD */
"Information unit too short") },
/* DT PWROMAEBK F */
{ SST(0x0E, 0x02, SS_RDEF, /* XXX TBD */
"Information unit too long") },
/* DT P R MAEBK F */
{ SST(0x0E, 0x03, SS_FATAL | EINVAL,
"Invalid field in command information unit") },
/* D W O BK */
{ SST(0x10, 0x00, SS_RDEF,
"ID CRC or ECC error") },
/* DT W O */
{ SST(0x10, 0x01, SS_RDEF, /* XXX TBD */
"Logical block guard check failed") },
/* DT W O */
{ SST(0x10, 0x02, SS_RDEF, /* XXX TBD */
"Logical block application tag check failed") },
/* DT W O */
{ SST(0x10, 0x03, SS_RDEF, /* XXX TBD */
"Logical block reference tag check failed") },
/* T */
{ SST(0x10, 0x04, SS_RDEF, /* XXX TBD */
"Logical block protection error on recovered buffer data") },
/* T */
{ SST(0x10, 0x05, SS_RDEF, /* XXX TBD */
"Logical block protection method error") },
/* DT WRO BK */
{ SST(0x11, 0x00, SS_FATAL|EIO,
"Unrecovered read error") },
/* DT WRO BK */
{ SST(0x11, 0x01, SS_FATAL|EIO,
"Read retries exhausted") },
/* DT WRO BK */
{ SST(0x11, 0x02, SS_FATAL|EIO,
"Error too long to correct") },
/* DT W O BK */
{ SST(0x11, 0x03, SS_FATAL|EIO,
"Multiple read errors") },
/* D W O BK */
{ SST(0x11, 0x04, SS_FATAL|EIO,
"Unrecovered read error - auto reallocate failed") },
/* WRO B */
{ SST(0x11, 0x05, SS_FATAL|EIO,
"L-EC uncorrectable error") },
/* WRO B */
{ SST(0x11, 0x06, SS_FATAL|EIO,
"CIRC unrecovered error") },
/* W O B */
{ SST(0x11, 0x07, SS_RDEF,
"Data re-synchronization error") },
/* T */
{ SST(0x11, 0x08, SS_RDEF,
"Incomplete block read") },
/* T */
{ SST(0x11, 0x09, SS_RDEF,
"No gap found") },
/* DT O BK */
{ SST(0x11, 0x0A, SS_RDEF,
"Miscorrected error") },
/* D W O BK */
{ SST(0x11, 0x0B, SS_FATAL|EIO,
"Unrecovered read error - recommend reassignment") },
/* D W O BK */
{ SST(0x11, 0x0C, SS_FATAL|EIO,
"Unrecovered read error - recommend rewrite the data") },
/* DT WRO B */
{ SST(0x11, 0x0D, SS_RDEF,
"De-compression CRC error") },
/* DT WRO B */
{ SST(0x11, 0x0E, SS_RDEF,
"Cannot decompress using declared algorithm") },
/* R */
{ SST(0x11, 0x0F, SS_RDEF,
"Error reading UPC/EAN number") },
/* R */
{ SST(0x11, 0x10, SS_RDEF,
"Error reading ISRC number") },
/* R */
{ SST(0x11, 0x11, SS_RDEF,
"Read error - loss of streaming") },
/* DT WROM B */
{ SST(0x11, 0x12, SS_RDEF, /* XXX TBD */
"Auxiliary memory read error") },
/* DTLPWRO AEBKVF */
{ SST(0x11, 0x13, SS_RDEF, /* XXX TBD */
"Read error - failed retransmission request") },
/* D */
{ SST(0x11, 0x14, SS_RDEF, /* XXX TBD */
"Read error - LBA marked bad by application client") },
/* D */
{ SST(0x11, 0x15, SS_FATAL | EIO,
"Write after sanitize required") },
/* D W O BK */
{ SST(0x12, 0x00, SS_RDEF,
"Address mark not found for ID field") },
/* D W O BK */
{ SST(0x13, 0x00, SS_RDEF,
"Address mark not found for data field") },
/* DTL WRO BK */
{ SST(0x14, 0x00, SS_RDEF,
"Recorded entity not found") },
/* DT WRO BK */
{ SST(0x14, 0x01, SS_RDEF,
"Record not found") },
/* T */
{ SST(0x14, 0x02, SS_RDEF,
"Filemark or setmark not found") },
/* T */
{ SST(0x14, 0x03, SS_RDEF,
"End-of-data not found") },
/* T */
{ SST(0x14, 0x04, SS_RDEF,
"Block sequence error") },
/* DT W O BK */
{ SST(0x14, 0x05, SS_RDEF,
"Record not found - recommend reassignment") },
/* DT W O BK */
{ SST(0x14, 0x06, SS_RDEF,
"Record not found - data auto-reallocated") },
/* T */
{ SST(0x14, 0x07, SS_RDEF, /* XXX TBD */
"Locate operation failure") },
/* DTL WROM BK */
{ SST(0x15, 0x00, SS_RDEF,
"Random positioning error") },
/* DTL WROM BK */
{ SST(0x15, 0x01, SS_RDEF,
"Mechanical positioning error") },
/* DT WRO BK */
{ SST(0x15, 0x02, SS_RDEF,
"Positioning error detected by read of medium") },
/* D W O BK */
{ SST(0x16, 0x00, SS_RDEF,
"Data synchronization mark error") },
/* D W O BK */
{ SST(0x16, 0x01, SS_RDEF,
"Data sync error - data rewritten") },
/* D W O BK */
{ SST(0x16, 0x02, SS_RDEF,
"Data sync error - recommend rewrite") },
/* D W O BK */
{ SST(0x16, 0x03, SS_NOP | SSQ_PRINT_SENSE,
"Data sync error - data auto-reallocated") },
/* D W O BK */
{ SST(0x16, 0x04, SS_RDEF,
"Data sync error - recommend reassignment") },
/* DT WRO BK */
{ SST(0x17, 0x00, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with no error correction applied") },
/* DT WRO BK */
{ SST(0x17, 0x01, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with retries") },
/* DT WRO BK */
{ SST(0x17, 0x02, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with positive head offset") },
/* DT WRO BK */
{ SST(0x17, 0x03, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with negative head offset") },
/* WRO B */
{ SST(0x17, 0x04, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with retries and/or CIRC applied") },
/* D WRO BK */
{ SST(0x17, 0x05, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data using previous sector ID") },
/* D W O BK */
{ SST(0x17, 0x06, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data without ECC - data auto-reallocated") },
/* D WRO BK */
{ SST(0x17, 0x07, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data without ECC - recommend reassignment") },
/* D WRO BK */
{ SST(0x17, 0x08, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data without ECC - recommend rewrite") },
/* D WRO BK */
{ SST(0x17, 0x09, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data without ECC - data rewritten") },
/* DT WRO BK */
{ SST(0x18, 0x00, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with error correction applied") },
/* D WRO BK */
{ SST(0x18, 0x01, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with error corr. & retries applied") },
/* D WRO BK */
{ SST(0x18, 0x02, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data - data auto-reallocated") },
/* R */
{ SST(0x18, 0x03, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with CIRC") },
/* R */
{ SST(0x18, 0x04, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with L-EC") },
/* D WRO BK */
{ SST(0x18, 0x05, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data - recommend reassignment") },
/* D WRO BK */
{ SST(0x18, 0x06, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data - recommend rewrite") },
/* D W O BK */
{ SST(0x18, 0x07, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with ECC - data rewritten") },
/* R */
{ SST(0x18, 0x08, SS_NOP | SSQ_PRINT_SENSE,
"Recovered data with linking") },
/* D O K */
{ SST(0x19, 0x00, SS_RDEF,
"Defect list error") },
/* D O K */
{ SST(0x19, 0x01, SS_RDEF,
"Defect list not available") },
/* D O K */
{ SST(0x19, 0x02, SS_RDEF,
"Defect list error in primary list") },
/* D O K */
{ SST(0x19, 0x03, SS_RDEF,
"Defect list error in grown list") },
/* DTLPWROMAEBKVF */
{ SST(0x1A, 0x00, SS_RDEF,
"Parameter list length error") },
/* DTLPWROMAEBKVF */
{ SST(0x1B, 0x00, SS_RDEF,
"Synchronous data transfer error") },
/* D O BK */
{ SST(0x1C, 0x00, SS_RDEF,
"Defect list not found") },
/* D O BK */
{ SST(0x1C, 0x01, SS_RDEF,
"Primary defect list not found") },
/* D O BK */
{ SST(0x1C, 0x02, SS_RDEF,
"Grown defect list not found") },
/* DT WRO BK */
{ SST(0x1D, 0x00, SS_FATAL,
"Miscompare during verify operation") },
/* D B */
{ SST(0x1D, 0x01, SS_RDEF, /* XXX TBD */
"Miscomparable verify of unmapped LBA") },
/* D W O BK */
{ SST(0x1E, 0x00, SS_NOP | SSQ_PRINT_SENSE,
"Recovered ID with ECC correction") },
/* D O K */
{ SST(0x1F, 0x00, SS_RDEF,
"Partial defect list transfer") },
/* DTLPWROMAEBKVF */
{ SST(0x20, 0x00, SS_FATAL | EINVAL,
"Invalid command operation code") },
/* DT PWROMAEBK */
{ SST(0x20, 0x01, SS_RDEF, /* XXX TBD */
"Access denied - initiator pending-enrolled") },
/* DT PWROMAEBK */
{ SST(0x20, 0x02, SS_FATAL | EPERM,
"Access denied - no access rights") },
/* DT PWROMAEBK */
{ SST(0x20, 0x03, SS_RDEF, /* XXX TBD */
"Access denied - invalid mgmt ID key") },
/* T */
{ SST(0x20, 0x04, SS_RDEF, /* XXX TBD */
"Illegal command while in write capable state") },
/* T */
{ SST(0x20, 0x05, SS_RDEF, /* XXX TBD */
"Obsolete") },
/* T */
{ SST(0x20, 0x06, SS_RDEF, /* XXX TBD */
"Illegal command while in explicit address mode") },
/* T */
{ SST(0x20, 0x07, SS_RDEF, /* XXX TBD */
"Illegal command while in implicit address mode") },
/* DT PWROMAEBK */
{ SST(0x20, 0x08, SS_RDEF, /* XXX TBD */
"Access denied - enrollment conflict") },
/* DT PWROMAEBK */
{ SST(0x20, 0x09, SS_RDEF, /* XXX TBD */
"Access denied - invalid LU identifier") },
/* DT PWROMAEBK */
{ SST(0x20, 0x0A, SS_RDEF, /* XXX TBD */
"Access denied - invalid proxy token") },
/* DT PWROMAEBK */
{ SST(0x20, 0x0B, SS_RDEF, /* XXX TBD */
"Access denied - ACL LUN conflict") },
/* T */
{ SST(0x20, 0x0C, SS_FATAL | EINVAL,
"Illegal command when not in append-only mode") },
/* D */
{ SST(0x20, 0x0D, SS_FATAL | EINVAL,
"Not an administrative logical unit") },
/* D */
{ SST(0x20, 0x0E, SS_FATAL | EINVAL,
"Not a subsidiary logical unit") },
/* D */
{ SST(0x20, 0x0F, SS_FATAL | EINVAL,
"Not a conglomerate logical unit") },
/* DT WRO BK */
{ SST(0x21, 0x00, SS_FATAL | EINVAL,
"Logical block address out of range") },
/* DT WROM BK */
{ SST(0x21, 0x01, SS_FATAL | EINVAL,
"Invalid element address") },
/* R */
{ SST(0x21, 0x02, SS_RDEF, /* XXX TBD */
"Invalid address for write") },
/* R */
{ SST(0x21, 0x03, SS_RDEF, /* XXX TBD */
"Invalid write crossing layer jump") },
/* D */
{ SST(0x21, 0x04, SS_RDEF, /* XXX TBD */
"Unaligned write command") },
/* D */
{ SST(0x21, 0x05, SS_RDEF, /* XXX TBD */
"Write boundary violation") },
/* D */
{ SST(0x21, 0x06, SS_RDEF, /* XXX TBD */
"Attempt to read invalid data") },
/* D */
{ SST(0x21, 0x07, SS_RDEF, /* XXX TBD */
"Read boundary violation") },
/* D */
{ SST(0x21, 0x08, SS_FATAL | EINVAL,
"Misaligned write command") },
/* D */
{ SST(0x21, 0x09, SS_FATAL | EINVAL,
"Attempt to access gap zone") },
/* D */
{ SST(0x22, 0x00, SS_FATAL | EINVAL,
"Illegal function (use 20 00, 24 00, or 26 00)") },
/* DT P B */
{ SST(0x23, 0x00, SS_FATAL | EINVAL,
"Invalid token operation, cause not reportable") },
/* DT P B */
{ SST(0x23, 0x01, SS_FATAL | EINVAL,
"Invalid token operation, unsupported token type") },
/* DT P B */
{ SST(0x23, 0x02, SS_FATAL | EINVAL,
"Invalid token operation, remote token usage not supported") },
/* DT P B */
{ SST(0x23, 0x03, SS_FATAL | EINVAL,
"Invalid token operation, remote ROD token creation not supported") },
/* DT P B */
{ SST(0x23, 0x04, SS_FATAL | EINVAL,
"Invalid token operation, token unknown") },
/* DT P B */
{ SST(0x23, 0x05, SS_FATAL | EINVAL,
"Invalid token operation, token corrupt") },
/* DT P B */
{ SST(0x23, 0x06, SS_FATAL | EINVAL,
"Invalid token operation, token revoked") },
/* DT P B */
{ SST(0x23, 0x07, SS_FATAL | EINVAL,
"Invalid token operation, token expired") },
/* DT P B */
{ SST(0x23, 0x08, SS_FATAL | EINVAL,
"Invalid token operation, token cancelled") },
/* DT P B */
{ SST(0x23, 0x09, SS_FATAL | EINVAL,
"Invalid token operation, token deleted") },
/* DT P B */
{ SST(0x23, 0x0A, SS_FATAL | EINVAL,
"Invalid token operation, invalid token length") },
/* DTLPWROMAEBKVF */
{ SST(0x24, 0x00, SS_FATAL | EINVAL,
"Invalid field in CDB") },
/* DTLPWRO AEBKVF */
{ SST(0x24, 0x01, SS_RDEF, /* XXX TBD */
"CDB decryption error") },
/* T */
{ SST(0x24, 0x02, SS_RDEF, /* XXX TBD */
"Obsolete") },
/* T */
{ SST(0x24, 0x03, SS_RDEF, /* XXX TBD */
"Obsolete") },
/* F */
{ SST(0x24, 0x04, SS_RDEF, /* XXX TBD */
"Security audit value frozen") },
/* F */
{ SST(0x24, 0x05, SS_RDEF, /* XXX TBD */
"Security working key frozen") },
/* F */
{ SST(0x24, 0x06, SS_RDEF, /* XXX TBD */
"NONCE not unique") },
/* F */
{ SST(0x24, 0x07, SS_RDEF, /* XXX TBD */
"NONCE timestamp out of range") },
/* DT R MAEBKV */
{ SST(0x24, 0x08, SS_RDEF, /* XXX TBD */
"Invalid XCDB") },
/* D */
{ SST(0x24, 0x09, SS_FATAL | EINVAL,
"Invalid fast format") },
/* DTLPWROMAEBKVF */
{ SST(0x25, 0x00, SS_FATAL | ENXIO | SSQ_LOST,
"Logical unit not supported") },
/* DTLPWROMAEBKVF */
{ SST(0x26, 0x00, SS_FATAL | EINVAL,
"Invalid field in parameter list") },
/* DTLPWROMAEBKVF */
{ SST(0x26, 0x01, SS_FATAL | EINVAL,
"Parameter not supported") },
/* DTLPWROMAEBKVF */
{ SST(0x26, 0x02, SS_FATAL | EINVAL,
"Parameter value invalid") },
/* DTLPWROMAE K */
{ SST(0x26, 0x03, SS_FATAL | EINVAL,
"Threshold parameters not supported") },
/* DTLPWROMAEBKVF */
{ SST(0x26, 0x04, SS_FATAL | EINVAL,
"Invalid release of persistent reservation") },
/* DTLPWRO A BK */
{ SST(0x26, 0x05, SS_RDEF, /* XXX TBD */
"Data decryption error") },
/* DTLPWRO K */
{ SST(0x26, 0x06, SS_FATAL | EINVAL,
"Too many target descriptors") },
/* DTLPWRO K */
{ SST(0x26, 0x07, SS_FATAL | EINVAL,
"Unsupported target descriptor type code") },
/* DTLPWRO K */
{ SST(0x26, 0x08, SS_FATAL | EINVAL,
"Too many segment descriptors") },
/* DTLPWRO K */
{ SST(0x26, 0x09, SS_FATAL | EINVAL,
"Unsupported segment descriptor type code") },
/* DTLPWRO K */
{ SST(0x26, 0x0A, SS_FATAL | EINVAL,
"Unexpected inexact segment") },
/* DTLPWRO K */
{ SST(0x26, 0x0B, SS_FATAL | EINVAL,
"Inline data length exceeded") },
/* DTLPWRO K */
{ SST(0x26, 0x0C, SS_FATAL | EINVAL,
"Invalid operation for copy source or destination") },
/* DTLPWRO K */
{ SST(0x26, 0x0D, SS_FATAL | EINVAL,
"Copy segment granularity violation") },
/* DT PWROMAEBK */
{ SST(0x26, 0x0E, SS_RDEF, /* XXX TBD */
"Invalid parameter while port is enabled") },
/* F */
{ SST(0x26, 0x0F, SS_RDEF, /* XXX TBD */
"Invalid data-out buffer integrity check value") },
/* T */
{ SST(0x26, 0x10, SS_RDEF, /* XXX TBD */
"Data decryption key fail limit reached") },
/* T */
{ SST(0x26, 0x11, SS_RDEF, /* XXX TBD */
"Incomplete key-associated data set") },
/* T */
{ SST(0x26, 0x12, SS_RDEF, /* XXX TBD */
"Vendor specific key reference not found") },
/* D */
{ SST(0x26, 0x13, SS_RDEF, /* XXX TBD */
"Application tag mode page is invalid") },
/* T */
{ SST(0x26, 0x14, SS_RDEF, /* XXX TBD */
"Tape stream mirroring prevented") },
/* T */
{ SST(0x26, 0x15, SS_FATAL | EINVAL,
"Copy source or copy destination not authorized") },
/* D */
{ SST(0x26, 0x16, SS_FATAL | EINVAL,
"Fast copy not possible") },
/* DT WRO BK */
{ SST(0x27, 0x00, SS_FATAL | EACCES,
"Write protected") },
/* DT WRO BK */
{ SST(0x27, 0x01, SS_FATAL | EACCES,
"Hardware write protected") },
/* DT WRO BK */
{ SST(0x27, 0x02, SS_FATAL | EACCES,
"Logical unit software write protected") },
/* T R */
{ SST(0x27, 0x03, SS_FATAL | EACCES,
"Associated write protect") },
/* T R */
{ SST(0x27, 0x04, SS_FATAL | EACCES,
"Persistent write protect") },
/* T R */
{ SST(0x27, 0x05, SS_FATAL | EACCES,
"Permanent write protect") },
/* R F */
{ SST(0x27, 0x06, SS_RDEF, /* XXX TBD */
"Conditional write protect") },
/* D B */
{ SST(0x27, 0x07, SS_FATAL | ENOSPC,
"Space allocation failed write protect") },
/* D */
{ SST(0x27, 0x08, SS_FATAL | EACCES,
"Zone is read only") },
/* DTLPWROMAEBKVF */
{ SST(0x28, 0x00, SS_FATAL | ENXIO,
"Not ready to ready change, medium may have changed") },
/* DT WROM B */
{ SST(0x28, 0x01, SS_FATAL | ENXIO,
"Import or export element accessed") },
/* R */
{ SST(0x28, 0x02, SS_RDEF, /* XXX TBD */
"Format-layer may have changed") },
/* M */
{ SST(0x28, 0x03, SS_RDEF, /* XXX TBD */
"Import/export element accessed, medium changed") },
/*
* XXX JGibbs - All of these should use the same errno, but I don't
* think ENXIO is the correct choice. Should we borrow from
* the networking errnos? ECONNRESET anyone?
*/
/* DTLPWROMAEBKVF */
{ SST(0x29, 0x00, SS_FATAL | ENXIO,
"Power on, reset, or bus device reset occurred") },
/* DTLPWROMAEBKVF */
{ SST(0x29, 0x01, SS_RDEF,
"Power on occurred") },
/* DTLPWROMAEBKVF */
{ SST(0x29, 0x02, SS_RDEF,
"SCSI bus reset occurred") },
/* DTLPWROMAEBKVF */
{ SST(0x29, 0x03, SS_RDEF,
"Bus device reset function occurred") },
/* DTLPWROMAEBKVF */
{ SST(0x29, 0x04, SS_RDEF,
"Device internal reset") },
/* DTLPWROMAEBKVF */
{ SST(0x29, 0x05, SS_RDEF,
"Transceiver mode changed to single-ended") },
/* DTLPWROMAEBKVF */
{ SST(0x29, 0x06, SS_RDEF,
"Transceiver mode changed to LVD") },
/* DTLPWROMAEBKVF */
{ SST(0x29, 0x07, SS_RDEF, /* XXX TBD */
"I_T nexus loss occurred") },
/* DTL WROMAEBKVF */
{ SST(0x2A, 0x00, SS_RDEF,
"Parameters changed") },
/* DTL WROMAEBKVF */
{ SST(0x2A, 0x01, SS_RDEF,
"Mode parameters changed") },
/* DTL WROMAE K */
{ SST(0x2A, 0x02, SS_RDEF,
"Log parameters changed") },
/* DTLPWROMAE K */
{ SST(0x2A, 0x03, SS_RDEF,
"Reservations preempted") },
/* DTLPWROMAE */
{ SST(0x2A, 0x04, SS_RDEF, /* XXX TBD */
"Reservations released") },
/* DTLPWROMAE */
{ SST(0x2A, 0x05, SS_RDEF, /* XXX TBD */
"Registrations preempted") },
/* DTLPWROMAEBKVF */
{ SST(0x2A, 0x06, SS_RDEF, /* XXX TBD */
"Asymmetric access state changed") },
/* DTLPWROMAEBKVF */
{ SST(0x2A, 0x07, SS_RDEF, /* XXX TBD */
"Implicit asymmetric access state transition failed") },
/* DT WROMAEBKVF */
{ SST(0x2A, 0x08, SS_RDEF, /* XXX TBD */
"Priority changed") },
/* D */
{ SST(0x2A, 0x09, SS_RDEF, /* XXX TBD */
"Capacity data has changed") },
/* DT */
{ SST(0x2A, 0x0A, SS_RDEF, /* XXX TBD */
"Error history I_T nexus cleared") },
/* DT */
{ SST(0x2A, 0x0B, SS_RDEF, /* XXX TBD */
"Error history snapshot released") },
/* F */
{ SST(0x2A, 0x0C, SS_RDEF, /* XXX TBD */
"Error recovery attributes have changed") },
/* T */
{ SST(0x2A, 0x0D, SS_RDEF, /* XXX TBD */
"Data encryption capabilities changed") },
/* DT M E V */
{ SST(0x2A, 0x10, SS_RDEF, /* XXX TBD */
"Timestamp changed") },
/* T */
{ SST(0x2A, 0x11, SS_RDEF, /* XXX TBD */
"Data encryption parameters changed by another I_T nexus") },
/* T */
{ SST(0x2A, 0x12, SS_RDEF, /* XXX TBD */
"Data encryption parameters changed by vendor specific event") },
/* T */
{ SST(0x2A, 0x13, SS_RDEF, /* XXX TBD */
"Data encryption key instance counter has changed") },
/* DT R MAEBKV */
{ SST(0x2A, 0x14, SS_RDEF, /* XXX TBD */
"SA creation capabilities data has changed") },
/* T M V */
{ SST(0x2A, 0x15, SS_RDEF, /* XXX TBD */
"Medium removal prevention preempted") },
/* D */
{ SST(0x2A, 0x16, SS_RDEF, /* XXX TBD */
"Zone reset write pointer recommended") },
/* DTLPWRO K */
{ SST(0x2B, 0x00, SS_RDEF,
"Copy cannot execute since host cannot disconnect") },
/* DTLPWROMAEBKVF */
{ SST(0x2C, 0x00, SS_RDEF,
"Command sequence error") },
/* */
{ SST(0x2C, 0x01, SS_RDEF,
"Too many windows specified") },
/* */
{ SST(0x2C, 0x02, SS_RDEF,
"Invalid combination of windows specified") },
/* R */
{ SST(0x2C, 0x03, SS_RDEF,
"Current program area is not empty") },
/* R */
{ SST(0x2C, 0x04, SS_RDEF,
"Current program area is empty") },
/* B */
{ SST(0x2C, 0x05, SS_RDEF, /* XXX TBD */
"Illegal power condition request") },
/* R */
{ SST(0x2C, 0x06, SS_RDEF, /* XXX TBD */
"Persistent prevent conflict") },
/* DTLPWROMAEBKVF */
{ SST(0x2C, 0x07, SS_RDEF, /* XXX TBD */
"Previous busy status") },
/* DTLPWROMAEBKVF */
{ SST(0x2C, 0x08, SS_RDEF, /* XXX TBD */
"Previous task set full status") },
/* DTLPWROM EBKVF */
{ SST(0x2C, 0x09, SS_RDEF, /* XXX TBD */
"Previous reservation conflict status") },
/* F */
{ SST(0x2C, 0x0A, SS_RDEF, /* XXX TBD */
"Partition or collection contains user objects") },
/* T */
{ SST(0x2C, 0x0B, SS_RDEF, /* XXX TBD */
"Not reserved") },
/* D */
{ SST(0x2C, 0x0C, SS_RDEF, /* XXX TBD */
"ORWRITE generation does not match") },
/* D */
{ SST(0x2C, 0x0D, SS_RDEF, /* XXX TBD */
"Reset write pointer not allowed") },
/* D */
{ SST(0x2C, 0x0E, SS_RDEF, /* XXX TBD */
"Zone is offline") },
/* D */
{ SST(0x2C, 0x0F, SS_RDEF, /* XXX TBD */
"Stream not open") },
/* D */
{ SST(0x2C, 0x10, SS_RDEF, /* XXX TBD */
"Unwritten data in zone") },
/* D */
{ SST(0x2C, 0x11, SS_FATAL | EINVAL,
"Descriptor format sense data required") },
/* D */
{ SST(0x2C, 0x12, SS_FATAL | EINVAL,
"Zone is inactive") },
/* DTPEROMAEBKVF */
{ SST(0x2C, 0x13, SS_FATAL | EINVAL,
"Well known logical unit access required") },
/* T */
{ SST(0x2D, 0x00, SS_RDEF,
"Overwrite error on update in place") },
/* R */
{ SST(0x2E, 0x00, SS_RDEF, /* XXX TBD */
"Insufficient time for operation") },
/* D */
{ SST(0x2E, 0x01, SS_RDEF, /* XXX TBD */
"Command timeout before processing") },
/* D */
{ SST(0x2E, 0x02, SS_RDEF, /* XXX TBD */
"Command timeout during processing") },
/* D */
{ SST(0x2E, 0x03, SS_RDEF, /* XXX TBD */
"Command timeout during processing due to error recovery") },
/* DTLPWROMAEBKVF */
{ SST(0x2F, 0x00, SS_RDEF,
"Commands cleared by another initiator") },
/* D */
{ SST(0x2F, 0x01, SS_RDEF, /* XXX TBD */
"Commands cleared by power loss notification") },
/* DTLPWROMAEBKVF */
{ SST(0x2F, 0x02, SS_RDEF, /* XXX TBD */
"Commands cleared by device server") },
/* DTLPWROMAEBKVF */
{ SST(0x2F, 0x03, SS_RDEF, /* XXX TBD */
"Some commands cleared by queuing layer event") },
/* DT WROM BK */
{ SST(0x30, 0x00, SS_RDEF,
"Incompatible medium installed") },
/* DT WRO BK */
{ SST(0x30, 0x01, SS_RDEF,
"Cannot read medium - unknown format") },
/* DT WRO BK */
{ SST(0x30, 0x02, SS_RDEF,
"Cannot read medium - incompatible format") },
/* DT R K */
{ SST(0x30, 0x03, SS_RDEF,
"Cleaning cartridge installed") },
/* DT WRO BK */
{ SST(0x30, 0x04, SS_RDEF,
"Cannot write medium - unknown format") },
/* DT WRO BK */
{ SST(0x30, 0x05, SS_RDEF,
"Cannot write medium - incompatible format") },
/* DT WRO B */
{ SST(0x30, 0x06, SS_RDEF,
"Cannot format medium - incompatible medium") },
/* DTL WROMAEBKVF */
{ SST(0x30, 0x07, SS_RDEF,
"Cleaning failure") },
/* R */
{ SST(0x30, 0x08, SS_RDEF,
"Cannot write - application code mismatch") },
/* R */
{ SST(0x30, 0x09, SS_RDEF,
"Current session not fixated for append") },
/* DT WRO AEBK */
{ SST(0x30, 0x0A, SS_RDEF, /* XXX TBD */
"Cleaning request rejected") },
/* T */
{ SST(0x30, 0x0C, SS_RDEF, /* XXX TBD */
"WORM medium - overwrite attempted") },
/* T */
{ SST(0x30, 0x0D, SS_RDEF, /* XXX TBD */
"WORM medium - integrity check") },
/* R */
{ SST(0x30, 0x10, SS_RDEF, /* XXX TBD */
"Medium not formatted") },
/* M */
{ SST(0x30, 0x11, SS_RDEF, /* XXX TBD */
"Incompatible volume type") },
/* M */
{ SST(0x30, 0x12, SS_RDEF, /* XXX TBD */
"Incompatible volume qualifier") },
/* M */
{ SST(0x30, 0x13, SS_RDEF, /* XXX TBD */
"Cleaning volume expired") },
/* DT WRO BK */
{ SST(0x31, 0x00, SS_FATAL | ENXIO,
"Medium format corrupted") },
/* D L RO B */
{ SST(0x31, 0x01, SS_RDEF,
"Format command failed") },
/* R */
{ SST(0x31, 0x02, SS_RDEF, /* XXX TBD */
"Zoned formatting failed due to spare linking") },
/* D B */
{ SST(0x31, 0x03, SS_FATAL | EIO,
"SANITIZE command failed") },
/* D */
{ SST(0x31, 0x04, SS_FATAL | EIO,
"Depopulation failed") },
/* D */
{ SST(0x31, 0x05, SS_FATAL | EIO,
"Depopulation restoration failed") },
/* D W O BK */
{ SST(0x32, 0x00, SS_RDEF,
"No defect spare location available") },
/* D W O BK */
{ SST(0x32, 0x01, SS_RDEF,
"Defect list update failure") },
/* T */
{ SST(0x33, 0x00, SS_RDEF,
"Tape length error") },
/* DTLPWROMAEBKVF */
{ SST(0x34, 0x00, SS_RDEF,
"Enclosure failure") },
/* DTLPWROMAEBKVF */
{ SST(0x35, 0x00, SS_RDEF,
"Enclosure services failure") },
/* DTLPWROMAEBKVF */
{ SST(0x35, 0x01, SS_RDEF,
"Unsupported enclosure function") },
/* DTLPWROMAEBKVF */
{ SST(0x35, 0x02, SS_RDEF,
"Enclosure services unavailable") },
/* DTLPWROMAEBKVF */
{ SST(0x35, 0x03, SS_RDEF,
"Enclosure services transfer failure") },
/* DTLPWROMAEBKVF */
{ SST(0x35, 0x04, SS_RDEF,
"Enclosure services transfer refused") },
/* DTL WROMAEBKVF */
{ SST(0x35, 0x05, SS_RDEF, /* XXX TBD */
"Enclosure services checksum error") },
/* L */
{ SST(0x36, 0x00, SS_RDEF,
"Ribbon, ink, or toner failure") },
/* DTL WROMAEBKVF */
{ SST(0x37, 0x00, SS_RDEF,
"Rounded parameter") },
/* B */
{ SST(0x38, 0x00, SS_RDEF, /* XXX TBD */
"Event status notification") },
/* B */
{ SST(0x38, 0x02, SS_RDEF, /* XXX TBD */
"ESN - power management class event") },
/* B */
{ SST(0x38, 0x04, SS_RDEF, /* XXX TBD */
"ESN - media class event") },
/* B */
{ SST(0x38, 0x06, SS_RDEF, /* XXX TBD */
"ESN - device busy class event") },
/* D */
{ SST(0x38, 0x07, SS_RDEF, /* XXX TBD */
"Thin provisioning soft threshold reached") },
/* D */
{ SST(0x38, 0x08, SS_NOP | SSQ_PRINT_SENSE,
"Depopulation interrupted") },
/* DTL WROMAE K */
{ SST(0x39, 0x00, SS_RDEF,
"Saving parameters not supported") },
/* DTL WROM BK */
{ SST(0x3A, 0x00, SS_FATAL | ENXIO,
"Medium not present") },
/* DT WROM BK */
{ SST(0x3A, 0x01, SS_FATAL | ENXIO,
"Medium not present - tray closed") },
/* DT WROM BK */
{ SST(0x3A, 0x02, SS_FATAL | ENXIO,
"Medium not present - tray open") },
/* DT WROM B */
{ SST(0x3A, 0x03, SS_RDEF, /* XXX TBD */
"Medium not present - loadable") },
/* DT WRO B */
{ SST(0x3A, 0x04, SS_RDEF, /* XXX TBD */
"Medium not present - medium auxiliary memory accessible") },
/* TL */
{ SST(0x3B, 0x00, SS_RDEF,
"Sequential positioning error") },
/* T */
{ SST(0x3B, 0x01, SS_RDEF,
"Tape position error at beginning-of-medium") },
/* T */
{ SST(0x3B, 0x02, SS_RDEF,
"Tape position error at end-of-medium") },
/* L */
{ SST(0x3B, 0x03, SS_RDEF,
"Tape or electronic vertical forms unit not ready") },
/* L */
{ SST(0x3B, 0x04, SS_RDEF,
"Slew failure") },
/* L */
{ SST(0x3B, 0x05, SS_RDEF,
"Paper jam") },
/* L */
{ SST(0x3B, 0x06, SS_RDEF,
"Failed to sense top-of-form") },
/* L */
{ SST(0x3B, 0x07, SS_RDEF,
"Failed to sense bottom-of-form") },
/* T */
{ SST(0x3B, 0x08, SS_RDEF,
"Reposition error") },
/* */
{ SST(0x3B, 0x09, SS_RDEF,
"Read past end of medium") },
/* */
{ SST(0x3B, 0x0A, SS_RDEF,
"Read past beginning of medium") },
/* */
{ SST(0x3B, 0x0B, SS_RDEF,
"Position past end of medium") },
/* T */
{ SST(0x3B, 0x0C, SS_RDEF,
"Position past beginning of medium") },
/* DT WROM BK */
{ SST(0x3B, 0x0D, SS_FATAL | ENOSPC,
"Medium destination element full") },
/* DT WROM BK */
{ SST(0x3B, 0x0E, SS_RDEF,
"Medium source element empty") },
/* R */
{ SST(0x3B, 0x0F, SS_RDEF,
"End of medium reached") },
/* DT WROM BK */
{ SST(0x3B, 0x11, SS_RDEF,
"Medium magazine not accessible") },
/* DT WROM BK */
{ SST(0x3B, 0x12, SS_RDEF,
"Medium magazine removed") },
/* DT WROM BK */
{ SST(0x3B, 0x13, SS_RDEF,
"Medium magazine inserted") },
/* DT WROM BK */
{ SST(0x3B, 0x14, SS_RDEF,
"Medium magazine locked") },
/* DT WROM BK */
{ SST(0x3B, 0x15, SS_RDEF,
"Medium magazine unlocked") },
/* R */
{ SST(0x3B, 0x16, SS_RDEF, /* XXX TBD */
"Mechanical positioning or changer error") },
/* F */
{ SST(0x3B, 0x17, SS_RDEF, /* XXX TBD */
"Read past end of user object") },
/* M */
{ SST(0x3B, 0x18, SS_RDEF, /* XXX TBD */
"Element disabled") },
/* M */
{ SST(0x3B, 0x19, SS_RDEF, /* XXX TBD */
"Element enabled") },
/* M */
{ SST(0x3B, 0x1A, SS_RDEF, /* XXX TBD */
"Data transfer device removed") },
/* M */
{ SST(0x3B, 0x1B, SS_RDEF, /* XXX TBD */
"Data transfer device inserted") },
/* T */
{ SST(0x3B, 0x1C, SS_RDEF, /* XXX TBD */
"Too many logical objects on partition to support operation") },
/* M */
{ SST(0x3B, 0x20, SS_RDEF, /* XXX TBD */
"Element static information changed") },
/* DTLPWROMAE K */
{ SST(0x3D, 0x00, SS_RDEF,
"Invalid bits in IDENTIFY message") },
/* DTLPWROMAEBKVF */
{ SST(0x3E, 0x00, SS_RDEF,
"Logical unit has not self-configured yet") },
/* DTLPWROMAEBKVF */
{ SST(0x3E, 0x01, SS_RDEF,
"Logical unit failure") },
/* DTLPWROMAEBKVF */
{ SST(0x3E, 0x02, SS_RDEF,
"Timeout on logical unit") },
/* DTLPWROMAEBKVF */
{ SST(0x3E, 0x03, SS_RDEF, /* XXX TBD */
"Logical unit failed self-test") },
/* DTLPWROMAEBKVF */
{ SST(0x3E, 0x04, SS_RDEF, /* XXX TBD */
"Logical unit unable to update self-test log") },
/* DTLPWROMAEBKVF */
{ SST(0x3F, 0x00, SS_RDEF,
"Target operating conditions have changed") },
/* DTLPWROMAEBKVF */
{ SST(0x3F, 0x01, SS_RDEF,
"Microcode has been changed") },
/* DTLPWROM BK */
{ SST(0x3F, 0x02, SS_RDEF,
"Changed operating definition") },
/* DTLPWROMAEBKVF */
{ SST(0x3F, 0x03, SS_RDEF,
"INQUIRY data has changed") },
/* DT WROMAEBK */
{ SST(0x3F, 0x04, SS_RDEF,
"Component device attached") },
/* DT WROMAEBK */
{ SST(0x3F, 0x05, SS_RDEF,
"Device identifier changed") },
/* DT WROMAEB */
{ SST(0x3F, 0x06, SS_RDEF,
"Redundancy group created or modified") },
/* DT WROMAEB */
{ SST(0x3F, 0x07, SS_RDEF,
"Redundancy group deleted") },
/* DT WROMAEB */
{ SST(0x3F, 0x08, SS_RDEF,
"Spare created or modified") },
/* DT WROMAEB */
{ SST(0x3F, 0x09, SS_RDEF,
"Spare deleted") },
/* DT WROMAEBK */
{ SST(0x3F, 0x0A, SS_RDEF,
"Volume set created or modified") },
/* DT WROMAEBK */
{ SST(0x3F, 0x0B, SS_RDEF,
"Volume set deleted") },
/* DT WROMAEBK */
{ SST(0x3F, 0x0C, SS_RDEF,
"Volume set deassigned") },
/* DT WROMAEBK */
{ SST(0x3F, 0x0D, SS_RDEF,
"Volume set reassigned") },
/* DTLPWROMAE */
{ SST(0x3F, 0x0E, SS_RDEF | SSQ_RESCAN ,
"Reported LUNs data has changed") },
/* DTLPWROMAEBKVF */
{ SST(0x3F, 0x0F, SS_RDEF, /* XXX TBD */
"Echo buffer overwritten") },
/* DT WROM B */
{ SST(0x3F, 0x10, SS_RDEF, /* XXX TBD */
"Medium loadable") },
/* DT WROM B */
{ SST(0x3F, 0x11, SS_RDEF, /* XXX TBD */
"Medium auxiliary memory accessible") },
/* DTLPWR MAEBK F */
{ SST(0x3F, 0x12, SS_RDEF, /* XXX TBD */
"iSCSI IP address added") },
/* DTLPWR MAEBK F */
{ SST(0x3F, 0x13, SS_RDEF, /* XXX TBD */
"iSCSI IP address removed") },
/* DTLPWR MAEBK F */
{ SST(0x3F, 0x14, SS_RDEF, /* XXX TBD */
"iSCSI IP address changed") },
/* DTLPWR MAEBK */
{ SST(0x3F, 0x15, SS_RDEF, /* XXX TBD */
"Inspect referrals sense descriptors") },
/* DTLPWROMAEBKVF */
{ SST(0x3F, 0x16, SS_RDEF, /* XXX TBD */
"Microcode has been changed without reset") },
/* D */
{ SST(0x3F, 0x17, SS_RDEF, /* XXX TBD */
"Zone transition to full") },
/* D */
{ SST(0x3F, 0x18, SS_RDEF, /* XXX TBD */
"Bind completed") },
/* D */
{ SST(0x3F, 0x19, SS_RDEF, /* XXX TBD */
"Bind redirected") },
/* D */
{ SST(0x3F, 0x1A, SS_RDEF, /* XXX TBD */
"Subsidiary binding changed") },
{ SST(0x40, 0x00, SS_RDEF,
"RAM failure") }, /* deprecated - use 40 NN instead */
/* DTLPWROMAEBKVF */
{ SST(0x40, 0x80, SS_RDEF,
"Diagnostic failure: ASCQ = Component ID") },
/* DTLPWROMAEBKVF */
{ SST(0x40, 0xFF, SS_RDEF | SSQ_RANGE,
NULL) }, /* Range 0x80->0xFF */
/* D */
{ SST(0x41, 0x00, SS_RDEF,
"Data path failure") }, /* deprecated - use 40 NN instead */
/* D */
{ SST(0x42, 0x00, SS_RDEF,
"Power-on or self-test failure") },
/* deprecated - use 40 NN instead */
/* DTLPWROMAEBKVF */
{ SST(0x43, 0x00, SS_RDEF,
"Message error") },
/* DTLPWROMAEBKVF */
{ SST(0x44, 0x00, SS_FATAL | EIO,
"Internal target failure") },
/* DT P MAEBKVF */
{ SST(0x44, 0x01, SS_RDEF, /* XXX TBD */
"Persistent reservation information lost") },
/* DT B */
{ SST(0x44, 0x71, SS_RDEF, /* XXX TBD */
"ATA device failed set features") },
/* DTLPWROMAEBKVF */
{ SST(0x45, 0x00, SS_RDEF,
"Select or reselect failure") },
/* DTLPWROM BK */
{ SST(0x46, 0x00, SS_RDEF,
"Unsuccessful soft reset") },
/* DTLPWROMAEBKVF */
{ SST(0x47, 0x00, SS_RDEF,
"SCSI parity error") },
/* DTLPWROMAEBKVF */
{ SST(0x47, 0x01, SS_RDEF, /* XXX TBD */
"Data phase CRC error detected") },
/* DTLPWROMAEBKVF */
{ SST(0x47, 0x02, SS_RDEF, /* XXX TBD */
"SCSI parity error detected during ST data phase") },
/* DTLPWROMAEBKVF */
{ SST(0x47, 0x03, SS_RDEF, /* XXX TBD */
"Information unit iuCRC error detected") },
/* DTLPWROMAEBKVF */
{ SST(0x47, 0x04, SS_RDEF, /* XXX TBD */
"Asynchronous information protection error detected") },
/* DTLPWROMAEBKVF */
{ SST(0x47, 0x05, SS_RDEF, /* XXX TBD */
"Protocol service CRC error") },
/* DT MAEBKVF */
{ SST(0x47, 0x06, SS_RDEF, /* XXX TBD */
"PHY test function in progress") },
/* DT PWROMAEBK */
{ SST(0x47, 0x7F, SS_RDEF, /* XXX TBD */
"Some commands cleared by iSCSI protocol event") },
/* DTLPWROMAEBKVF */
{ SST(0x48, 0x00, SS_RDEF,
"Initiator detected error message received") },
/* DTLPWROMAEBKVF */
{ SST(0x49, 0x00, SS_RDEF,
"Invalid message error") },
/* DTLPWROMAEBKVF */
{ SST(0x4A, 0x00, SS_RDEF,
"Command phase error") },
/* DTLPWROMAEBKVF */
{ SST(0x4B, 0x00, SS_RDEF,
"Data phase error") },
/* DT PWROMAEBK */
{ SST(0x4B, 0x01, SS_RDEF, /* XXX TBD */
"Invalid target port transfer tag received") },
/* DT PWROMAEBK */
{ SST(0x4B, 0x02, SS_RDEF, /* XXX TBD */
"Too much write data") },
/* DT PWROMAEBK */
{ SST(0x4B, 0x03, SS_RDEF, /* XXX TBD */
"ACK/NAK timeout") },
/* DT PWROMAEBK */
{ SST(0x4B, 0x04, SS_RDEF, /* XXX TBD */
"NAK received") },
/* DT PWROMAEBK */
{ SST(0x4B, 0x05, SS_RDEF, /* XXX TBD */
"Data offset error") },
/* DT PWROMAEBK */
{ SST(0x4B, 0x06, SS_RDEF, /* XXX TBD */
"Initiator response timeout") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x07, SS_RDEF, /* XXX TBD */
"Connection lost") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x08, SS_RDEF, /* XXX TBD */
"Data-in buffer overflow - data buffer size") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x09, SS_RDEF, /* XXX TBD */
"Data-in buffer overflow - data buffer descriptor area") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x0A, SS_RDEF, /* XXX TBD */
"Data-in buffer error") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x0B, SS_RDEF, /* XXX TBD */
"Data-out buffer overflow - data buffer size") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x0C, SS_RDEF, /* XXX TBD */
"Data-out buffer overflow - data buffer descriptor area") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x0D, SS_RDEF, /* XXX TBD */
"Data-out buffer error") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x0E, SS_RDEF, /* XXX TBD */
"PCIe fabric error") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x0F, SS_RDEF, /* XXX TBD */
"PCIe completion timeout") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x10, SS_RDEF, /* XXX TBD */
"PCIe completer abort") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x11, SS_RDEF, /* XXX TBD */
"PCIe poisoned TLP received") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x12, SS_RDEF, /* XXX TBD */
"PCIe ECRC check failed") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x13, SS_RDEF, /* XXX TBD */
"PCIe unsupported request") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x14, SS_RDEF, /* XXX TBD */
"PCIe ACS violation") },
/* DT PWROMAEBK F */
{ SST(0x4B, 0x15, SS_RDEF, /* XXX TBD */
"PCIe TLP prefix blocket") },
/* DTLPWROMAEBKVF */
{ SST(0x4C, 0x00, SS_RDEF,
"Logical unit failed self-configuration") },
/* DTLPWROMAEBKVF */
{ SST(0x4D, 0x00, SS_RDEF,
"Tagged overlapped commands: ASCQ = Queue tag ID") },
/* DTLPWROMAEBKVF */
{ SST(0x4D, 0xFF, SS_RDEF | SSQ_RANGE,
NULL) }, /* Range 0x00->0xFF */
/* DTLPWROMAEBKVF */
{ SST(0x4E, 0x00, SS_RDEF,
"Overlapped commands attempted") },
/* T */
{ SST(0x50, 0x00, SS_RDEF,
"Write append error") },
/* T */
{ SST(0x50, 0x01, SS_RDEF,
"Write append position error") },
/* T */
{ SST(0x50, 0x02, SS_RDEF,
"Position error related to timing") },
/* T RO */
{ SST(0x51, 0x00, SS_RDEF,
"Erase failure") },
/* R */
{ SST(0x51, 0x01, SS_RDEF, /* XXX TBD */
"Erase failure - incomplete erase operation detected") },
/* T */
{ SST(0x52, 0x00, SS_RDEF,
"Cartridge fault") },
/* DTL WROM BK */
{ SST(0x53, 0x00, SS_RDEF,
"Media load or eject failed") },
/* T */
{ SST(0x53, 0x01, SS_RDEF,
"Unload tape failure") },
/* DT WROM BK */
{ SST(0x53, 0x02, SS_RDEF,
"Medium removal prevented") },
/* M */
{ SST(0x53, 0x03, SS_RDEF, /* XXX TBD */
"Medium removal prevented by data transfer element") },
/* T */
{ SST(0x53, 0x04, SS_RDEF, /* XXX TBD */
"Medium thread or unthread failure") },
/* M */
{ SST(0x53, 0x05, SS_RDEF, /* XXX TBD */
"Volume identifier invalid") },
/* T */
{ SST(0x53, 0x06, SS_RDEF, /* XXX TBD */
"Volume identifier missing") },
/* M */
{ SST(0x53, 0x07, SS_RDEF, /* XXX TBD */
"Duplicate volume identifier") },
/* M */
{ SST(0x53, 0x08, SS_RDEF, /* XXX TBD */
"Element status unknown") },
/* M */
{ SST(0x53, 0x09, SS_RDEF, /* XXX TBD */
"Data transfer device error - load failed") },
/* M */
{ SST(0x53, 0x0A, SS_RDEF, /* XXX TBD */
"Data transfer device error - unload failed") },
/* M */
{ SST(0x53, 0x0B, SS_RDEF, /* XXX TBD */
"Data transfer device error - unload missing") },
/* M */
{ SST(0x53, 0x0C, SS_RDEF, /* XXX TBD */
"Data transfer device error - eject failed") },
/* M */
{ SST(0x53, 0x0D, SS_RDEF, /* XXX TBD */
"Data transfer device error - library communication failed") },
/* P */
{ SST(0x54, 0x00, SS_RDEF,
"SCSI to host system interface failure") },
/* P */
{ SST(0x55, 0x00, SS_RDEF,
"System resource failure") },
/* D O BK */
{ SST(0x55, 0x01, SS_FATAL | ENOSPC,
"System buffer full") },
/* DTLPWROMAE K */
{ SST(0x55, 0x02, SS_RDEF, /* XXX TBD */
"Insufficient reservation resources") },
/* DTLPWROMAE K */
{ SST(0x55, 0x03, SS_RDEF, /* XXX TBD */
"Insufficient resources") },
/* DTLPWROMAE K */
{ SST(0x55, 0x04, SS_RDEF, /* XXX TBD */
"Insufficient registration resources") },
/* DT PWROMAEBK */
{ SST(0x55, 0x05, SS_RDEF, /* XXX TBD */
"Insufficient access control resources") },
/* DT WROM B */
{ SST(0x55, 0x06, SS_RDEF, /* XXX TBD */
"Auxiliary memory out of space") },
/* F */
{ SST(0x55, 0x07, SS_RDEF, /* XXX TBD */
"Quota error") },
/* T */
{ SST(0x55, 0x08, SS_RDEF, /* XXX TBD */
"Maximum number of supplemental decryption keys exceeded") },
/* M */
{ SST(0x55, 0x09, SS_RDEF, /* XXX TBD */
"Medium auxiliary memory not accessible") },
/* M */
{ SST(0x55, 0x0A, SS_RDEF, /* XXX TBD */
"Data currently unavailable") },
/* DTLPWROMAEBKVF */
{ SST(0x55, 0x0B, SS_RDEF, /* XXX TBD */
"Insufficient power for operation") },
/* DT P B */
{ SST(0x55, 0x0C, SS_RDEF, /* XXX TBD */
"Insufficient resources to create ROD") },
/* DT P B */
{ SST(0x55, 0x0D, SS_RDEF, /* XXX TBD */
"Insufficient resources to create ROD token") },
/* D */
{ SST(0x55, 0x0E, SS_RDEF, /* XXX TBD */
"Insufficient zone resources") },
/* D */
{ SST(0x55, 0x0F, SS_RDEF, /* XXX TBD */
"Insufficient zone resources to complete write") },
/* D */
{ SST(0x55, 0x10, SS_RDEF, /* XXX TBD */
"Maximum number of streams open") },
/* D */
{ SST(0x55, 0x11, SS_RDEF, /* XXX TBD */
"Insufficient resources to bind") },
/* R */
{ SST(0x57, 0x00, SS_RDEF,
"Unable to recover table-of-contents") },
/* O */
{ SST(0x58, 0x00, SS_RDEF,
"Generation does not exist") },
/* O */
{ SST(0x59, 0x00, SS_RDEF,
"Updated block read") },
/* DTLPWRO BK */
{ SST(0x5A, 0x00, SS_RDEF,
"Operator request or state change input") },
/* DT WROM BK */
{ SST(0x5A, 0x01, SS_RDEF,
"Operator medium removal request") },
/* DT WRO A BK */
{ SST(0x5A, 0x02, SS_RDEF,
"Operator selected write protect") },
/* DT WRO A BK */
{ SST(0x5A, 0x03, SS_RDEF,
"Operator selected write permit") },
/* DTLPWROM K */
{ SST(0x5B, 0x00, SS_RDEF,
"Log exception") },
/* DTLPWROM K */
{ SST(0x5B, 0x01, SS_RDEF,
"Threshold condition met") },
/* DTLPWROM K */
{ SST(0x5B, 0x02, SS_RDEF,
"Log counter at maximum") },
/* DTLPWROM K */
{ SST(0x5B, 0x03, SS_RDEF,
"Log list codes exhausted") },
/* D O */
{ SST(0x5C, 0x00, SS_RDEF,
"RPL status change") },
/* D O */
{ SST(0x5C, 0x01, SS_NOP | SSQ_PRINT_SENSE,
"Spindles synchronized") },
/* D O */
{ SST(0x5C, 0x02, SS_RDEF,
"Spindles not synchronized") },
/* DTLPWROMAEBKVF */
{ SST(0x5D, 0x00, SS_NOP | SSQ_PRINT_SENSE,
"Failure prediction threshold exceeded") },
/* R B */
{ SST(0x5D, 0x01, SS_NOP | SSQ_PRINT_SENSE,
"Media failure prediction threshold exceeded") },
/* R */
{ SST(0x5D, 0x02, SS_NOP | SSQ_PRINT_SENSE,
"Logical unit failure prediction threshold exceeded") },
/* R */
{ SST(0x5D, 0x03, SS_NOP | SSQ_PRINT_SENSE,
"Spare area exhaustion prediction threshold exceeded") },
/* D B */
{ SST(0x5D, 0x10, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure general hard drive failure") },
/* D B */
{ SST(0x5D, 0x11, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure drive error rate too high") },
/* D B */
{ SST(0x5D, 0x12, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure data error rate too high") },
/* D B */
{ SST(0x5D, 0x13, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure seek error rate too high") },
/* D B */
{ SST(0x5D, 0x14, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure too many block reassigns") },
/* D B */
{ SST(0x5D, 0x15, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure access times too high") },
/* D B */
{ SST(0x5D, 0x16, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure start unit times too high") },
/* D B */
{ SST(0x5D, 0x17, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure channel parametrics") },
/* D B */
{ SST(0x5D, 0x18, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure controller detected") },
/* D B */
{ SST(0x5D, 0x19, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure throughput performance") },
/* D B */
{ SST(0x5D, 0x1A, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure seek time performance") },
/* D B */
{ SST(0x5D, 0x1B, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure spin-up retry count") },
/* D B */
{ SST(0x5D, 0x1C, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure drive calibration retry count") },
/* D B */
{ SST(0x5D, 0x1D, SS_NOP | SSQ_PRINT_SENSE,
"Hardware impending failure power loss protection circuit") },
/* D B */
{ SST(0x5D, 0x20, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure general hard drive failure") },
/* D B */
{ SST(0x5D, 0x21, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure drive error rate too high") },
/* D B */
{ SST(0x5D, 0x22, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure data error rate too high") },
/* D B */
{ SST(0x5D, 0x23, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure seek error rate too high") },
/* D B */
{ SST(0x5D, 0x24, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure too many block reassigns") },
/* D B */
{ SST(0x5D, 0x25, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure access times too high") },
/* D B */
{ SST(0x5D, 0x26, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure start unit times too high") },
/* D B */
{ SST(0x5D, 0x27, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure channel parametrics") },
/* D B */
{ SST(0x5D, 0x28, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure controller detected") },
/* D B */
{ SST(0x5D, 0x29, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure throughput performance") },
/* D B */
{ SST(0x5D, 0x2A, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure seek time performance") },
/* D B */
{ SST(0x5D, 0x2B, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure spin-up retry count") },
/* D B */
{ SST(0x5D, 0x2C, SS_NOP | SSQ_PRINT_SENSE,
"Controller impending failure drive calibration retry count") },
/* D B */
{ SST(0x5D, 0x30, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure general hard drive failure") },
/* D B */
{ SST(0x5D, 0x31, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure drive error rate too high") },
/* D B */
{ SST(0x5D, 0x32, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure data error rate too high") },
/* D B */
{ SST(0x5D, 0x33, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure seek error rate too high") },
/* D B */
{ SST(0x5D, 0x34, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure too many block reassigns") },
/* D B */
{ SST(0x5D, 0x35, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure access times too high") },
/* D B */
{ SST(0x5D, 0x36, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure start unit times too high") },
/* D B */
{ SST(0x5D, 0x37, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure channel parametrics") },
/* D B */
{ SST(0x5D, 0x38, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure controller detected") },
/* D B */
{ SST(0x5D, 0x39, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure throughput performance") },
/* D B */
{ SST(0x5D, 0x3A, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure seek time performance") },
/* D B */
{ SST(0x5D, 0x3B, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure spin-up retry count") },
/* D B */
{ SST(0x5D, 0x3C, SS_NOP | SSQ_PRINT_SENSE,
"Data channel impending failure drive calibration retry count") },
/* D B */
{ SST(0x5D, 0x40, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure general hard drive failure") },
/* D B */
{ SST(0x5D, 0x41, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure drive error rate too high") },
/* D B */
{ SST(0x5D, 0x42, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure data error rate too high") },
/* D B */
{ SST(0x5D, 0x43, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure seek error rate too high") },
/* D B */
{ SST(0x5D, 0x44, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure too many block reassigns") },
/* D B */
{ SST(0x5D, 0x45, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure access times too high") },
/* D B */
{ SST(0x5D, 0x46, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure start unit times too high") },
/* D B */
{ SST(0x5D, 0x47, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure channel parametrics") },
/* D B */
{ SST(0x5D, 0x48, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure controller detected") },
/* D B */
{ SST(0x5D, 0x49, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure throughput performance") },
/* D B */
{ SST(0x5D, 0x4A, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure seek time performance") },
/* D B */
{ SST(0x5D, 0x4B, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure spin-up retry count") },
/* D B */
{ SST(0x5D, 0x4C, SS_NOP | SSQ_PRINT_SENSE,
"Servo impending failure drive calibration retry count") },
/* D B */
{ SST(0x5D, 0x50, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure general hard drive failure") },
/* D B */
{ SST(0x5D, 0x51, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure drive error rate too high") },
/* D B */
{ SST(0x5D, 0x52, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure data error rate too high") },
/* D B */
{ SST(0x5D, 0x53, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure seek error rate too high") },
/* D B */
{ SST(0x5D, 0x54, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure too many block reassigns") },
/* D B */
{ SST(0x5D, 0x55, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure access times too high") },
/* D B */
{ SST(0x5D, 0x56, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure start unit times too high") },
/* D B */
{ SST(0x5D, 0x57, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure channel parametrics") },
/* D B */
{ SST(0x5D, 0x58, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure controller detected") },
/* D B */
{ SST(0x5D, 0x59, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure throughput performance") },
/* D B */
{ SST(0x5D, 0x5A, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure seek time performance") },
/* D B */
{ SST(0x5D, 0x5B, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure spin-up retry count") },
/* D B */
{ SST(0x5D, 0x5C, SS_NOP | SSQ_PRINT_SENSE,
"Spindle impending failure drive calibration retry count") },
/* D B */
{ SST(0x5D, 0x60, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure general hard drive failure") },
/* D B */
{ SST(0x5D, 0x61, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure drive error rate too high") },
/* D B */
{ SST(0x5D, 0x62, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure data error rate too high") },
/* D B */
{ SST(0x5D, 0x63, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure seek error rate too high") },
/* D B */
{ SST(0x5D, 0x64, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure too many block reassigns") },
/* D B */
{ SST(0x5D, 0x65, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure access times too high") },
/* D B */
{ SST(0x5D, 0x66, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure start unit times too high") },
/* D B */
{ SST(0x5D, 0x67, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure channel parametrics") },
/* D B */
{ SST(0x5D, 0x68, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure controller detected") },
/* D B */
{ SST(0x5D, 0x69, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure throughput performance") },
/* D B */
{ SST(0x5D, 0x6A, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure seek time performance") },
/* D B */
{ SST(0x5D, 0x6B, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure spin-up retry count") },
/* D B */
{ SST(0x5D, 0x6C, SS_NOP | SSQ_PRINT_SENSE,
"Firmware impending failure drive calibration retry count") },
/* D B */
{ SST(0x5D, 0x73, SS_NOP | SSQ_PRINT_SENSE,
"Media impending failure endurance limit met") },
/* DTLPWROMAEBKVF */
{ SST(0x5D, 0xFF, SS_NOP | SSQ_PRINT_SENSE,
"Failure prediction threshold exceeded (false)") },
/* DTLPWRO A K */
{ SST(0x5E, 0x00, SS_RDEF,
"Low power condition on") },
/* DTLPWRO A K */
{ SST(0x5E, 0x01, SS_RDEF,
"Idle condition activated by timer") },
/* DTLPWRO A K */
{ SST(0x5E, 0x02, SS_RDEF,
"Standby condition activated by timer") },
/* DTLPWRO A K */
{ SST(0x5E, 0x03, SS_RDEF,
"Idle condition activated by command") },
/* DTLPWRO A K */
{ SST(0x5E, 0x04, SS_RDEF,
"Standby condition activated by command") },
/* DTLPWRO A K */
{ SST(0x5E, 0x05, SS_RDEF,
"Idle-B condition activated by timer") },
/* DTLPWRO A K */
{ SST(0x5E, 0x06, SS_RDEF,
"Idle-B condition activated by command") },
/* DTLPWRO A K */
{ SST(0x5E, 0x07, SS_RDEF,
"Idle-C condition activated by timer") },
/* DTLPWRO A K */
{ SST(0x5E, 0x08, SS_RDEF,
"Idle-C condition activated by command") },
/* DTLPWRO A K */
{ SST(0x5E, 0x09, SS_RDEF,
"Standby-Y condition activated by timer") },
/* DTLPWRO A K */
{ SST(0x5E, 0x0A, SS_RDEF,
"Standby-Y condition activated by command") },
/* B */
{ SST(0x5E, 0x41, SS_RDEF, /* XXX TBD */
"Power state change to active") },
/* B */
{ SST(0x5E, 0x42, SS_RDEF, /* XXX TBD */
"Power state change to idle") },
/* B */
{ SST(0x5E, 0x43, SS_RDEF, /* XXX TBD */
"Power state change to standby") },
/* B */
{ SST(0x5E, 0x45, SS_RDEF, /* XXX TBD */
"Power state change to sleep") },
/* BK */
{ SST(0x5E, 0x47, SS_RDEF, /* XXX TBD */
"Power state change to device control") },
/* */
{ SST(0x60, 0x00, SS_RDEF,
"Lamp failure") },
/* */
{ SST(0x61, 0x00, SS_RDEF,
"Video acquisition error") },
/* */
{ SST(0x61, 0x01, SS_RDEF,
"Unable to acquire video") },
/* */
{ SST(0x61, 0x02, SS_RDEF,
"Out of focus") },
/* */
{ SST(0x62, 0x00, SS_RDEF,
"Scan head positioning error") },
/* R */
{ SST(0x63, 0x00, SS_RDEF,
"End of user area encountered on this track") },
/* R */
{ SST(0x63, 0x01, SS_FATAL | ENOSPC,
"Packet does not fit in available space") },
/* R */
{ SST(0x64, 0x00, SS_FATAL | ENXIO,
"Illegal mode for this track") },
/* R */
{ SST(0x64, 0x01, SS_RDEF,
"Invalid packet size") },
/* DTLPWROMAEBKVF */
{ SST(0x65, 0x00, SS_RDEF,
"Voltage fault") },
/* */
{ SST(0x66, 0x00, SS_RDEF,
"Automatic document feeder cover up") },
/* */
{ SST(0x66, 0x01, SS_RDEF,
"Automatic document feeder lift up") },
/* */
{ SST(0x66, 0x02, SS_RDEF,
"Document jam in automatic document feeder") },
/* */
{ SST(0x66, 0x03, SS_RDEF,
"Document miss feed automatic in document feeder") },
/* A */
{ SST(0x67, 0x00, SS_RDEF,
"Configuration failure") },
/* A */
{ SST(0x67, 0x01, SS_RDEF,
"Configuration of incapable logical units failed") },
/* A */
{ SST(0x67, 0x02, SS_RDEF,
"Add logical unit failed") },
/* A */
{ SST(0x67, 0x03, SS_RDEF,
"Modification of logical unit failed") },
/* A */
{ SST(0x67, 0x04, SS_RDEF,
"Exchange of logical unit failed") },
/* A */
{ SST(0x67, 0x05, SS_RDEF,
"Remove of logical unit failed") },
/* A */
{ SST(0x67, 0x06, SS_RDEF,
"Attachment of logical unit failed") },
/* A */
{ SST(0x67, 0x07, SS_RDEF,
"Creation of logical unit failed") },
/* A */
{ SST(0x67, 0x08, SS_RDEF, /* XXX TBD */
"Assign failure occurred") },
/* A */
{ SST(0x67, 0x09, SS_RDEF, /* XXX TBD */
"Multiply assigned logical unit") },
/* DTLPWROMAEBKVF */
{ SST(0x67, 0x0A, SS_RDEF, /* XXX TBD */
"Set target port groups command failed") },
/* DT B */
{ SST(0x67, 0x0B, SS_RDEF, /* XXX TBD */
"ATA device feature not enabled") },
/* D */
{ SST(0x67, 0x0C, SS_FATAL | EIO,
"Command rejected") },
/* D */
{ SST(0x67, 0x0D, SS_FATAL | EINVAL,
"Explicit bind not allowed") },
/* A */
{ SST(0x68, 0x00, SS_RDEF,
"Logical unit not configured") },
/* D */
{ SST(0x68, 0x01, SS_RDEF,
"Subsidiary logical unit not configured") },
/* A */
{ SST(0x69, 0x00, SS_RDEF,
"Data loss on logical unit") },
/* A */
{ SST(0x69, 0x01, SS_RDEF,
"Multiple logical unit failures") },
/* A */
{ SST(0x69, 0x02, SS_RDEF,
"Parity/data mismatch") },
/* A */
{ SST(0x6A, 0x00, SS_RDEF,
"Informational, refer to log") },
/* A */
{ SST(0x6B, 0x00, SS_RDEF,
"State change has occurred") },
/* A */
{ SST(0x6B, 0x01, SS_RDEF,
"Redundancy level got better") },
/* A */
{ SST(0x6B, 0x02, SS_RDEF,
"Redundancy level got worse") },
/* A */
{ SST(0x6C, 0x00, SS_RDEF,
"Rebuild failure occurred") },
/* A */
{ SST(0x6D, 0x00, SS_RDEF,
"Recalculate failure occurred") },
/* A */
{ SST(0x6E, 0x00, SS_RDEF,
"Command to logical unit failed") },
/* R */
{ SST(0x6F, 0x00, SS_RDEF, /* XXX TBD */
"Copy protection key exchange failure - authentication failure") },
/* R */
{ SST(0x6F, 0x01, SS_RDEF, /* XXX TBD */
"Copy protection key exchange failure - key not present") },
/* R */
{ SST(0x6F, 0x02, SS_RDEF, /* XXX TBD */
"Copy protection key exchange failure - key not established") },
/* R */
{ SST(0x6F, 0x03, SS_RDEF, /* XXX TBD */
"Read of scrambled sector without authentication") },
/* R */
{ SST(0x6F, 0x04, SS_RDEF, /* XXX TBD */
"Media region code is mismatched to logical unit region") },
/* R */
{ SST(0x6F, 0x05, SS_RDEF, /* XXX TBD */
"Drive region must be permanent/region reset count error") },
/* R */
{ SST(0x6F, 0x06, SS_RDEF, /* XXX TBD */
"Insufficient block count for binding NONCE recording") },
/* R */
{ SST(0x6F, 0x07, SS_RDEF, /* XXX TBD */
"Conflict in binding NONCE recording") },
/* R */
{ SST(0x6F, 0x08, SS_FATAL | EPERM,
"Insufficient permission") },
/* R */
{ SST(0x6F, 0x09, SS_FATAL | EINVAL,
"Invalid drive-host pairing server") },
/* R */
{ SST(0x6F, 0x0A, SS_RDEF, /* XXX TBD */
"Drive-host pairing suspended") },
/* T */
{ SST(0x70, 0x00, SS_RDEF,
"Decompression exception short: ASCQ = Algorithm ID") },
/* T */
{ SST(0x70, 0xFF, SS_RDEF | SSQ_RANGE,
NULL) }, /* Range 0x00 -> 0xFF */
/* T */
{ SST(0x71, 0x00, SS_RDEF,
"Decompression exception long: ASCQ = Algorithm ID") },
/* T */
{ SST(0x71, 0xFF, SS_RDEF | SSQ_RANGE,
NULL) }, /* Range 0x00 -> 0xFF */
/* R */
{ SST(0x72, 0x00, SS_RDEF,
"Session fixation error") },
/* R */
{ SST(0x72, 0x01, SS_RDEF,
"Session fixation error writing lead-in") },
/* R */
{ SST(0x72, 0x02, SS_RDEF,
"Session fixation error writing lead-out") },
/* R */
{ SST(0x72, 0x03, SS_RDEF,
"Session fixation error - incomplete track in session") },
/* R */
{ SST(0x72, 0x04, SS_RDEF,
"Empty or partially written reserved track") },
/* R */
{ SST(0x72, 0x05, SS_RDEF, /* XXX TBD */
"No more track reservations allowed") },
/* R */
{ SST(0x72, 0x06, SS_RDEF, /* XXX TBD */
"RMZ extension is not allowed") },
/* R */
{ SST(0x72, 0x07, SS_RDEF, /* XXX TBD */
"No more test zone extensions are allowed") },
/* R */
{ SST(0x73, 0x00, SS_RDEF,
"CD control error") },
/* R */
{ SST(0x73, 0x01, SS_RDEF,
"Power calibration area almost full") },
/* R */
{ SST(0x73, 0x02, SS_FATAL | ENOSPC,
"Power calibration area is full") },
/* R */
{ SST(0x73, 0x03, SS_RDEF,
"Power calibration area error") },
/* R */
{ SST(0x73, 0x04, SS_RDEF,
"Program memory area update failure") },
/* R */
{ SST(0x73, 0x05, SS_RDEF,
"Program memory area is full") },
/* R */
{ SST(0x73, 0x06, SS_RDEF, /* XXX TBD */
"RMA/PMA is almost full") },
/* R */
{ SST(0x73, 0x10, SS_RDEF, /* XXX TBD */
"Current power calibration area almost full") },
/* R */
{ SST(0x73, 0x11, SS_RDEF, /* XXX TBD */
"Current power calibration area is full") },
/* R */
{ SST(0x73, 0x17, SS_RDEF, /* XXX TBD */
"RDZ is full") },
/* T */
{ SST(0x74, 0x00, SS_RDEF, /* XXX TBD */
"Security error") },
/* T */
{ SST(0x74, 0x01, SS_RDEF, /* XXX TBD */
"Unable to decrypt data") },
/* T */
{ SST(0x74, 0x02, SS_RDEF, /* XXX TBD */
"Unencrypted data encountered while decrypting") },
/* T */
{ SST(0x74, 0x03, SS_RDEF, /* XXX TBD */
"Incorrect data encryption key") },
/* T */
{ SST(0x74, 0x04, SS_RDEF, /* XXX TBD */
"Cryptographic integrity validation failed") },
/* T */
{ SST(0x74, 0x05, SS_RDEF, /* XXX TBD */
"Error decrypting data") },
/* T */
{ SST(0x74, 0x06, SS_RDEF, /* XXX TBD */
"Unknown signature verification key") },
/* T */
{ SST(0x74, 0x07, SS_RDEF, /* XXX TBD */
"Encryption parameters not useable") },
/* DT R M E VF */
{ SST(0x74, 0x08, SS_RDEF, /* XXX TBD */
"Digital signature validation failure") },
/* T */
{ SST(0x74, 0x09, SS_RDEF, /* XXX TBD */
"Encryption mode mismatch on read") },
/* T */
{ SST(0x74, 0x0A, SS_RDEF, /* XXX TBD */
"Encrypted block not raw read enabled") },
/* T */
{ SST(0x74, 0x0B, SS_RDEF, /* XXX TBD */
"Incorrect encryption parameters") },
/* DT R MAEBKV */
{ SST(0x74, 0x0C, SS_RDEF, /* XXX TBD */
"Unable to decrypt parameter list") },
/* T */
{ SST(0x74, 0x0D, SS_RDEF, /* XXX TBD */
"Encryption algorithm disabled") },
/* DT R MAEBKV */
{ SST(0x74, 0x10, SS_RDEF, /* XXX TBD */
"SA creation parameter value invalid") },
/* DT R MAEBKV */
{ SST(0x74, 0x11, SS_RDEF, /* XXX TBD */
"SA creation parameter value rejected") },
/* DT R MAEBKV */
{ SST(0x74, 0x12, SS_RDEF, /* XXX TBD */
"Invalid SA usage") },
/* T */
{ SST(0x74, 0x21, SS_RDEF, /* XXX TBD */
"Data encryption configuration prevented") },
/* DT R MAEBKV */
{ SST(0x74, 0x30, SS_RDEF, /* XXX TBD */
"SA creation parameter not supported") },
/* DT R MAEBKV */
{ SST(0x74, 0x40, SS_RDEF, /* XXX TBD */
"Authentication failed") },
/* V */
{ SST(0x74, 0x61, SS_RDEF, /* XXX TBD */
"External data encryption key manager access error") },
/* V */
{ SST(0x74, 0x62, SS_RDEF, /* XXX TBD */
"External data encryption key manager error") },
/* V */
{ SST(0x74, 0x63, SS_RDEF, /* XXX TBD */
"External data encryption key not found") },
/* V */
{ SST(0x74, 0x64, SS_RDEF, /* XXX TBD */
"External data encryption request not authorized") },
/* T */
{ SST(0x74, 0x6E, SS_RDEF, /* XXX TBD */
"External data encryption control timeout") },
/* T */
{ SST(0x74, 0x6F, SS_RDEF, /* XXX TBD */
"External data encryption control error") },
/* DT R M E V */
{ SST(0x74, 0x71, SS_FATAL | EACCES,
"Logical unit access not authorized") },
/* D */
{ SST(0x74, 0x79, SS_FATAL | EACCES,
"Security conflict in translated device") }
};
const u_int asc_table_size = nitems(asc_table);
struct asc_key
{
int asc;
int ascq;
};
static int
ascentrycomp(const void *key, const void *member)
{
int asc;
int ascq;
const struct asc_table_entry *table_entry;
asc = ((const struct asc_key *)key)->asc;
ascq = ((const struct asc_key *)key)->ascq;
table_entry = (const struct asc_table_entry *)member;
if (asc >= table_entry->asc) {
if (asc > table_entry->asc)
return (1);
if (ascq <= table_entry->ascq) {
/* Check for ranges */
if (ascq == table_entry->ascq
|| ((table_entry->action & SSQ_RANGE) != 0
&& ascq >= (table_entry - 1)->ascq))
return (0);
return (-1);
}
return (1);
}
return (-1);
}
static int
senseentrycomp(const void *key, const void *member)
{
int sense_key;
const struct sense_key_table_entry *table_entry;
sense_key = *((const int *)key);
table_entry = (const struct sense_key_table_entry *)member;
if (sense_key >= table_entry->sense_key) {
if (sense_key == table_entry->sense_key)
return (0);
return (1);
}
return (-1);
}
static void
fetchtableentries(int sense_key, int asc, int ascq,
struct scsi_inquiry_data *inq_data,
const struct sense_key_table_entry **sense_entry,
const struct asc_table_entry **asc_entry)
{
caddr_t match;
const struct asc_table_entry *asc_tables[2];
const struct sense_key_table_entry *sense_tables[2];
struct asc_key asc_ascq;
size_t asc_tables_size[2];
size_t sense_tables_size[2];
int num_asc_tables;
int num_sense_tables;
int i;
/* Default to failure */
*sense_entry = NULL;
*asc_entry = NULL;
match = NULL;
if (inq_data != NULL)
match = cam_quirkmatch((caddr_t)inq_data,
(caddr_t)sense_quirk_table,
sense_quirk_table_size,
sizeof(*sense_quirk_table),
scsi_inquiry_match);
if (match != NULL) {
struct scsi_sense_quirk_entry *quirk;
quirk = (struct scsi_sense_quirk_entry *)match;
asc_tables[0] = quirk->asc_info;
asc_tables_size[0] = quirk->num_ascs;
asc_tables[1] = asc_table;
asc_tables_size[1] = asc_table_size;
num_asc_tables = 2;
sense_tables[0] = quirk->sense_key_info;
sense_tables_size[0] = quirk->num_sense_keys;
sense_tables[1] = sense_key_table;
sense_tables_size[1] = nitems(sense_key_table);
num_sense_tables = 2;
} else {
asc_tables[0] = asc_table;
asc_tables_size[0] = asc_table_size;
num_asc_tables = 1;
sense_tables[0] = sense_key_table;
sense_tables_size[0] = nitems(sense_key_table);
num_sense_tables = 1;
}
asc_ascq.asc = asc;
asc_ascq.ascq = ascq;
for (i = 0; i < num_asc_tables; i++) {
void *found_entry;
found_entry = bsearch(&asc_ascq, asc_tables[i],
asc_tables_size[i],
sizeof(**asc_tables),
ascentrycomp);
if (found_entry) {
*asc_entry = (struct asc_table_entry *)found_entry;
break;
}
}
for (i = 0; i < num_sense_tables; i++) {
void *found_entry;
found_entry = bsearch(&sense_key, sense_tables[i],
sense_tables_size[i],
sizeof(**sense_tables),
senseentrycomp);
if (found_entry) {
*sense_entry =
(struct sense_key_table_entry *)found_entry;
break;
}
}
}
void
scsi_sense_desc(int sense_key, int asc, int ascq,
struct scsi_inquiry_data *inq_data,
const char **sense_key_desc, const char **asc_desc)
{
const struct asc_table_entry *asc_entry;
const struct sense_key_table_entry *sense_entry;
fetchtableentries(sense_key, asc, ascq,
inq_data,
&sense_entry,
&asc_entry);
if (sense_entry != NULL)
*sense_key_desc = sense_entry->desc;
else
*sense_key_desc = "Invalid Sense Key";
if (asc_entry != NULL)
*asc_desc = asc_entry->desc;
else if (asc >= 0x80 && asc <= 0xff)
*asc_desc = "Vendor Specific ASC";
else if (ascq >= 0x80 && ascq <= 0xff)
*asc_desc = "Vendor Specific ASCQ";
else
*asc_desc = "Reserved ASC/ASCQ pair";
}
/*
* Given sense and device type information, return the appropriate action.
* If we do not understand the specific error as identified by the ASC/ASCQ
* pair, fall back on the more generic actions derived from the sense key.
*/
scsi_sense_action
scsi_error_action(struct ccb_scsiio *csio, struct scsi_inquiry_data *inq_data,
uint32_t sense_flags)
{
const struct asc_table_entry *asc_entry;
const struct sense_key_table_entry *sense_entry;
int error_code, sense_key, asc, ascq;
scsi_sense_action action;
if (!scsi_extract_sense_ccb((union ccb *)csio,
&error_code, &sense_key, &asc, &ascq)) {
action = SS_RDEF;
} else if ((error_code == SSD_DEFERRED_ERROR)
|| (error_code == SSD_DESC_DEFERRED_ERROR)) {
/*
* XXX dufault@FreeBSD.org
* This error doesn't relate to the command associated
* with this request sense. A deferred error is an error
* for a command that has already returned GOOD status
* (see SCSI2 8.2.14.2).
*
* By my reading of that section, it looks like the current
* command has been cancelled, we should now clean things up
* (hopefully recovering any lost data) and then retry the
* current command. There are two easy choices, both wrong:
*
* 1. Drop through (like we had been doing), thus treating
* this as if the error were for the current command and
* return and stop the current command.
*
* 2. Issue a retry (like I made it do) thus hopefully
* recovering the current transfer, and ignoring the
* fact that we've dropped a command.
*
* These should probably be handled in a device specific
* sense handler or punted back up to a user mode daemon
*/
action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
} else {
fetchtableentries(sense_key, asc, ascq,
inq_data,
&sense_entry,
&asc_entry);
/*
* Override the 'No additional Sense' entry (0,0)
* with the error action of the sense key.
*/
if (asc_entry != NULL
&& (asc != 0 || ascq != 0))
action = asc_entry->action;
else if (sense_entry != NULL)
action = sense_entry->action;
else
action = SS_RETRY|SSQ_DECREMENT_COUNT|SSQ_PRINT_SENSE;
if (sense_key == SSD_KEY_RECOVERED_ERROR) {
/*
* The action succeeded but the device wants
* the user to know that some recovery action
* was required.
*/
action &= ~(SS_MASK|SSQ_MASK|SS_ERRMASK);
action |= SS_NOP|SSQ_PRINT_SENSE;
} else if (sense_key == SSD_KEY_ILLEGAL_REQUEST) {
if ((sense_flags & SF_QUIET_IR) != 0)
action &= ~SSQ_PRINT_SENSE;
} else if (sense_key == SSD_KEY_UNIT_ATTENTION) {
if ((sense_flags & SF_RETRY_UA) != 0
&& (action & SS_MASK) == SS_FAIL) {
action &= ~(SS_MASK|SSQ_MASK);
action |= SS_RETRY|SSQ_DECREMENT_COUNT|
SSQ_PRINT_SENSE;
}
action |= SSQ_UA;
}
}
if ((action & SS_MASK) >= SS_START &&
(sense_flags & SF_NO_RECOVERY)) {
action &= ~SS_MASK;
action |= SS_FAIL;
} else if ((action & SS_MASK) == SS_RETRY &&
(sense_flags & SF_NO_RETRY)) {
action &= ~SS_MASK;
action |= SS_FAIL;
}
if ((sense_flags & SF_PRINT_ALWAYS) != 0)
action |= SSQ_PRINT_SENSE;
else if ((sense_flags & SF_NO_PRINT) != 0)
action &= ~SSQ_PRINT_SENSE;
return (action);
}
char *
scsi_cdb_string(uint8_t *cdb_ptr, char *cdb_string, size_t len)
{
struct sbuf sb;
int error;
if (len == 0)
return ("");
sbuf_new(&sb, cdb_string, len, SBUF_FIXEDLEN);
scsi_cdb_sbuf(cdb_ptr, &sb);
/* ENOMEM just means that the fixed buffer is full, OK to ignore */
error = sbuf_finish(&sb);
if (error != 0 &&
#ifdef _KERNEL
error != ENOMEM)
#else
errno != ENOMEM)
#endif
return ("");
return(sbuf_data(&sb));
}
void
scsi_cdb_sbuf(uint8_t *cdb_ptr, struct sbuf *sb)
{
uint8_t cdb_len;
int i;
if (cdb_ptr == NULL)
return;
/*
* This is taken from the SCSI-3 draft spec.
* (T10/1157D revision 0.3)
* The top 3 bits of an opcode are the group code. The next 5 bits
* are the command code.
* Group 0: six byte commands
* Group 1: ten byte commands
* Group 2: ten byte commands
* Group 3: reserved
* Group 4: sixteen byte commands
* Group 5: twelve byte commands
* Group 6: vendor specific
* Group 7: vendor specific
*/
switch((*cdb_ptr >> 5) & 0x7) {
case 0:
cdb_len = 6;
break;
case 1:
case 2:
cdb_len = 10;
break;
case 3:
case 6:
case 7:
/* in this case, just print out the opcode */
cdb_len = 1;
break;
case 4:
cdb_len = 16;
break;
case 5:
cdb_len = 12;
break;
}
for (i = 0; i < cdb_len; i++)
sbuf_printf(sb, "%02hhx ", cdb_ptr[i]);
return;
}
const char *
scsi_status_string(struct ccb_scsiio *csio)
{
switch(csio->scsi_status) {
case SCSI_STATUS_OK:
return("OK");
case SCSI_STATUS_CHECK_COND:
return("Check Condition");
case SCSI_STATUS_BUSY:
return("Busy");
case SCSI_STATUS_INTERMED:
return("Intermediate");
case SCSI_STATUS_INTERMED_COND_MET:
return("Intermediate-Condition Met");
case SCSI_STATUS_RESERV_CONFLICT:
return("Reservation Conflict");
case SCSI_STATUS_CMD_TERMINATED:
return("Command Terminated");
case SCSI_STATUS_QUEUE_FULL:
return("Queue Full");
case SCSI_STATUS_ACA_ACTIVE:
return("ACA Active");
case SCSI_STATUS_TASK_ABORTED:
return("Task Aborted");
default: {
static char unkstr[64];
snprintf(unkstr, sizeof(unkstr), "Unknown %#x",
csio->scsi_status);
return(unkstr);
}
}
}
/*
* scsi_command_string() returns 0 for success and -1 for failure.
*/
#ifdef _KERNEL
int
scsi_command_string(struct ccb_scsiio *csio, struct sbuf *sb)
#else /* !_KERNEL */
int
scsi_command_string(struct cam_device *device, struct ccb_scsiio *csio,
struct sbuf *sb)
#endif /* _KERNEL/!_KERNEL */
{
struct scsi_inquiry_data *inq_data;
#ifdef _KERNEL
struct ccb_getdev *cgd;
#endif /* _KERNEL */
#ifdef _KERNEL
if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
return(-1);
/*
* Get the device information.
*/
xpt_setup_ccb(&cgd->ccb_h,
csio->ccb_h.path,
CAM_PRIORITY_NORMAL);
cgd->ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)cgd);
/*
* If the device is unconfigured, just pretend that it is a hard
* drive. scsi_op_desc() needs this.
*/
if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
cgd->inq_data.device = T_DIRECT;
inq_data = &cgd->inq_data;
#else /* !_KERNEL */
inq_data = &device->inq_data;
#endif /* _KERNEL/!_KERNEL */
sbuf_printf(sb, "%s. CDB: ",
scsi_op_desc(scsiio_cdb_ptr(csio)[0], inq_data));
scsi_cdb_sbuf(scsiio_cdb_ptr(csio), sb);
#ifdef _KERNEL
xpt_free_ccb((union ccb *)cgd);
#endif
return(0);
}
/*
* Iterate over sense descriptors. Each descriptor is passed into iter_func().
* If iter_func() returns 0, list traversal continues. If iter_func()
* returns non-zero, list traversal is stopped.
*/
void
scsi_desc_iterate(struct scsi_sense_data_desc *sense, u_int sense_len,
int (*iter_func)(struct scsi_sense_data_desc *sense,
u_int, struct scsi_sense_desc_header *,
void *), void *arg)
{
int cur_pos;
int desc_len;
/*
* First make sure the extra length field is present.
*/
if (SSD_DESC_IS_PRESENT(sense, sense_len, extra_len) == 0)
return;
/*
* The length of data actually returned may be different than the
* extra_len recorded in the structure.
*/
desc_len = sense_len -offsetof(struct scsi_sense_data_desc, sense_desc);
/*
* Limit this further by the extra length reported, and the maximum
* allowed extra length.
*/
desc_len = MIN(desc_len, MIN(sense->extra_len, SSD_EXTRA_MAX));
/*
* Subtract the size of the header from the descriptor length.
* This is to ensure that we have at least the header left, so we
* don't have to check that inside the loop. This can wind up
* being a negative value.
*/
desc_len -= sizeof(struct scsi_sense_desc_header);
for (cur_pos = 0; cur_pos < desc_len;) {
struct scsi_sense_desc_header *header;
header = (struct scsi_sense_desc_header *)
&sense->sense_desc[cur_pos];
/*
* Check to make sure we have the entire descriptor. We
* don't call iter_func() unless we do.
*
* Note that although cur_pos is at the beginning of the
* descriptor, desc_len already has the header length
* subtracted. So the comparison of the length in the
* header (which does not include the header itself) to
* desc_len - cur_pos is correct.
*/
if (header->length > (desc_len - cur_pos))
break;
if (iter_func(sense, sense_len, header, arg) != 0)
break;
cur_pos += sizeof(*header) + header->length;
}
}
struct scsi_find_desc_info {
uint8_t desc_type;
struct scsi_sense_desc_header *header;
};
static int
scsi_find_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
struct scsi_sense_desc_header *header, void *arg)
{
struct scsi_find_desc_info *desc_info;
desc_info = (struct scsi_find_desc_info *)arg;
if (header->desc_type == desc_info->desc_type) {
desc_info->header = header;
/* We found the descriptor, tell the iterator to stop. */
return (1);
} else
return (0);
}
/*
* Given a descriptor type, return a pointer to it if it is in the sense
* data and not truncated. Avoiding truncating sense data will simplify
* things significantly for the caller.
*/
uint8_t *
scsi_find_desc(struct scsi_sense_data_desc *sense, u_int sense_len,
uint8_t desc_type)
{
struct scsi_find_desc_info desc_info;
desc_info.desc_type = desc_type;
desc_info.header = NULL;
scsi_desc_iterate(sense, sense_len, scsi_find_desc_func, &desc_info);
return ((uint8_t *)desc_info.header);
}
/*
* Fill in SCSI descriptor sense data with the specified parameters.
*/
static void
scsi_set_sense_data_desc_va(struct scsi_sense_data *sense_data,
u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
int sense_key, int asc, int ascq, va_list ap)
{
struct scsi_sense_data_desc *sense;
scsi_sense_elem_type elem_type;
int space, len;
uint8_t *desc, *data;
memset(sense_data, 0, sizeof(*sense_data));
sense = (struct scsi_sense_data_desc *)sense_data;
if (current_error != 0)
sense->error_code = SSD_DESC_CURRENT_ERROR;
else
sense->error_code = SSD_DESC_DEFERRED_ERROR;
sense->sense_key = sense_key;
sense->add_sense_code = asc;
sense->add_sense_code_qual = ascq;
sense->flags = 0;
desc = &sense->sense_desc[0];
space = *sense_len - offsetof(struct scsi_sense_data_desc, sense_desc);
while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
SSD_ELEM_NONE) {
if (elem_type >= SSD_ELEM_MAX) {
printf("%s: invalid sense type %d\n", __func__,
elem_type);
break;
}
len = va_arg(ap, int);
data = va_arg(ap, uint8_t *);
switch (elem_type) {
case SSD_ELEM_SKIP:
break;
case SSD_ELEM_DESC:
if (space < len) {
sense->flags |= SSDD_SDAT_OVFL;
break;
}
bcopy(data, desc, len);
desc += len;
space -= len;
break;
case SSD_ELEM_SKS: {
struct scsi_sense_sks *sks = (void *)desc;
if (len > sizeof(sks->sense_key_spec))
break;
if (space < sizeof(*sks)) {
sense->flags |= SSDD_SDAT_OVFL;
break;
}
sks->desc_type = SSD_DESC_SKS;
sks->length = sizeof(*sks) -
(offsetof(struct scsi_sense_sks, length) + 1);
bcopy(data, &sks->sense_key_spec, len);
desc += sizeof(*sks);
space -= sizeof(*sks);
break;
}
case SSD_ELEM_COMMAND: {
struct scsi_sense_command *cmd = (void *)desc;
if (len > sizeof(cmd->command_info))
break;
if (space < sizeof(*cmd)) {
sense->flags |= SSDD_SDAT_OVFL;
break;
}
cmd->desc_type = SSD_DESC_COMMAND;
cmd->length = sizeof(*cmd) -
(offsetof(struct scsi_sense_command, length) + 1);
bcopy(data, &cmd->command_info[
sizeof(cmd->command_info) - len], len);
desc += sizeof(*cmd);
space -= sizeof(*cmd);
break;
}
case SSD_ELEM_INFO: {
struct scsi_sense_info *info = (void *)desc;
if (len > sizeof(info->info))
break;
if (space < sizeof(*info)) {
sense->flags |= SSDD_SDAT_OVFL;
break;
}
info->desc_type = SSD_DESC_INFO;
info->length = sizeof(*info) -
(offsetof(struct scsi_sense_info, length) + 1);
info->byte2 = SSD_INFO_VALID;
bcopy(data, &info->info[sizeof(info->info) - len], len);
desc += sizeof(*info);
space -= sizeof(*info);
break;
}
case SSD_ELEM_FRU: {
struct scsi_sense_fru *fru = (void *)desc;
if (len > sizeof(fru->fru))
break;
if (space < sizeof(*fru)) {
sense->flags |= SSDD_SDAT_OVFL;
break;
}
fru->desc_type = SSD_DESC_FRU;
fru->length = sizeof(*fru) -
(offsetof(struct scsi_sense_fru, length) + 1);
fru->fru = *data;
desc += sizeof(*fru);
space -= sizeof(*fru);
break;
}
case SSD_ELEM_STREAM: {
struct scsi_sense_stream *stream = (void *)desc;
if (len > sizeof(stream->byte3))
break;
if (space < sizeof(*stream)) {
sense->flags |= SSDD_SDAT_OVFL;
break;
}
stream->desc_type = SSD_DESC_STREAM;
stream->length = sizeof(*stream) -
(offsetof(struct scsi_sense_stream, length) + 1);
stream->byte3 = *data;
desc += sizeof(*stream);
space -= sizeof(*stream);
break;
}
default:
/*
* We shouldn't get here, but if we do, do nothing.
* We've already consumed the arguments above.
*/
break;
}
}
sense->extra_len = desc - &sense->sense_desc[0];
*sense_len = offsetof(struct scsi_sense_data_desc, extra_len) + 1 +
sense->extra_len;
}
/*
* Fill in SCSI fixed sense data with the specified parameters.
*/
static void
scsi_set_sense_data_fixed_va(struct scsi_sense_data *sense_data,
u_int *sense_len, scsi_sense_data_type sense_format, int current_error,
int sense_key, int asc, int ascq, va_list ap)
{
struct scsi_sense_data_fixed *sense;
scsi_sense_elem_type elem_type;
uint8_t *data;
int len;
memset(sense_data, 0, sizeof(*sense_data));
sense = (struct scsi_sense_data_fixed *)sense_data;
if (current_error != 0)
sense->error_code = SSD_CURRENT_ERROR;
else
sense->error_code = SSD_DEFERRED_ERROR;
sense->flags = sense_key & SSD_KEY;
sense->extra_len = 0;
if (*sense_len >= 13) {
sense->add_sense_code = asc;
sense->extra_len = MAX(sense->extra_len, 5);
} else
sense->flags |= SSD_SDAT_OVFL;
if (*sense_len >= 14) {
sense->add_sense_code_qual = ascq;
sense->extra_len = MAX(sense->extra_len, 6);
} else
sense->flags |= SSD_SDAT_OVFL;
while ((elem_type = va_arg(ap, scsi_sense_elem_type)) !=
SSD_ELEM_NONE) {
if (elem_type >= SSD_ELEM_MAX) {
printf("%s: invalid sense type %d\n", __func__,
elem_type);
break;
}
len = va_arg(ap, int);
data = va_arg(ap, uint8_t *);
switch (elem_type) {
case SSD_ELEM_SKIP:
break;
case SSD_ELEM_SKS:
if (len > sizeof(sense->sense_key_spec))
break;
if (*sense_len < 18) {
sense->flags |= SSD_SDAT_OVFL;
break;
}
bcopy(data, &sense->sense_key_spec[0], len);
sense->extra_len = MAX(sense->extra_len, 10);
break;
case SSD_ELEM_COMMAND:
if (*sense_len < 12) {
sense->flags |= SSD_SDAT_OVFL;
break;
}
if (len > sizeof(sense->cmd_spec_info)) {
data += len - sizeof(sense->cmd_spec_info);
len = sizeof(sense->cmd_spec_info);
}
bcopy(data, &sense->cmd_spec_info[
sizeof(sense->cmd_spec_info) - len], len);
sense->extra_len = MAX(sense->extra_len, 4);
break;
case SSD_ELEM_INFO:
/* Set VALID bit only if no overflow. */
sense->error_code |= SSD_ERRCODE_VALID;
while (len > sizeof(sense->info)) {
if (data[0] != 0)
sense->error_code &= ~SSD_ERRCODE_VALID;
data ++;
len --;
}
bcopy(data, &sense->info[sizeof(sense->info) - len], len);
break;
case SSD_ELEM_FRU:
if (*sense_len < 15) {
sense->flags |= SSD_SDAT_OVFL;
break;
}
sense->fru = *data;
sense->extra_len = MAX(sense->extra_len, 7);
break;
case SSD_ELEM_STREAM:
sense->flags |= *data &
(SSD_ILI | SSD_EOM | SSD_FILEMARK);
break;
default:
/*
* We can't handle that in fixed format. Skip it.
*/
break;
}
}
*sense_len = offsetof(struct scsi_sense_data_fixed, extra_len) + 1 +
sense->extra_len;
}
/*
* Fill in SCSI sense data with the specified parameters. This routine can
* fill in either fixed or descriptor type sense data.
*/
void
scsi_set_sense_data_va(struct scsi_sense_data *sense_data, u_int *sense_len,
scsi_sense_data_type sense_format, int current_error,
int sense_key, int asc, int ascq, va_list ap)
{
if (*sense_len > SSD_FULL_SIZE)
*sense_len = SSD_FULL_SIZE;
if (sense_format == SSD_TYPE_DESC)
scsi_set_sense_data_desc_va(sense_data, sense_len,
sense_format, current_error, sense_key, asc, ascq, ap);
else
scsi_set_sense_data_fixed_va(sense_data, sense_len,
sense_format, current_error, sense_key, asc, ascq, ap);
}
void
scsi_set_sense_data(struct scsi_sense_data *sense_data,
scsi_sense_data_type sense_format, int current_error,
int sense_key, int asc, int ascq, ...)
{
va_list ap;
u_int sense_len = SSD_FULL_SIZE;
va_start(ap, ascq);
scsi_set_sense_data_va(sense_data, &sense_len, sense_format,
current_error, sense_key, asc, ascq, ap);
va_end(ap);
}
void
scsi_set_sense_data_len(struct scsi_sense_data *sense_data, u_int *sense_len,
scsi_sense_data_type sense_format, int current_error,
int sense_key, int asc, int ascq, ...)
{
va_list ap;
va_start(ap, ascq);
scsi_set_sense_data_va(sense_data, sense_len, sense_format,
current_error, sense_key, asc, ascq, ap);
va_end(ap);
}
/*
* Get sense information for three similar sense data types.
*/
int
scsi_get_sense_info(struct scsi_sense_data *sense_data, u_int sense_len,
uint8_t info_type, uint64_t *info, int64_t *signed_info)
{
scsi_sense_data_type sense_type;
if (sense_len == 0)
goto bailout;
sense_type = scsi_sense_type(sense_data);
switch (sense_type) {
case SSD_TYPE_DESC: {
struct scsi_sense_data_desc *sense;
uint8_t *desc;
sense = (struct scsi_sense_data_desc *)sense_data;
desc = scsi_find_desc(sense, sense_len, info_type);
if (desc == NULL)
goto bailout;
switch (info_type) {
case SSD_DESC_INFO: {
struct scsi_sense_info *info_desc;
info_desc = (struct scsi_sense_info *)desc;
if ((info_desc->byte2 & SSD_INFO_VALID) == 0)
goto bailout;
*info = scsi_8btou64(info_desc->info);
if (signed_info != NULL)
*signed_info = *info;
break;
}
case SSD_DESC_COMMAND: {
struct scsi_sense_command *cmd_desc;
cmd_desc = (struct scsi_sense_command *)desc;
*info = scsi_8btou64(cmd_desc->command_info);
if (signed_info != NULL)
*signed_info = *info;
break;
}
case SSD_DESC_FRU: {
struct scsi_sense_fru *fru_desc;
fru_desc = (struct scsi_sense_fru *)desc;
if (fru_desc->fru == 0)
goto bailout;
*info = fru_desc->fru;
if (signed_info != NULL)
*signed_info = (int8_t)fru_desc->fru;
break;
}
default:
goto bailout;
break;
}
break;
}
case SSD_TYPE_FIXED: {
struct scsi_sense_data_fixed *sense;
sense = (struct scsi_sense_data_fixed *)sense_data;
switch (info_type) {
case SSD_DESC_INFO: {
uint32_t info_val;
if ((sense->error_code & SSD_ERRCODE_VALID) == 0)
goto bailout;
if (SSD_FIXED_IS_PRESENT(sense, sense_len, info) == 0)
goto bailout;
info_val = scsi_4btoul(sense->info);
*info = info_val;
if (signed_info != NULL)
*signed_info = (int32_t)info_val;
break;
}
case SSD_DESC_COMMAND: {
uint32_t cmd_val;
if ((SSD_FIXED_IS_PRESENT(sense, sense_len,
cmd_spec_info) == 0)
|| (SSD_FIXED_IS_FILLED(sense, cmd_spec_info) == 0))
goto bailout;
cmd_val = scsi_4btoul(sense->cmd_spec_info);
if (cmd_val == 0)
goto bailout;
*info = cmd_val;
if (signed_info != NULL)
*signed_info = (int32_t)cmd_val;
break;
}
case SSD_DESC_FRU:
if ((SSD_FIXED_IS_PRESENT(sense, sense_len, fru) == 0)
|| (SSD_FIXED_IS_FILLED(sense, fru) == 0))
goto bailout;
if (sense->fru == 0)
goto bailout;
*info = sense->fru;
if (signed_info != NULL)
*signed_info = (int8_t)sense->fru;
break;
default:
goto bailout;
break;
}
break;
}
default:
goto bailout;
break;
}
return (0);
bailout:
return (1);
}
int
scsi_get_sks(struct scsi_sense_data *sense_data, u_int sense_len, uint8_t *sks)
{
scsi_sense_data_type sense_type;
if (sense_len == 0)
goto bailout;
sense_type = scsi_sense_type(sense_data);
switch (sense_type) {
case SSD_TYPE_DESC: {
struct scsi_sense_data_desc *sense;
struct scsi_sense_sks *desc;
sense = (struct scsi_sense_data_desc *)sense_data;
desc = (struct scsi_sense_sks *)scsi_find_desc(sense, sense_len,
SSD_DESC_SKS);
if (desc == NULL)
goto bailout;
if ((desc->sense_key_spec[0] & SSD_SKS_VALID) == 0)
goto bailout;
bcopy(desc->sense_key_spec, sks, sizeof(desc->sense_key_spec));
break;
}
case SSD_TYPE_FIXED: {
struct scsi_sense_data_fixed *sense;
sense = (struct scsi_sense_data_fixed *)sense_data;
if ((SSD_FIXED_IS_PRESENT(sense, sense_len, sense_key_spec)== 0)
|| (SSD_FIXED_IS_FILLED(sense, sense_key_spec) == 0))
goto bailout;
if ((sense->sense_key_spec[0] & SSD_SCS_VALID) == 0)
goto bailout;
bcopy(sense->sense_key_spec, sks,sizeof(sense->sense_key_spec));
break;
}
default:
goto bailout;
break;
}
return (0);
bailout:
return (1);
}
/*
* Provide a common interface for fixed and descriptor sense to detect
* whether we have block-specific sense information. It is clear by the
* presence of the block descriptor in descriptor mode, but we have to
* infer from the inquiry data and ILI bit in fixed mode.
*/
int
scsi_get_block_info(struct scsi_sense_data *sense_data, u_int sense_len,
struct scsi_inquiry_data *inq_data, uint8_t *block_bits)
{
scsi_sense_data_type sense_type;
if (inq_data != NULL) {
switch (SID_TYPE(inq_data)) {
case T_DIRECT:
case T_RBC:
case T_ZBC_HM:
break;
default:
goto bailout;
break;
}
}
sense_type = scsi_sense_type(sense_data);
switch (sense_type) {
case SSD_TYPE_DESC: {
struct scsi_sense_data_desc *sense;
struct scsi_sense_block *block;
sense = (struct scsi_sense_data_desc *)sense_data;
block = (struct scsi_sense_block *)scsi_find_desc(sense,
sense_len, SSD_DESC_BLOCK);
if (block == NULL)
goto bailout;
*block_bits = block->byte3;
break;
}
case SSD_TYPE_FIXED: {
struct scsi_sense_data_fixed *sense;
sense = (struct scsi_sense_data_fixed *)sense_data;
if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
goto bailout;
*block_bits = sense->flags & SSD_ILI;
break;
}
default:
goto bailout;
break;
}
return (0);
bailout:
return (1);
}
int
scsi_get_stream_info(struct scsi_sense_data *sense_data, u_int sense_len,
struct scsi_inquiry_data *inq_data, uint8_t *stream_bits)
{
scsi_sense_data_type sense_type;
if (inq_data != NULL) {
switch (SID_TYPE(inq_data)) {
case T_SEQUENTIAL:
break;
default:
goto bailout;
break;
}
}
sense_type = scsi_sense_type(sense_data);
switch (sense_type) {
case SSD_TYPE_DESC: {
struct scsi_sense_data_desc *sense;
struct scsi_sense_stream *stream;
sense = (struct scsi_sense_data_desc *)sense_data;
stream = (struct scsi_sense_stream *)scsi_find_desc(sense,
sense_len, SSD_DESC_STREAM);
if (stream == NULL)
goto bailout;
*stream_bits = stream->byte3;
break;
}
case SSD_TYPE_FIXED: {
struct scsi_sense_data_fixed *sense;
sense = (struct scsi_sense_data_fixed *)sense_data;
if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags) == 0)
goto bailout;
*stream_bits = sense->flags & (SSD_ILI|SSD_EOM|SSD_FILEMARK);
break;
}
default:
goto bailout;
break;
}
return (0);
bailout:
return (1);
}
void
scsi_info_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data, uint64_t info)
{
sbuf_printf(sb, "Info: %#jx", info);
}
void
scsi_command_sbuf(struct sbuf *sb, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data, uint64_t csi)
{
sbuf_printf(sb, "Command Specific Info: %#jx", csi);
}
void
scsi_progress_sbuf(struct sbuf *sb, uint16_t progress)
{
sbuf_printf(sb, "Progress: %d%% (%d/%d) complete",
(progress * 100) / SSD_SKS_PROGRESS_DENOM,
progress, SSD_SKS_PROGRESS_DENOM);
}
/*
* Returns 1 for failure (i.e. SKS isn't valid) and 0 for success.
*/
int
scsi_sks_sbuf(struct sbuf *sb, int sense_key, uint8_t *sks)
{
switch (sense_key) {
case SSD_KEY_ILLEGAL_REQUEST: {
struct scsi_sense_sks_field *field;
int bad_command;
char tmpstr[40];
/*Field Pointer*/
field = (struct scsi_sense_sks_field *)sks;
if (field->byte0 & SSD_SKS_FIELD_CMD)
bad_command = 1;
else
bad_command = 0;
tmpstr[0] = '\0';
/* Bit pointer is valid */
if (field->byte0 & SSD_SKS_BPV)
snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
field->byte0 & SSD_SKS_BIT_VALUE);
sbuf_printf(sb, "%s byte %d %sis invalid",
bad_command ? "Command" : "Data",
scsi_2btoul(field->field), tmpstr);
break;
}
case SSD_KEY_UNIT_ATTENTION: {
struct scsi_sense_sks_overflow *overflow;
overflow = (struct scsi_sense_sks_overflow *)sks;
/*UA Condition Queue Overflow*/
sbuf_printf(sb, "Unit Attention Condition Queue %s",
(overflow->byte0 & SSD_SKS_OVERFLOW_SET) ?
"Overflowed" : "Did Not Overflow??");
break;
}
case SSD_KEY_RECOVERED_ERROR:
case SSD_KEY_HARDWARE_ERROR:
case SSD_KEY_MEDIUM_ERROR: {
struct scsi_sense_sks_retry *retry;
/*Actual Retry Count*/
retry = (struct scsi_sense_sks_retry *)sks;
sbuf_printf(sb, "Actual Retry Count: %d",
scsi_2btoul(retry->actual_retry_count));
break;
}
case SSD_KEY_NO_SENSE:
case SSD_KEY_NOT_READY: {
struct scsi_sense_sks_progress *progress;
int progress_val;
/*Progress Indication*/
progress = (struct scsi_sense_sks_progress *)sks;
progress_val = scsi_2btoul(progress->progress);
scsi_progress_sbuf(sb, progress_val);
break;
}
case SSD_KEY_COPY_ABORTED: {
struct scsi_sense_sks_segment *segment;
char tmpstr[40];
/*Segment Pointer*/
segment = (struct scsi_sense_sks_segment *)sks;
tmpstr[0] = '\0';
if (segment->byte0 & SSD_SKS_SEGMENT_BPV)
snprintf(tmpstr, sizeof(tmpstr), "bit %d ",
segment->byte0 & SSD_SKS_SEGMENT_BITPTR);
sbuf_printf(sb, "%s byte %d %sis invalid", (segment->byte0 &
SSD_SKS_SEGMENT_SD) ? "Segment" : "Data",
scsi_2btoul(segment->field), tmpstr);
break;
}
default:
sbuf_printf(sb, "Sense Key Specific: %#x,%#x", sks[0],
scsi_2btoul(&sks[1]));
break;
}
return (0);
}
void
scsi_fru_sbuf(struct sbuf *sb, uint64_t fru)
{
sbuf_printf(sb, "Field Replaceable Unit: %d", (int)fru);
}
void
scsi_stream_sbuf(struct sbuf *sb, uint8_t stream_bits)
{
int need_comma;
need_comma = 0;
/*
* XXX KDM this needs more descriptive decoding.
*/
sbuf_printf(sb, "Stream Command Sense Data: ");
if (stream_bits & SSD_DESC_STREAM_FM) {
sbuf_printf(sb, "Filemark");
need_comma = 1;
}
if (stream_bits & SSD_DESC_STREAM_EOM) {
sbuf_printf(sb, "%sEOM", (need_comma) ? "," : "");
need_comma = 1;
}
if (stream_bits & SSD_DESC_STREAM_ILI)
sbuf_printf(sb, "%sILI", (need_comma) ? "," : "");
}
void
scsi_block_sbuf(struct sbuf *sb, uint8_t block_bits)
{
sbuf_printf(sb, "Block Command Sense Data: ");
if (block_bits & SSD_DESC_BLOCK_ILI)
sbuf_printf(sb, "ILI");
}
void
scsi_sense_info_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
struct scsi_sense_info *info;
info = (struct scsi_sense_info *)header;
if ((info->byte2 & SSD_INFO_VALID) == 0)
return;
scsi_info_sbuf(sb, cdb, cdb_len, inq_data, scsi_8btou64(info->info));
}
void
scsi_sense_command_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
struct scsi_sense_command *command;
command = (struct scsi_sense_command *)header;
scsi_command_sbuf(sb, cdb, cdb_len, inq_data,
scsi_8btou64(command->command_info));
}
void
scsi_sense_sks_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
struct scsi_sense_sks *sks;
int error_code, sense_key, asc, ascq;
sks = (struct scsi_sense_sks *)header;
if ((sks->sense_key_spec[0] & SSD_SKS_VALID) == 0)
return;
scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
&asc, &ascq, /*show_errors*/ 1);
scsi_sks_sbuf(sb, sense_key, sks->sense_key_spec);
}
void
scsi_sense_fru_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
struct scsi_sense_fru *fru;
fru = (struct scsi_sense_fru *)header;
if (fru->fru == 0)
return;
scsi_fru_sbuf(sb, (uint64_t)fru->fru);
}
void
scsi_sense_stream_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
struct scsi_sense_stream *stream;
stream = (struct scsi_sense_stream *)header;
scsi_stream_sbuf(sb, stream->byte3);
}
void
scsi_sense_block_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
struct scsi_sense_block *block;
block = (struct scsi_sense_block *)header;
scsi_block_sbuf(sb, block->byte3);
}
void
scsi_sense_progress_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
struct scsi_sense_progress *progress;
const char *sense_key_desc;
const char *asc_desc;
int progress_val;
progress = (struct scsi_sense_progress *)header;
/*
* Get descriptions for the sense key, ASC, and ASCQ in the
* progress descriptor. These could be different than the values
* in the overall sense data.
*/
scsi_sense_desc(progress->sense_key, progress->add_sense_code,
progress->add_sense_code_qual, inq_data,
&sense_key_desc, &asc_desc);
progress_val = scsi_2btoul(progress->progress);
/*
* The progress indicator is for the operation described by the
* sense key, ASC, and ASCQ in the descriptor.
*/
sbuf_cat(sb, sense_key_desc);
sbuf_printf(sb, " asc:%x,%x (%s): ", progress->add_sense_code,
progress->add_sense_code_qual, asc_desc);
scsi_progress_sbuf(sb, progress_val);
}
void
scsi_sense_ata_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
struct scsi_sense_ata_ret_desc *res;
res = (struct scsi_sense_ata_ret_desc *)header;
sbuf_printf(sb, "ATA status: %02x (%s%s%s%s%s%s%s%s), ",
res->status,
(res->status & 0x80) ? "BSY " : "",
(res->status & 0x40) ? "DRDY " : "",
(res->status & 0x20) ? "DF " : "",
(res->status & 0x10) ? "SERV " : "",
(res->status & 0x08) ? "DRQ " : "",
(res->status & 0x04) ? "CORR " : "",
(res->status & 0x02) ? "IDX " : "",
(res->status & 0x01) ? "ERR" : "");
if (res->status & 1) {
sbuf_printf(sb, "error: %02x (%s%s%s%s%s%s%s%s), ",
res->error,
(res->error & 0x80) ? "ICRC " : "",
(res->error & 0x40) ? "UNC " : "",
(res->error & 0x20) ? "MC " : "",
(res->error & 0x10) ? "IDNF " : "",
(res->error & 0x08) ? "MCR " : "",
(res->error & 0x04) ? "ABRT " : "",
(res->error & 0x02) ? "NM " : "",
(res->error & 0x01) ? "ILI" : "");
}
if (res->flags & SSD_DESC_ATA_FLAG_EXTEND) {
sbuf_printf(sb, "count: %02x%02x, ",
res->count_15_8, res->count_7_0);
sbuf_printf(sb, "LBA: %02x%02x%02x%02x%02x%02x, ",
res->lba_47_40, res->lba_39_32, res->lba_31_24,
res->lba_23_16, res->lba_15_8, res->lba_7_0);
} else {
sbuf_printf(sb, "count: %02x, ", res->count_7_0);
sbuf_printf(sb, "LBA: %02x%02x%02x, ",
res->lba_23_16, res->lba_15_8, res->lba_7_0);
}
sbuf_printf(sb, "device: %02x, ", res->device);
}
void
scsi_sense_forwarded_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
struct scsi_sense_forwarded *forwarded;
const char *sense_key_desc;
const char *asc_desc;
int error_code, sense_key, asc, ascq;
forwarded = (struct scsi_sense_forwarded *)header;
scsi_extract_sense_len((struct scsi_sense_data *)forwarded->sense_data,
forwarded->length - 2, &error_code, &sense_key, &asc, &ascq, 1);
scsi_sense_desc(sense_key, asc, ascq, NULL, &sense_key_desc, &asc_desc);
sbuf_printf(sb, "Forwarded sense: %s asc:%x,%x (%s): ",
sense_key_desc, asc, ascq, asc_desc);
}
/*
* Generic sense descriptor printing routine. This is used when we have
* not yet implemented a specific printing routine for this descriptor.
*/
void
scsi_sense_generic_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
int i;
uint8_t *buf_ptr;
sbuf_printf(sb, "Descriptor %#x:", header->desc_type);
buf_ptr = (uint8_t *)&header[1];
for (i = 0; i < header->length; i++, buf_ptr++)
sbuf_printf(sb, " %02x", *buf_ptr);
}
/*
* Keep this list in numeric order. This speeds the array traversal.
*/
struct scsi_sense_desc_printer {
uint8_t desc_type;
/*
* The function arguments here are the superset of what is needed
* to print out various different descriptors. Command and
* information descriptors need inquiry data and command type.
* Sense key specific descriptors need the sense key.
*
* The sense, cdb, and inquiry data arguments may be NULL, but the
* information printed may not be fully decoded as a result.
*/
void (*print_func)(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header);
} scsi_sense_printers[] = {
{SSD_DESC_INFO, scsi_sense_info_sbuf},
{SSD_DESC_COMMAND, scsi_sense_command_sbuf},
{SSD_DESC_SKS, scsi_sense_sks_sbuf},
{SSD_DESC_FRU, scsi_sense_fru_sbuf},
{SSD_DESC_STREAM, scsi_sense_stream_sbuf},
{SSD_DESC_BLOCK, scsi_sense_block_sbuf},
{SSD_DESC_ATA, scsi_sense_ata_sbuf},
{SSD_DESC_PROGRESS, scsi_sense_progress_sbuf},
{SSD_DESC_FORWARDED, scsi_sense_forwarded_sbuf}
};
void
scsi_sense_desc_sbuf(struct sbuf *sb, struct scsi_sense_data *sense,
u_int sense_len, uint8_t *cdb, int cdb_len,
struct scsi_inquiry_data *inq_data,
struct scsi_sense_desc_header *header)
{
u_int i;
for (i = 0; i < nitems(scsi_sense_printers); i++) {
struct scsi_sense_desc_printer *printer;
printer = &scsi_sense_printers[i];
/*
* The list is sorted, so quit if we've passed our
* descriptor number.
*/
if (printer->desc_type > header->desc_type)
break;
if (printer->desc_type != header->desc_type)
continue;
printer->print_func(sb, sense, sense_len, cdb, cdb_len,
inq_data, header);
return;
}
/*
* No specific printing routine, so use the generic routine.
*/
scsi_sense_generic_sbuf(sb, sense, sense_len, cdb, cdb_len,
inq_data, header);
}
scsi_sense_data_type
scsi_sense_type(struct scsi_sense_data *sense_data)
{
switch (sense_data->error_code & SSD_ERRCODE) {
case SSD_DESC_CURRENT_ERROR:
case SSD_DESC_DEFERRED_ERROR:
return (SSD_TYPE_DESC);
break;
case SSD_CURRENT_ERROR:
case SSD_DEFERRED_ERROR:
return (SSD_TYPE_FIXED);
break;
default:
break;
}
return (SSD_TYPE_NONE);
}
struct scsi_print_sense_info {
struct sbuf *sb;
char *path_str;
uint8_t *cdb;
int cdb_len;
struct scsi_inquiry_data *inq_data;
};
static int
scsi_print_desc_func(struct scsi_sense_data_desc *sense, u_int sense_len,
struct scsi_sense_desc_header *header, void *arg)
{
struct scsi_print_sense_info *print_info;
print_info = (struct scsi_print_sense_info *)arg;
switch (header->desc_type) {
case SSD_DESC_INFO:
case SSD_DESC_FRU:
case SSD_DESC_COMMAND:
case SSD_DESC_SKS:
case SSD_DESC_BLOCK:
case SSD_DESC_STREAM:
/*
* We have already printed these descriptors, if they are
* present.
*/
break;
default: {
sbuf_printf(print_info->sb, "%s", print_info->path_str);
scsi_sense_desc_sbuf(print_info->sb,
(struct scsi_sense_data *)sense, sense_len,
print_info->cdb, print_info->cdb_len,
print_info->inq_data, header);
sbuf_printf(print_info->sb, "\n");
break;
}
}
/*
* Tell the iterator that we want to see more descriptors if they
* are present.
*/
return (0);
}
void
scsi_sense_only_sbuf(struct scsi_sense_data *sense, u_int sense_len,
struct sbuf *sb, char *path_str,
struct scsi_inquiry_data *inq_data, uint8_t *cdb,
int cdb_len)
{
int error_code, sense_key, asc, ascq;
sbuf_cat(sb, path_str);
scsi_extract_sense_len(sense, sense_len, &error_code, &sense_key,
&asc, &ascq, /*show_errors*/ 1);
sbuf_printf(sb, "SCSI sense: ");
switch (error_code) {
case SSD_DEFERRED_ERROR:
case SSD_DESC_DEFERRED_ERROR:
sbuf_printf(sb, "Deferred error: ");
/* FALLTHROUGH */
case SSD_CURRENT_ERROR:
case SSD_DESC_CURRENT_ERROR:
{
struct scsi_sense_data_desc *desc_sense;
struct scsi_print_sense_info print_info;
const char *sense_key_desc;
const char *asc_desc;
uint8_t sks[3];
uint64_t val;
uint8_t bits;
/*
* Get descriptions for the sense key, ASC, and ASCQ. If
* these aren't present in the sense data (i.e. the sense
* data isn't long enough), the -1 values that
* scsi_extract_sense_len() returns will yield default
* or error descriptions.
*/
scsi_sense_desc(sense_key, asc, ascq, inq_data,
&sense_key_desc, &asc_desc);
/*
* We first print the sense key and ASC/ASCQ.
*/
sbuf_cat(sb, sense_key_desc);
sbuf_printf(sb, " asc:%x,%x (%s)\n", asc, ascq, asc_desc);
/*
* Print any block or stream device-specific information.
*/
if (scsi_get_block_info(sense, sense_len, inq_data,
&bits) == 0 && bits != 0) {
sbuf_cat(sb, path_str);
scsi_block_sbuf(sb, bits);
sbuf_printf(sb, "\n");
} else if (scsi_get_stream_info(sense, sense_len, inq_data,
&bits) == 0 && bits != 0) {
sbuf_cat(sb, path_str);
scsi_stream_sbuf(sb, bits);
sbuf_printf(sb, "\n");
}
/*
* Print the info field.
*/
if (scsi_get_sense_info(sense, sense_len, SSD_DESC_INFO,
&val, NULL) == 0) {
sbuf_cat(sb, path_str);
scsi_info_sbuf(sb, cdb, cdb_len, inq_data, val);
sbuf_printf(sb, "\n");
}
/*
* Print the FRU.
*/
if (scsi_get_sense_info(sense, sense_len, SSD_DESC_FRU,
&val, NULL) == 0) {
sbuf_cat(sb, path_str);
scsi_fru_sbuf(sb, val);
sbuf_printf(sb, "\n");
}
/*
* Print any command-specific information.
*/
if (scsi_get_sense_info(sense, sense_len, SSD_DESC_COMMAND,
&val, NULL) == 0) {
sbuf_cat(sb, path_str);
scsi_command_sbuf(sb, cdb, cdb_len, inq_data, val);
sbuf_printf(sb, "\n");
}
/*
* Print out any sense-key-specific information.
*/
if (scsi_get_sks(sense, sense_len, sks) == 0) {
sbuf_cat(sb, path_str);
scsi_sks_sbuf(sb, sense_key, sks);
sbuf_printf(sb, "\n");
}
/*
* If this is fixed sense, we're done. If we have
* descriptor sense, we might have more information
* available.
*/
if (scsi_sense_type(sense) != SSD_TYPE_DESC)
break;
desc_sense = (struct scsi_sense_data_desc *)sense;
print_info.sb = sb;
print_info.path_str = path_str;
print_info.cdb = cdb;
print_info.cdb_len = cdb_len;
print_info.inq_data = inq_data;
/*
* Print any sense descriptors that we have not already printed.
*/
scsi_desc_iterate(desc_sense, sense_len, scsi_print_desc_func,
&print_info);
break;
}
case -1:
/*
* scsi_extract_sense_len() sets values to -1 if the
* show_errors flag is set and they aren't present in the
* sense data. This means that sense_len is 0.
*/
sbuf_printf(sb, "No sense data present\n");
break;
default: {
sbuf_printf(sb, "Error code 0x%x", error_code);
if (sense->error_code & SSD_ERRCODE_VALID) {
struct scsi_sense_data_fixed *fixed_sense;
fixed_sense = (struct scsi_sense_data_fixed *)sense;
if (SSD_FIXED_IS_PRESENT(fixed_sense, sense_len, info)){
uint32_t info;
info = scsi_4btoul(fixed_sense->info);
sbuf_printf(sb, " at block no. %d (decimal)",
info);
}
}
sbuf_printf(sb, "\n");
break;
}
}
}
/*
* scsi_sense_sbuf() returns 0 for success and -1 for failure.
*/
#ifdef _KERNEL
int
scsi_sense_sbuf(struct ccb_scsiio *csio, struct sbuf *sb,
scsi_sense_string_flags flags)
#else /* !_KERNEL */
int
scsi_sense_sbuf(struct cam_device *device, struct ccb_scsiio *csio,
struct sbuf *sb, scsi_sense_string_flags flags)
#endif /* _KERNEL/!_KERNEL */
{
struct scsi_sense_data *sense;
struct scsi_inquiry_data *inq_data;
#ifdef _KERNEL
struct ccb_getdev *cgd;
#endif /* _KERNEL */
char path_str[64];
#ifndef _KERNEL
if (device == NULL)
return(-1);
#endif /* !_KERNEL */
if ((csio == NULL) || (sb == NULL))
return(-1);
/*
* If the CDB is a physical address, we can't deal with it..
*/
if ((csio->ccb_h.flags & CAM_CDB_PHYS) != 0)
flags &= ~SSS_FLAG_PRINT_COMMAND;
#ifdef _KERNEL
xpt_path_string(csio->ccb_h.path, path_str, sizeof(path_str));
#else /* !_KERNEL */
cam_path_string(device, path_str, sizeof(path_str));
#endif /* _KERNEL/!_KERNEL */
#ifdef _KERNEL
if ((cgd = (struct ccb_getdev*)xpt_alloc_ccb_nowait()) == NULL)
return(-1);
/*
* Get the device information.
*/
xpt_setup_ccb(&cgd->ccb_h,
csio->ccb_h.path,
CAM_PRIORITY_NORMAL);
cgd->ccb_h.func_code = XPT_GDEV_TYPE;
xpt_action((union ccb *)cgd);
/*
* If the device is unconfigured, just pretend that it is a hard
* drive. scsi_op_desc() needs this.
*/
if (cgd->ccb_h.status == CAM_DEV_NOT_THERE)
cgd->inq_data.device = T_DIRECT;
inq_data = &cgd->inq_data;
#else /* !_KERNEL */
inq_data = &device->inq_data;
#endif /* _KERNEL/!_KERNEL */
sense = NULL;
if (flags & SSS_FLAG_PRINT_COMMAND) {
sbuf_cat(sb, path_str);
#ifdef _KERNEL
scsi_command_string(csio, sb);
#else /* !_KERNEL */
scsi_command_string(device, csio, sb);
#endif /* _KERNEL/!_KERNEL */
sbuf_printf(sb, "\n");
}
/*
* If the sense data is a physical pointer, forget it.
*/
if (csio->ccb_h.flags & CAM_SENSE_PTR) {
if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
#ifdef _KERNEL
xpt_free_ccb((union ccb*)cgd);
#endif /* _KERNEL/!_KERNEL */
return(-1);
} else {
/*
* bcopy the pointer to avoid unaligned access
* errors on finicky architectures. We don't
* ensure that the sense data is pointer aligned.
*/
bcopy((struct scsi_sense_data **)&csio->sense_data,
&sense, sizeof(struct scsi_sense_data *));
}
} else {
/*
* If the physical sense flag is set, but the sense pointer
* is not also set, we assume that the user is an idiot and
* return. (Well, okay, it could be that somehow, the
* entire csio is physical, but we would have probably core
* dumped on one of the bogus pointer deferences above
* already.)
*/
if (csio->ccb_h.flags & CAM_SENSE_PHYS) {
#ifdef _KERNEL
xpt_free_ccb((union ccb*)cgd);
#endif /* _KERNEL/!_KERNEL */
return(-1);
} else
sense = &csio->sense_data;
}
scsi_sense_only_sbuf(sense, csio->sense_len - csio->sense_resid, sb,
path_str, inq_data, scsiio_cdb_ptr(csio), csio->cdb_len);
#ifdef _KERNEL
xpt_free_ccb((union ccb*)cgd);
#endif /* _KERNEL/!_KERNEL */
return(0);
}
#ifdef _KERNEL
char *
scsi_sense_string(struct ccb_scsiio *csio, char *str, int str_len)
#else /* !_KERNEL */
char *
scsi_sense_string(struct cam_device *device, struct ccb_scsiio *csio,
char *str, int str_len)
#endif /* _KERNEL/!_KERNEL */
{
struct sbuf sb;
sbuf_new(&sb, str, str_len, 0);
#ifdef _KERNEL
scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
#else /* !_KERNEL */
scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
#endif /* _KERNEL/!_KERNEL */
sbuf_finish(&sb);
return(sbuf_data(&sb));
}
#ifdef _KERNEL
void
scsi_sense_print(struct ccb_scsiio *csio)
{
struct sbuf sb;
char str[512];
sbuf_new(&sb, str, sizeof(str), 0);
scsi_sense_sbuf(csio, &sb, SSS_FLAG_PRINT_COMMAND);
sbuf_finish(&sb);
sbuf_putbuf(&sb);
}
#else /* !_KERNEL */
void
scsi_sense_print(struct cam_device *device, struct ccb_scsiio *csio,
FILE *ofile)
{
struct sbuf sb;
char str[512];
if ((device == NULL) || (csio == NULL) || (ofile == NULL))
return;
sbuf_new(&sb, str, sizeof(str), 0);
scsi_sense_sbuf(device, csio, &sb, SSS_FLAG_PRINT_COMMAND);
sbuf_finish(&sb);
fprintf(ofile, "%s", sbuf_data(&sb));
}
#endif /* _KERNEL/!_KERNEL */
/*
* Extract basic sense information. This is backward-compatible with the
* previous implementation. For new implementations,
* scsi_extract_sense_len() is recommended.
*/
void
scsi_extract_sense(struct scsi_sense_data *sense_data, int *error_code,
int *sense_key, int *asc, int *ascq)
{
scsi_extract_sense_len(sense_data, sizeof(*sense_data), error_code,
sense_key, asc, ascq, /*show_errors*/ 0);
}
/*
* Extract basic sense information from SCSI I/O CCB structure.
*/
int
scsi_extract_sense_ccb(union ccb *ccb,
int *error_code, int *sense_key, int *asc, int *ascq)
{
struct scsi_sense_data *sense_data;
/* Make sure there are some sense data we can access. */
if (ccb->ccb_h.func_code != XPT_SCSI_IO ||
(ccb->ccb_h.status & CAM_STATUS_MASK) != CAM_SCSI_STATUS_ERROR ||
(ccb->csio.scsi_status != SCSI_STATUS_CHECK_COND) ||
(ccb->ccb_h.status & CAM_AUTOSNS_VALID) == 0 ||
(ccb->ccb_h.flags & CAM_SENSE_PHYS))
return (0);
if (ccb->ccb_h.flags & CAM_SENSE_PTR)
bcopy((struct scsi_sense_data **)&ccb->csio.sense_data,
&sense_data, sizeof(struct scsi_sense_data *));
else
sense_data = &ccb->csio.sense_data;
scsi_extract_sense_len(sense_data,
ccb->csio.sense_len - ccb->csio.sense_resid,
error_code, sense_key, asc, ascq, 1);
if (*error_code == -1)
return (0);
return (1);
}
/*
* Extract basic sense information. If show_errors is set, sense values
* will be set to -1 if they are not present.
*/
void
scsi_extract_sense_len(struct scsi_sense_data *sense_data, u_int sense_len,
int *error_code, int *sense_key, int *asc, int *ascq,
int show_errors)
{
/*
* If we have no length, we have no sense.
*/
if (sense_len == 0) {
if (show_errors == 0) {
*error_code = 0;
*sense_key = 0;
*asc = 0;
*ascq = 0;
} else {
*error_code = -1;
*sense_key = -1;
*asc = -1;
*ascq = -1;
}
return;
}
*error_code = sense_data->error_code & SSD_ERRCODE;
switch (*error_code) {
case SSD_DESC_CURRENT_ERROR:
case SSD_DESC_DEFERRED_ERROR: {
struct scsi_sense_data_desc *sense;
sense = (struct scsi_sense_data_desc *)sense_data;
if (SSD_DESC_IS_PRESENT(sense, sense_len, sense_key))
*sense_key = sense->sense_key & SSD_KEY;
else
*sense_key = (show_errors) ? -1 : 0;
if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code))
*asc = sense->add_sense_code;
else
*asc = (show_errors) ? -1 : 0;
if (SSD_DESC_IS_PRESENT(sense, sense_len, add_sense_code_qual))
*ascq = sense->add_sense_code_qual;
else
*ascq = (show_errors) ? -1 : 0;
break;
}
case SSD_CURRENT_ERROR:
case SSD_DEFERRED_ERROR:
default: {
struct scsi_sense_data_fixed *sense;
sense = (struct scsi_sense_data_fixed *)sense_data;
if (SSD_FIXED_IS_PRESENT(sense, sense_len, flags))
*sense_key = sense->flags & SSD_KEY;
else
*sense_key = (show_errors) ? -1 : 0;
if ((SSD_FIXED_IS_PRESENT(sense, sense_len, add_sense_code))
&& (SSD_FIXED_IS_FILLED(sense, add_sense_code)))
*asc = sense->add_sense_code;
else
*asc = (show_errors) ? -1 : 0;
if ((SSD_FIXED_IS_PRESENT(sense, sense_len,add_sense_code_qual))
&& (SSD_FIXED_IS_FILLED(sense, add_sense_code_qual)))
*ascq = sense->add_sense_code_qual;
else
*ascq = (show_errors) ? -1 : 0;
break;
}
}
}
int
scsi_get_sense_key(struct scsi_sense_data *sense_data, u_int sense_len,
int show_errors)
{
int error_code, sense_key, asc, ascq;
scsi_extract_sense_len(sense_data, sense_len, &error_code,
&sense_key, &asc, &ascq, show_errors);
return (sense_key);
}
int
scsi_get_asc(struct scsi_sense_data *sense_data, u_int sense_len,
int show_errors)
{
int error_code, sense_key, asc, ascq;
scsi_extract_sense_len(sense_data, sense_len, &error_code,
&sense_key, &asc, &ascq, show_errors);
return (asc);
}
int
scsi_get_ascq(struct scsi_sense_data *sense_data, u_int sense_len,
int show_errors)
{
int error_code, sense_key, asc, ascq;
scsi_extract_sense_len(sense_data, sense_len, &error_code,
&sense_key, &asc, &ascq, show_errors);
return (ascq);
}
/*
* This function currently requires at least 36 bytes, or
* SHORT_INQUIRY_LENGTH, worth of data to function properly. If this
* function needs more or less data in the future, another length should be
* defined in scsi_all.h to indicate the minimum amount of data necessary
* for this routine to function properly.
*/
void
scsi_print_inquiry_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
{
uint8_t type;
char *dtype, *qtype;
type = SID_TYPE(inq_data);
/*
* Figure out basic device type and qualifier.
*/
if (SID_QUAL_IS_VENDOR_UNIQUE(inq_data)) {
qtype = " (vendor-unique qualifier)";
} else {
switch (SID_QUAL(inq_data)) {
case SID_QUAL_LU_CONNECTED:
qtype = "";
break;
case SID_QUAL_LU_OFFLINE:
qtype = " (offline)";
break;
case SID_QUAL_RSVD:
qtype = " (reserved qualifier)";
break;
default:
case SID_QUAL_BAD_LU:
qtype = " (LUN not supported)";
break;
}
}
switch (type) {
case T_DIRECT:
dtype = "Direct Access";
break;
case T_SEQUENTIAL:
dtype = "Sequential Access";
break;
case T_PRINTER:
dtype = "Printer";
break;
case T_PROCESSOR:
dtype = "Processor";
break;
case T_WORM:
dtype = "WORM";
break;
case T_CDROM:
dtype = "CD-ROM";
break;
case T_SCANNER:
dtype = "Scanner";
break;
case T_OPTICAL:
dtype = "Optical";
break;
case T_CHANGER:
dtype = "Changer";
break;
case T_COMM:
dtype = "Communication";
break;
case T_STORARRAY:
dtype = "Storage Array";
break;
case T_ENCLOSURE:
dtype = "Enclosure Services";
break;
case T_RBC:
dtype = "Simplified Direct Access";
break;
case T_OCRW:
dtype = "Optical Card Read/Write";
break;
case T_OSD:
dtype = "Object-Based Storage";
break;
case T_ADC:
dtype = "Automation/Drive Interface";
break;
case T_ZBC_HM:
dtype = "Host Managed Zoned Block";
break;
case T_NODEVICE:
dtype = "Uninstalled";
break;
default:
dtype = "unknown";
break;
}
scsi_print_inquiry_short_sbuf(sb, inq_data);
sbuf_printf(sb, "%s %s ", SID_IS_REMOVABLE(inq_data) ? "Removable" : "Fixed", dtype);
if (SID_ANSI_REV(inq_data) == SCSI_REV_0)
sbuf_printf(sb, "SCSI ");
else if (SID_ANSI_REV(inq_data) <= SCSI_REV_SPC) {
sbuf_printf(sb, "SCSI-%d ", SID_ANSI_REV(inq_data));
} else {
sbuf_printf(sb, "SPC-%d SCSI ", SID_ANSI_REV(inq_data) - 2);
}
sbuf_printf(sb, "device%s\n", qtype);
}
void
scsi_print_inquiry(struct scsi_inquiry_data *inq_data)
{
struct sbuf sb;
char buffer[120];
sbuf_new(&sb, buffer, 120, SBUF_FIXEDLEN);
scsi_print_inquiry_sbuf(&sb, inq_data);
sbuf_finish(&sb);
sbuf_putbuf(&sb);
}
void
scsi_print_inquiry_short_sbuf(struct sbuf *sb, struct scsi_inquiry_data *inq_data)
{
sbuf_printf(sb, "<");
cam_strvis_sbuf(sb, inq_data->vendor, sizeof(inq_data->vendor), 0);
sbuf_printf(sb, " ");
cam_strvis_sbuf(sb, inq_data->product, sizeof(inq_data->product), 0);
sbuf_printf(sb, " ");
cam_strvis_sbuf(sb, inq_data->revision, sizeof(inq_data->revision), 0);
sbuf_printf(sb, "> ");
}
void
scsi_print_inquiry_short(struct scsi_inquiry_data *inq_data)
{
struct sbuf sb;
char buffer[84];
sbuf_new(&sb, buffer, 84, SBUF_FIXEDLEN);
scsi_print_inquiry_short_sbuf(&sb, inq_data);
sbuf_finish(&sb);
sbuf_putbuf(&sb);
}
/*
* Table of syncrates that don't follow the "divisible by 4"
* rule. This table will be expanded in future SCSI specs.
*/
static struct {
u_int period_factor;
u_int period; /* in 100ths of ns */
} scsi_syncrates[] = {
{ 0x08, 625 }, /* FAST-160 */
{ 0x09, 1250 }, /* FAST-80 */
{ 0x0a, 2500 }, /* FAST-40 40MHz */
{ 0x0b, 3030 }, /* FAST-40 33MHz */
{ 0x0c, 5000 } /* FAST-20 */
};
/*
* Return the frequency in kHz corresponding to the given
* sync period factor.
*/
u_int
scsi_calc_syncsrate(u_int period_factor)
{
u_int i;
u_int num_syncrates;
/*
* It's a bug if period is zero, but if it is anyway, don't
* die with a divide fault- instead return something which
* 'approximates' async
*/
if (period_factor == 0) {
return (3300);
}
num_syncrates = nitems(scsi_syncrates);
/* See if the period is in the "exception" table */
for (i = 0; i < num_syncrates; i++) {
if (period_factor == scsi_syncrates[i].period_factor) {
/* Period in kHz */
return (100000000 / scsi_syncrates[i].period);
}
}
/*
* Wasn't in the table, so use the standard
* 4 times conversion.
*/
return (10000000 / (period_factor * 4 * 10));
}
/*
* Return the SCSI sync parameter that corresponds to
* the passed in period in 10ths of ns.
*/
u_int
scsi_calc_syncparam(u_int period)
{
u_int i;
u_int num_syncrates;
if (period == 0)
return (~0); /* Async */
/* Adjust for exception table being in 100ths. */
period *= 10;
num_syncrates = nitems(scsi_syncrates);
/* See if the period is in the "exception" table */
for (i = 0; i < num_syncrates; i++) {
if (period <= scsi_syncrates[i].period) {
/* Period in 100ths of ns */
return (scsi_syncrates[i].period_factor);
}
}
/*
* Wasn't in the table, so use the standard
* 1/4 period in ns conversion.
*/
return (period/400);
}
int
scsi_devid_is_naa_ieee_reg(uint8_t *bufp)
{
struct scsi_vpd_id_descriptor *descr;
struct scsi_vpd_id_naa_basic *naa;
int n;
descr = (struct scsi_vpd_id_descriptor *)bufp;
naa = (struct scsi_vpd_id_naa_basic *)descr->identifier;
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
return 0;
if (descr->length < sizeof(struct scsi_vpd_id_naa_ieee_reg))
return 0;
n = naa->naa >> SVPD_ID_NAA_NAA_SHIFT;
if (n != SVPD_ID_NAA_LOCAL_REG && n != SVPD_ID_NAA_IEEE_REG)
return 0;
return 1;
}
int
scsi_devid_is_sas_target(uint8_t *bufp)
{
struct scsi_vpd_id_descriptor *descr;
descr = (struct scsi_vpd_id_descriptor *)bufp;
if (!scsi_devid_is_naa_ieee_reg(bufp))
return 0;
if ((descr->id_type & SVPD_ID_PIV) == 0) /* proto field reserved */
return 0;
if ((descr->proto_codeset >> SVPD_ID_PROTO_SHIFT) != SCSI_PROTO_SAS)
return 0;
return 1;
}
int
scsi_devid_is_lun_eui64(uint8_t *bufp)
{
struct scsi_vpd_id_descriptor *descr;
descr = (struct scsi_vpd_id_descriptor *)bufp;
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
return 0;
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_EUI64)
return 0;
return 1;
}
int
scsi_devid_is_lun_naa(uint8_t *bufp)
{
struct scsi_vpd_id_descriptor *descr;
descr = (struct scsi_vpd_id_descriptor *)bufp;
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
return 0;
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
return 0;
return 1;
}
int
scsi_devid_is_lun_t10(uint8_t *bufp)
{
struct scsi_vpd_id_descriptor *descr;
descr = (struct scsi_vpd_id_descriptor *)bufp;
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
return 0;
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_T10)
return 0;
return 1;
}
int
scsi_devid_is_lun_name(uint8_t *bufp)
{
struct scsi_vpd_id_descriptor *descr;
descr = (struct scsi_vpd_id_descriptor *)bufp;
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
return 0;
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_SCSI_NAME)
return 0;
return 1;
}
int
scsi_devid_is_lun_md5(uint8_t *bufp)
{
struct scsi_vpd_id_descriptor *descr;
descr = (struct scsi_vpd_id_descriptor *)bufp;
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
return 0;
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_MD5_LUN_ID)
return 0;
return 1;
}
int
scsi_devid_is_lun_uuid(uint8_t *bufp)
{
struct scsi_vpd_id_descriptor *descr;
descr = (struct scsi_vpd_id_descriptor *)bufp;
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_LUN)
return 0;
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_UUID)
return 0;
return 1;
}
int
scsi_devid_is_port_naa(uint8_t *bufp)
{
struct scsi_vpd_id_descriptor *descr;
descr = (struct scsi_vpd_id_descriptor *)bufp;
if ((descr->id_type & SVPD_ID_ASSOC_MASK) != SVPD_ID_ASSOC_PORT)
return 0;
if ((descr->id_type & SVPD_ID_TYPE_MASK) != SVPD_ID_TYPE_NAA)
return 0;
return 1;
}
struct scsi_vpd_id_descriptor *
scsi_get_devid_desc(struct scsi_vpd_id_descriptor *desc, uint32_t len,
scsi_devid_checkfn_t ck_fn)
{
uint8_t *desc_buf_end;
desc_buf_end = (uint8_t *)desc + len;
for (; desc->identifier <= desc_buf_end &&
desc->identifier + desc->length <= desc_buf_end;
desc = (struct scsi_vpd_id_descriptor *)(desc->identifier
+ desc->length)) {
if (ck_fn == NULL || ck_fn((uint8_t *)desc) != 0)
return (desc);
}
return (NULL);
}
struct scsi_vpd_id_descriptor *
scsi_get_devid(struct scsi_vpd_device_id *id, uint32_t page_len,
scsi_devid_checkfn_t ck_fn)
{
uint32_t len;
if (page_len < sizeof(*id))
return (NULL);
len = MIN(scsi_2btoul(id->length), page_len - sizeof(*id));
return (scsi_get_devid_desc((struct scsi_vpd_id_descriptor *)
id->desc_list, len, ck_fn));
}
int
scsi_transportid_sbuf(struct sbuf *sb, struct scsi_transportid_header *hdr,
uint32_t valid_len)
{
switch (hdr->format_protocol & SCSI_TRN_PROTO_MASK) {
case SCSI_PROTO_FC: {
struct scsi_transportid_fcp *fcp;
uint64_t n_port_name;
fcp = (struct scsi_transportid_fcp *)hdr;
n_port_name = scsi_8btou64(fcp->n_port_name);
sbuf_printf(sb, "FCP address: 0x%.16jx",(uintmax_t)n_port_name);
break;
}
case SCSI_PROTO_SPI: {
struct scsi_transportid_spi *spi;
spi = (struct scsi_transportid_spi *)hdr;
sbuf_printf(sb, "SPI address: %u,%u",
scsi_2btoul(spi->scsi_addr),
scsi_2btoul(spi->rel_trgt_port_id));
break;
}
case SCSI_PROTO_SSA:
/*
* XXX KDM there is no transport ID defined in SPC-4 for
* SSA.
*/
break;
case SCSI_PROTO_1394: {
struct scsi_transportid_1394 *sbp;
uint64_t eui64;
sbp = (struct scsi_transportid_1394 *)hdr;
eui64 = scsi_8btou64(sbp->eui64);
sbuf_printf(sb, "SBP address: 0x%.16jx", (uintmax_t)eui64);
break;
}
case SCSI_PROTO_RDMA: {
struct scsi_transportid_rdma *rdma;
unsigned int i;
rdma = (struct scsi_transportid_rdma *)hdr;
sbuf_printf(sb, "RDMA address: 0x");
for (i = 0; i < sizeof(rdma->initiator_port_id); i++)
sbuf_printf(sb, "%02x", rdma->initiator_port_id[i]);
break;
}
case SCSI_PROTO_ISCSI: {
uint32_t add_len, i;
uint8_t *iscsi_name = NULL;
int nul_found = 0;
sbuf_printf(sb, "iSCSI address: ");
if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
SCSI_TRN_ISCSI_FORMAT_DEVICE) {
struct scsi_transportid_iscsi_device *dev;
dev = (struct scsi_transportid_iscsi_device *)hdr;
/*
* Verify how much additional data we really have.
*/
add_len = scsi_2btoul(dev->additional_length);
add_len = MIN(add_len, valid_len -
__offsetof(struct scsi_transportid_iscsi_device,
iscsi_name));
iscsi_name = &dev->iscsi_name[0];
} else if ((hdr->format_protocol & SCSI_TRN_FORMAT_MASK) ==
SCSI_TRN_ISCSI_FORMAT_PORT) {
struct scsi_transportid_iscsi_port *port;
port = (struct scsi_transportid_iscsi_port *)hdr;
add_len = scsi_2btoul(port->additional_length);
add_len = MIN(add_len, valid_len -
__offsetof(struct scsi_transportid_iscsi_port,
iscsi_name));
iscsi_name = &port->iscsi_name[0];
} else {
sbuf_printf(sb, "unknown format %x",
(hdr->format_protocol &
SCSI_TRN_FORMAT_MASK) >>
SCSI_TRN_FORMAT_SHIFT);
break;
}
if (add_len == 0) {
sbuf_printf(sb, "not enough data");
break;
}
/*
* This is supposed to be a NUL-terminated ASCII
* string, but you never know. So we're going to
* check. We need to do this because there is no
* sbuf equivalent of strncat().
*/
for (i = 0; i < add_len; i++) {
if (iscsi_name[i] == '\0') {
nul_found = 1;
break;
}
}
/*
* If there is a NUL in the name, we can just use
* sbuf_cat(). Otherwise we need to use sbuf_bcat().
*/
if (nul_found != 0)
sbuf_cat(sb, iscsi_name);
else
sbuf_bcat(sb, iscsi_name, add_len);
break;
}
case SCSI_PROTO_SAS: {
struct scsi_transportid_sas *sas;
uint64_t sas_addr;
sas = (struct scsi_transportid_sas *)hdr;
sas_addr = scsi_8btou64(sas->sas_address);
sbuf_printf(sb, "SAS address: 0x%.16jx", (uintmax_t)sas_addr);
break;
}
case SCSI_PROTO_ADITP:
case SCSI_PROTO_ATA:
case SCSI_PROTO_UAS:
/*
* No Transport ID format for ADI, ATA or USB is defined in
* SPC-4.
*/
sbuf_printf(sb, "No known Transport ID format for protocol "
"%#x", hdr->format_protocol & SCSI_TRN_PROTO_MASK);
break;
case SCSI_PROTO_SOP: {
struct scsi_transportid_sop *sop;
struct scsi_sop_routing_id_norm *rid;
sop = (struct scsi_transportid_sop *)hdr;
rid = (struct scsi_sop_routing_id_norm *)sop->routing_id;
/*
* Note that there is no alternate format specified in SPC-4
* for the PCIe routing ID, so we don't really have a way
* to know whether the second byte of the routing ID is
* a device and function or just a function. So we just
* assume bus,device,function.
*/
sbuf_printf(sb, "SOP Routing ID: %u,%u,%u",
rid->bus, rid->devfunc >> SCSI_TRN_SOP_DEV_SHIFT,
rid->devfunc & SCSI_TRN_SOP_FUNC_NORM_MAX);
break;
}
case SCSI_PROTO_NONE:
default:
sbuf_printf(sb, "Unknown protocol %#x",
hdr->format_protocol & SCSI_TRN_PROTO_MASK);
break;
}
return (0);
}
struct scsi_nv scsi_proto_map[] = {
{ "fcp", SCSI_PROTO_FC },
{ "spi", SCSI_PROTO_SPI },
{ "ssa", SCSI_PROTO_SSA },
{ "sbp", SCSI_PROTO_1394 },
{ "1394", SCSI_PROTO_1394 },
{ "srp", SCSI_PROTO_RDMA },
{ "rdma", SCSI_PROTO_RDMA },
{ "iscsi", SCSI_PROTO_ISCSI },
{ "iqn", SCSI_PROTO_ISCSI },
{ "sas", SCSI_PROTO_SAS },
{ "aditp", SCSI_PROTO_ADITP },
{ "ata", SCSI_PROTO_ATA },
{ "uas", SCSI_PROTO_UAS },
{ "usb", SCSI_PROTO_UAS },
{ "sop", SCSI_PROTO_SOP }
};
const char *
scsi_nv_to_str(struct scsi_nv *table, int num_table_entries, uint64_t value)
{
int i;
for (i = 0; i < num_table_entries; i++) {
if (table[i].value == value)
return (table[i].name);
}
return (NULL);
}
/*
* Given a name/value table, find a value matching the given name.
* Return values:
* SCSI_NV_FOUND - match found
* SCSI_NV_AMBIGUOUS - more than one match, none of them exact
* SCSI_NV_NOT_FOUND - no match found
*/
scsi_nv_status
scsi_get_nv(struct scsi_nv *table, int num_table_entries,
char *name, int *table_entry, scsi_nv_flags flags)
{
int i, num_matches = 0;
for (i = 0; i < num_table_entries; i++) {
size_t table_len, name_len;
table_len = strlen(table[i].name);
name_len = strlen(name);
if ((((flags & SCSI_NV_FLAG_IG_CASE) != 0)
&& (strncasecmp(table[i].name, name, name_len) == 0))
|| (((flags & SCSI_NV_FLAG_IG_CASE) == 0)
&& (strncmp(table[i].name, name, name_len) == 0))) {
*table_entry = i;
/*
* Check for an exact match. If we have the same
* number of characters in the table as the argument,
* and we already know they're the same, we have
* an exact match.
*/
if (table_len == name_len)
return (SCSI_NV_FOUND);
/*
* Otherwise, bump up the number of matches. We'll
* see later how many we have.
*/
num_matches++;
}
}
if (num_matches > 1)
return (SCSI_NV_AMBIGUOUS);
else if (num_matches == 1)
return (SCSI_NV_FOUND);
else
return (SCSI_NV_NOT_FOUND);
}
/*
* Parse transport IDs for Fibre Channel, 1394 and SAS. Since these are
* all 64-bit numbers, the code is similar.
*/
int
scsi_parse_transportid_64bit(int proto_id, char *id_str,
struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len)
{
uint64_t value;
char *endptr;
int retval;
size_t alloc_size;
retval = 0;
value = strtouq(id_str, &endptr, 0);
if (*endptr != '\0') {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: error "
"parsing ID %s, 64-bit number required",
__func__, id_str);
}
retval = 1;
goto bailout;
}
switch (proto_id) {
case SCSI_PROTO_FC:
alloc_size = sizeof(struct scsi_transportid_fcp);
break;
case SCSI_PROTO_1394:
alloc_size = sizeof(struct scsi_transportid_1394);
break;
case SCSI_PROTO_SAS:
alloc_size = sizeof(struct scsi_transportid_sas);
break;
default:
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: unsupported "
"protocol %d", __func__, proto_id);
}
retval = 1;
goto bailout;
break; /* NOTREACHED */
}
#ifdef _KERNEL
*hdr = malloc(alloc_size, type, flags);
#else /* _KERNEL */
*hdr = malloc(alloc_size);
#endif /*_KERNEL */
if (*hdr == NULL) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: unable to "
"allocate %zu bytes", __func__, alloc_size);
}
retval = 1;
goto bailout;
}
*alloc_len = alloc_size;
bzero(*hdr, alloc_size);
switch (proto_id) {
case SCSI_PROTO_FC: {
struct scsi_transportid_fcp *fcp;
fcp = (struct scsi_transportid_fcp *)(*hdr);
fcp->format_protocol = SCSI_PROTO_FC |
SCSI_TRN_FCP_FORMAT_DEFAULT;
scsi_u64to8b(value, fcp->n_port_name);
break;
}
case SCSI_PROTO_1394: {
struct scsi_transportid_1394 *sbp;
sbp = (struct scsi_transportid_1394 *)(*hdr);
sbp->format_protocol = SCSI_PROTO_1394 |
SCSI_TRN_1394_FORMAT_DEFAULT;
scsi_u64to8b(value, sbp->eui64);
break;
}
case SCSI_PROTO_SAS: {
struct scsi_transportid_sas *sas;
sas = (struct scsi_transportid_sas *)(*hdr);
sas->format_protocol = SCSI_PROTO_SAS |
SCSI_TRN_SAS_FORMAT_DEFAULT;
scsi_u64to8b(value, sas->sas_address);
break;
}
default:
break;
}
bailout:
return (retval);
}
/*
* Parse a SPI (Parallel SCSI) address of the form: id,rel_tgt_port
*/
int
scsi_parse_transportid_spi(char *id_str, struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len)
{
unsigned long scsi_addr, target_port;
struct scsi_transportid_spi *spi;
char *tmpstr, *endptr;
int retval;
retval = 0;
tmpstr = strsep(&id_str, ",");
if (tmpstr == NULL) {
if (error_str != NULL) {
snprintf(error_str, error_str_len,
"%s: no ID found", __func__);
}
retval = 1;
goto bailout;
}
scsi_addr = strtoul(tmpstr, &endptr, 0);
if (*endptr != '\0') {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: error "
"parsing SCSI ID %s, number required",
__func__, tmpstr);
}
retval = 1;
goto bailout;
}
if (id_str == NULL) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: no relative "
"target port found", __func__);
}
retval = 1;
goto bailout;
}
target_port = strtoul(id_str, &endptr, 0);
if (*endptr != '\0') {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: error "
"parsing relative target port %s, number "
"required", __func__, id_str);
}
retval = 1;
goto bailout;
}
#ifdef _KERNEL
spi = malloc(sizeof(*spi), type, flags);
#else
spi = malloc(sizeof(*spi));
#endif
if (spi == NULL) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: unable to "
"allocate %zu bytes", __func__,
sizeof(*spi));
}
retval = 1;
goto bailout;
}
*alloc_len = sizeof(*spi);
bzero(spi, sizeof(*spi));
spi->format_protocol = SCSI_PROTO_SPI | SCSI_TRN_SPI_FORMAT_DEFAULT;
scsi_ulto2b(scsi_addr, spi->scsi_addr);
scsi_ulto2b(target_port, spi->rel_trgt_port_id);
*hdr = (struct scsi_transportid_header *)spi;
bailout:
return (retval);
}
/*
* Parse an RDMA/SRP Initiator Port ID string. This is 32 hexadecimal digits,
* optionally prefixed by "0x" or "0X".
*/
int
scsi_parse_transportid_rdma(char *id_str, struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len)
{
struct scsi_transportid_rdma *rdma;
int retval;
size_t id_len, rdma_id_size;
uint8_t rdma_id[SCSI_TRN_RDMA_PORT_LEN];
char *tmpstr;
unsigned int i, j;
retval = 0;
id_len = strlen(id_str);
rdma_id_size = SCSI_TRN_RDMA_PORT_LEN;
/*
* Check the size. It needs to be either 32 or 34 characters long.
*/
if ((id_len != (rdma_id_size * 2))
&& (id_len != ((rdma_id_size * 2) + 2))) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: RDMA ID "
"must be 32 hex digits (0x prefix "
"optional), only %zu seen", __func__, id_len);
}
retval = 1;
goto bailout;
}
tmpstr = id_str;
/*
* If the user gave us 34 characters, the string needs to start
* with '0x'.
*/
if (id_len == ((rdma_id_size * 2) + 2)) {
if ((tmpstr[0] == '0')
&& ((tmpstr[1] == 'x') || (tmpstr[1] == 'X'))) {
tmpstr += 2;
} else {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: RDMA "
"ID prefix, if used, must be \"0x\", "
"got %s", __func__, tmpstr);
}
retval = 1;
goto bailout;
}
}
bzero(rdma_id, sizeof(rdma_id));
/*
* Convert ASCII hex into binary bytes. There is no standard
* 128-bit integer type, and so no strtou128t() routine to convert
* from hex into a large integer. In the end, we're not going to
* an integer, but rather to a byte array, so that and the fact
* that we require the user to give us 32 hex digits simplifies the
* logic.
*/
for (i = 0; i < (rdma_id_size * 2); i++) {
int cur_shift;
unsigned char c;
/* Increment the byte array one for every 2 hex digits */
j = i >> 1;
/*
* The first digit in every pair is the most significant
* 4 bits. The second is the least significant 4 bits.
*/
if ((i % 2) == 0)
cur_shift = 4;
else
cur_shift = 0;
c = tmpstr[i];
/* Convert the ASCII hex character into a number */
if (isdigit(c))
c -= '0';
else if (isalpha(c))
c -= isupper(c) ? 'A' - 10 : 'a' - 10;
else {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: "
"RDMA ID must be hex digits, got "
"invalid character %c", __func__,
tmpstr[i]);
}
retval = 1;
goto bailout;
}
/*
* The converted number can't be less than 0; the type is
* unsigned, and the subtraction logic will not give us
* a negative number. So we only need to make sure that
* the value is not greater than 0xf. (i.e. make sure the
* user didn't give us a value like "0x12jklmno").
*/
if (c > 0xf) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: "
"RDMA ID must be hex digits, got "
"invalid character %c", __func__,
tmpstr[i]);
}
retval = 1;
goto bailout;
}
rdma_id[j] |= c << cur_shift;
}
#ifdef _KERNEL
rdma = malloc(sizeof(*rdma), type, flags);
#else
rdma = malloc(sizeof(*rdma));
#endif
if (rdma == NULL) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: unable to "
"allocate %zu bytes", __func__,
sizeof(*rdma));
}
retval = 1;
goto bailout;
}
*alloc_len = sizeof(*rdma);
bzero(rdma, *alloc_len);
rdma->format_protocol = SCSI_PROTO_RDMA | SCSI_TRN_RDMA_FORMAT_DEFAULT;
bcopy(rdma_id, rdma->initiator_port_id, SCSI_TRN_RDMA_PORT_LEN);
*hdr = (struct scsi_transportid_header *)rdma;
bailout:
return (retval);
}
/*
* Parse an iSCSI name. The format is either just the name:
*
* iqn.2012-06.com.example:target0
* or the name, separator and initiator session ID:
*
* iqn.2012-06.com.example:target0,i,0x123
*
* The separator format is exact.
*/
int
scsi_parse_transportid_iscsi(char *id_str, struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len)
{
size_t id_len, sep_len, id_size, name_len;
int retval;
unsigned int i, sep_pos, sep_found;
const char *sep_template = ",i,0x";
const char *iqn_prefix = "iqn.";
struct scsi_transportid_iscsi_device *iscsi;
retval = 0;
sep_found = 0;
id_len = strlen(id_str);
sep_len = strlen(sep_template);
/*
* The separator is defined as exactly ',i,0x'. Any other commas,
* or any other form, is an error. So look for a comma, and once
* we find that, the next few characters must match the separator
* exactly. Once we get through the separator, there should be at
* least one character.
*/
for (i = 0, sep_pos = 0; i < id_len; i++) {
if (sep_pos == 0) {
if (id_str[i] == sep_template[sep_pos])
sep_pos++;
continue;
}
if (sep_pos < sep_len) {
if (id_str[i] == sep_template[sep_pos]) {
sep_pos++;
continue;
}
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: "
"invalid separator in iSCSI name "
"\"%s\"",
__func__, id_str);
}
retval = 1;
goto bailout;
} else {
sep_found = 1;
break;
}
}
/*
* Check to see whether we have a separator but no digits after it.
*/
if ((sep_pos != 0)
&& (sep_found == 0)) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: no digits "
"found after separator in iSCSI name \"%s\"",
__func__, id_str);
}
retval = 1;
goto bailout;
}
/*
* The incoming ID string has the "iqn." prefix stripped off. We
* need enough space for the base structure (the structures are the
* same for the two iSCSI forms), the prefix, the ID string and a
* terminating NUL.
*/
id_size = sizeof(*iscsi) + strlen(iqn_prefix) + id_len + 1;
#ifdef _KERNEL
iscsi = malloc(id_size, type, flags);
#else
iscsi = malloc(id_size);
#endif
if (iscsi == NULL) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: unable to "
"allocate %zu bytes", __func__, id_size);
}
retval = 1;
goto bailout;
}
*alloc_len = id_size;
bzero(iscsi, id_size);
iscsi->format_protocol = SCSI_PROTO_ISCSI;
if (sep_found == 0)
iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_DEVICE;
else
iscsi->format_protocol |= SCSI_TRN_ISCSI_FORMAT_PORT;
name_len = id_size - sizeof(*iscsi);
scsi_ulto2b(name_len, iscsi->additional_length);
snprintf(iscsi->iscsi_name, name_len, "%s%s", iqn_prefix, id_str);
*hdr = (struct scsi_transportid_header *)iscsi;
bailout:
return (retval);
}
/*
* Parse a SCSI over PCIe (SOP) identifier. The Routing ID can either be
* of the form 'bus,device,function' or 'bus,function'.
*/
int
scsi_parse_transportid_sop(char *id_str, struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len)
{
struct scsi_transportid_sop *sop;
unsigned long bus, device, function;
char *tmpstr, *endptr;
int retval, device_spec;
retval = 0;
device_spec = 0;
device = 0;
tmpstr = strsep(&id_str, ",");
if ((tmpstr == NULL)
|| (*tmpstr == '\0')) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: no ID found",
__func__);
}
retval = 1;
goto bailout;
}
bus = strtoul(tmpstr, &endptr, 0);
if (*endptr != '\0') {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: error "
"parsing PCIe bus %s, number required",
__func__, tmpstr);
}
retval = 1;
goto bailout;
}
if ((id_str == NULL)
|| (*id_str == '\0')) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: no PCIe "
"device or function found", __func__);
}
retval = 1;
goto bailout;
}
tmpstr = strsep(&id_str, ",");
function = strtoul(tmpstr, &endptr, 0);
if (*endptr != '\0') {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: error "
"parsing PCIe device/function %s, number "
"required", __func__, tmpstr);
}
retval = 1;
goto bailout;
}
/*
* Check to see whether the user specified a third value. If so,
* the second is the device.
*/
if (id_str != NULL) {
if (*id_str == '\0') {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: "
"no PCIe function found", __func__);
}
retval = 1;
goto bailout;
}
device = function;
device_spec = 1;
function = strtoul(id_str, &endptr, 0);
if (*endptr != '\0') {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: "
"error parsing PCIe function %s, "
"number required", __func__, id_str);
}
retval = 1;
goto bailout;
}
}
if (bus > SCSI_TRN_SOP_BUS_MAX) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: bus value "
"%lu greater than maximum %u", __func__,
bus, SCSI_TRN_SOP_BUS_MAX);
}
retval = 1;
goto bailout;
}
if ((device_spec != 0)
&& (device > SCSI_TRN_SOP_DEV_MASK)) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: device value "
"%lu greater than maximum %u", __func__,
device, SCSI_TRN_SOP_DEV_MAX);
}
retval = 1;
goto bailout;
}
if (((device_spec != 0)
&& (function > SCSI_TRN_SOP_FUNC_NORM_MAX))
|| ((device_spec == 0)
&& (function > SCSI_TRN_SOP_FUNC_ALT_MAX))) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: function value "
"%lu greater than maximum %u", __func__,
function, (device_spec == 0) ?
SCSI_TRN_SOP_FUNC_ALT_MAX :
SCSI_TRN_SOP_FUNC_NORM_MAX);
}
retval = 1;
goto bailout;
}
#ifdef _KERNEL
sop = malloc(sizeof(*sop), type, flags);
#else
sop = malloc(sizeof(*sop));
#endif
if (sop == NULL) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: unable to "
"allocate %zu bytes", __func__, sizeof(*sop));
}
retval = 1;
goto bailout;
}
*alloc_len = sizeof(*sop);
bzero(sop, sizeof(*sop));
sop->format_protocol = SCSI_PROTO_SOP | SCSI_TRN_SOP_FORMAT_DEFAULT;
if (device_spec != 0) {
struct scsi_sop_routing_id_norm rid;
rid.bus = bus;
rid.devfunc = (device << SCSI_TRN_SOP_DEV_SHIFT) | function;
bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
sizeof(sop->routing_id)));
} else {
struct scsi_sop_routing_id_alt rid;
rid.bus = bus;
rid.function = function;
bcopy(&rid, sop->routing_id, MIN(sizeof(rid),
sizeof(sop->routing_id)));
}
*hdr = (struct scsi_transportid_header *)sop;
bailout:
return (retval);
}
/*
* transportid_str: NUL-terminated string with format: protcol,id
* The ID is protocol specific.
* hdr: Storage will be allocated for the transport ID.
* alloc_len: The amount of memory allocated is returned here.
* type: Malloc bucket (kernel only).
* flags: Malloc flags (kernel only).
* error_str: If non-NULL, it will contain error information (without
* a terminating newline) if an error is returned.
* error_str_len: Allocated length of the error string.
*
* Returns 0 for success, non-zero for failure.
*/
int
scsi_parse_transportid(char *transportid_str,
struct scsi_transportid_header **hdr,
unsigned int *alloc_len,
#ifdef _KERNEL
struct malloc_type *type, int flags,
#endif
char *error_str, int error_str_len)
{
char *tmpstr;
scsi_nv_status status;
u_int num_proto_entries;
int retval, table_entry;
retval = 0;
table_entry = 0;
/*
* We do allow a period as well as a comma to separate the protocol
* from the ID string. This is to accommodate iSCSI names, which
* start with "iqn.".
*/
tmpstr = strsep(&transportid_str, ",.");
if (tmpstr == NULL) {
if (error_str != NULL) {
snprintf(error_str, error_str_len,
"%s: transportid_str is NULL", __func__);
}
retval = 1;
goto bailout;
}
num_proto_entries = nitems(scsi_proto_map);
status = scsi_get_nv(scsi_proto_map, num_proto_entries, tmpstr,
&table_entry, SCSI_NV_FLAG_IG_CASE);
if (status != SCSI_NV_FOUND) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: %s protocol "
"name %s", __func__,
(status == SCSI_NV_AMBIGUOUS) ? "ambiguous" :
"invalid", tmpstr);
}
retval = 1;
goto bailout;
}
switch (scsi_proto_map[table_entry].value) {
case SCSI_PROTO_FC:
case SCSI_PROTO_1394:
case SCSI_PROTO_SAS:
retval = scsi_parse_transportid_64bit(
scsi_proto_map[table_entry].value, transportid_str, hdr,
alloc_len,
#ifdef _KERNEL
type, flags,
#endif
error_str, error_str_len);
break;
case SCSI_PROTO_SPI:
retval = scsi_parse_transportid_spi(transportid_str, hdr,
alloc_len,
#ifdef _KERNEL
type, flags,
#endif
error_str, error_str_len);
break;
case SCSI_PROTO_RDMA:
retval = scsi_parse_transportid_rdma(transportid_str, hdr,
alloc_len,
#ifdef _KERNEL
type, flags,
#endif
error_str, error_str_len);
break;
case SCSI_PROTO_ISCSI:
retval = scsi_parse_transportid_iscsi(transportid_str, hdr,
alloc_len,
#ifdef _KERNEL
type, flags,
#endif
error_str, error_str_len);
break;
case SCSI_PROTO_SOP:
retval = scsi_parse_transportid_sop(transportid_str, hdr,
alloc_len,
#ifdef _KERNEL
type, flags,
#endif
error_str, error_str_len);
break;
case SCSI_PROTO_SSA:
case SCSI_PROTO_ADITP:
case SCSI_PROTO_ATA:
case SCSI_PROTO_UAS:
case SCSI_PROTO_NONE:
default:
/*
* There is no format defined for a Transport ID for these
* protocols. So even if the user gives us something, we
* have no way to turn it into a standard SCSI Transport ID.
*/
retval = 1;
if (error_str != NULL) {
snprintf(error_str, error_str_len, "%s: no Transport "
"ID format exists for protocol %s",
__func__, tmpstr);
}
goto bailout;
break; /* NOTREACHED */
}
bailout:
return (retval);
}
struct scsi_attrib_table_entry scsi_mam_attr_table[] = {
{ SMA_ATTR_REM_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
"Remaining Capacity in Partition",
/*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,/*parse_str*/ NULL },
{ SMA_ATTR_MAX_CAP_PARTITION, SCSI_ATTR_FLAG_NONE,
"Maximum Capacity in Partition",
/*suffix*/"MB", /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
{ SMA_ATTR_TAPEALERT_FLAGS, SCSI_ATTR_FLAG_HEX,
"TapeAlert Flags",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
{ SMA_ATTR_LOAD_COUNT, SCSI_ATTR_FLAG_NONE,
"Load Count",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
{ SMA_ATTR_MAM_SPACE_REMAINING, SCSI_ATTR_FLAG_NONE,
"MAM Space Remaining",
/*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_DEV_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
"Assigning Organization",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_FORMAT_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
"Format Density Code",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
{ SMA_ATTR_INITIALIZATION_COUNT, SCSI_ATTR_FLAG_NONE,
"Initialization Count",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf, /*parse_str*/ NULL },
{ SMA_ATTR_VOLUME_ID, SCSI_ATTR_FLAG_NONE,
"Volume Identifier",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_VOLUME_CHANGE_REF, SCSI_ATTR_FLAG_HEX,
"Volume Change Reference",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_DEV_SERIAL_LAST_LOAD, SCSI_ATTR_FLAG_NONE,
"Device Vendor/Serial at Last Load",
/*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_1, SCSI_ATTR_FLAG_NONE,
"Device Vendor/Serial at Last Load - 1",
/*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_2, SCSI_ATTR_FLAG_NONE,
"Device Vendor/Serial at Last Load - 2",
/*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_DEV_SERIAL_LAST_LOAD_3, SCSI_ATTR_FLAG_NONE,
"Device Vendor/Serial at Last Load - 3",
/*suffix*/NULL, /*to_str*/ scsi_attrib_vendser_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_TOTAL_MB_WRITTEN_LT, SCSI_ATTR_FLAG_NONE,
"Total MB Written in Medium Life",
/*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_TOTAL_MB_READ_LT, SCSI_ATTR_FLAG_NONE,
"Total MB Read in Medium Life",
/*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_TOTAL_MB_WRITTEN_CUR, SCSI_ATTR_FLAG_NONE,
"Total MB Written in Current/Last Load",
/*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_TOTAL_MB_READ_CUR, SCSI_ATTR_FLAG_NONE,
"Total MB Read in Current/Last Load",
/*suffix*/ "MB", /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_FIRST_ENC_BLOCK, SCSI_ATTR_FLAG_NONE,
"Logical Position of First Encrypted Block",
/*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_NEXT_UNENC_BLOCK, SCSI_ATTR_FLAG_NONE,
"Logical Position of First Unencrypted Block after First "
"Encrypted Block",
/*suffix*/ NULL, /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MEDIUM_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
"Medium Usage History",
/*suffix*/ NULL, /*to_str*/ NULL,
/*parse_str*/ NULL },
{ SMA_ATTR_PART_USAGE_HIST, SCSI_ATTR_FLAG_NONE,
"Partition Usage History",
/*suffix*/ NULL, /*to_str*/ NULL,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_MANUF, SCSI_ATTR_FLAG_NONE,
"Medium Manufacturer",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_SERIAL, SCSI_ATTR_FLAG_NONE,
"Medium Serial Number",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_LENGTH, SCSI_ATTR_FLAG_NONE,
"Medium Length",
/*suffix*/"m", /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_WIDTH, SCSI_ATTR_FLAG_FP | SCSI_ATTR_FLAG_DIV_10 |
SCSI_ATTR_FLAG_FP_1DIGIT,
"Medium Width",
/*suffix*/"mm", /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_ASSIGNING_ORG, SCSI_ATTR_FLAG_NONE,
"Assigning Organization",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_DENSITY_CODE, SCSI_ATTR_FLAG_HEX,
"Medium Density Code",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_MANUF_DATE, SCSI_ATTR_FLAG_NONE,
"Medium Manufacture Date",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MAM_CAPACITY, SCSI_ATTR_FLAG_NONE,
"MAM Capacity",
/*suffix*/"bytes", /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_TYPE, SCSI_ATTR_FLAG_HEX,
"Medium Type",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_TYPE_INFO, SCSI_ATTR_FLAG_HEX,
"Medium Type Information",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MED_SERIAL_NUM, SCSI_ATTR_FLAG_NONE,
"Medium Serial Number",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_APP_VENDOR, SCSI_ATTR_FLAG_NONE,
"Application Vendor",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_APP_NAME, SCSI_ATTR_FLAG_NONE,
"Application Name",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_APP_VERSION, SCSI_ATTR_FLAG_NONE,
"Application Version",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_USER_MED_TEXT_LABEL, SCSI_ATTR_FLAG_NONE,
"User Medium Text Label",
/*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_LAST_WRITTEN_TIME, SCSI_ATTR_FLAG_NONE,
"Date and Time Last Written",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_TEXT_LOCAL_ID, SCSI_ATTR_FLAG_HEX,
"Text Localization Identifier",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_BARCODE, SCSI_ATTR_FLAG_NONE,
"Barcode",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_HOST_OWNER_NAME, SCSI_ATTR_FLAG_NONE,
"Owning Host Textual Name",
/*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_MEDIA_POOL, SCSI_ATTR_FLAG_NONE,
"Media Pool",
/*suffix*/NULL, /*to_str*/ scsi_attrib_text_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_PART_USER_LABEL, SCSI_ATTR_FLAG_NONE,
"Partition User Text Label",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_LOAD_UNLOAD_AT_PART, SCSI_ATTR_FLAG_NONE,
"Load/Unload at Partition",
/*suffix*/NULL, /*to_str*/ scsi_attrib_int_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_APP_FORMAT_VERSION, SCSI_ATTR_FLAG_NONE,
"Application Format Version",
/*suffix*/NULL, /*to_str*/ scsi_attrib_ascii_sbuf,
/*parse_str*/ NULL },
{ SMA_ATTR_VOL_COHERENCY_INFO, SCSI_ATTR_FLAG_NONE,
"Volume Coherency Information",
/*suffix*/NULL, /*to_str*/ scsi_attrib_volcoh_sbuf,
/*parse_str*/ NULL },
{ 0x0ff1, SCSI_ATTR_FLAG_NONE,
"Spectra MLM Creation",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x0ff2, SCSI_ATTR_FLAG_NONE,
"Spectra MLM C3",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x0ff3, SCSI_ATTR_FLAG_NONE,
"Spectra MLM RW",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x0ff4, SCSI_ATTR_FLAG_NONE,
"Spectra MLM SDC List",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x0ff7, SCSI_ATTR_FLAG_NONE,
"Spectra MLM Post Scan",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x0ffe, SCSI_ATTR_FLAG_NONE,
"Spectra MLM Checksum",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x17f1, SCSI_ATTR_FLAG_NONE,
"Spectra MLM Creation",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x17f2, SCSI_ATTR_FLAG_NONE,
"Spectra MLM C3",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x17f3, SCSI_ATTR_FLAG_NONE,
"Spectra MLM RW",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x17f4, SCSI_ATTR_FLAG_NONE,
"Spectra MLM SDC List",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x17f7, SCSI_ATTR_FLAG_NONE,
"Spectra MLM Post Scan",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
{ 0x17ff, SCSI_ATTR_FLAG_NONE,
"Spectra MLM Checksum",
/*suffix*/NULL, /*to_str*/ scsi_attrib_hexdump_sbuf,
/*parse_str*/ NULL },
};
/*
* Print out Volume Coherency Information (Attribute 0x080c).
* This field has two variable length members, including one at the
* beginning, so it isn't practical to have a fixed structure definition.
* This is current as of SSC4r03 (see section 4.2.21.3), dated March 25,
* 2013.
*/
int
scsi_attrib_volcoh_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len)
{
size_t avail_len;
uint32_t field_size;
uint64_t tmp_val;
uint8_t *cur_ptr;
int retval;
int vcr_len, as_len;
retval = 0;
tmp_val = 0;
field_size = scsi_2btoul(hdr->length);
avail_len = valid_len - sizeof(*hdr);
if (field_size > avail_len) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "Available "
"length of attribute ID 0x%.4x %zu < field "
"length %u", scsi_2btoul(hdr->id), avail_len,
field_size);
}
retval = 1;
goto bailout;
} else if (field_size == 0) {
/*
* It isn't clear from the spec whether a field length of
* 0 is invalid here. It probably is, but be lenient here
* to avoid inconveniencing the user.
*/
goto bailout;
}
cur_ptr = hdr->attribute;
vcr_len = *cur_ptr;
cur_ptr++;
sbuf_printf(sb, "\n\tVolume Change Reference Value:");
switch (vcr_len) {
case 0:
if (error_str != NULL) {
snprintf(error_str, error_str_len, "Volume Change "
"Reference value has length of 0");
}
retval = 1;
goto bailout;
break; /*NOTREACHED*/
case 1:
tmp_val = *cur_ptr;
break;
case 2:
tmp_val = scsi_2btoul(cur_ptr);
break;
case 3:
tmp_val = scsi_3btoul(cur_ptr);
break;
case 4:
tmp_val = scsi_4btoul(cur_ptr);
break;
case 8:
tmp_val = scsi_8btou64(cur_ptr);
break;
default:
sbuf_printf(sb, "\n");
sbuf_hexdump(sb, cur_ptr, vcr_len, NULL, 0);
break;
}
if (vcr_len <= 8)
sbuf_printf(sb, " 0x%jx\n", (uintmax_t)tmp_val);
cur_ptr += vcr_len;
tmp_val = scsi_8btou64(cur_ptr);
sbuf_printf(sb, "\tVolume Coherency Count: %ju\n", (uintmax_t)tmp_val);
cur_ptr += sizeof(tmp_val);
tmp_val = scsi_8btou64(cur_ptr);
sbuf_printf(sb, "\tVolume Coherency Set Identifier: 0x%jx\n",
(uintmax_t)tmp_val);
/*
* Figure out how long the Application Client Specific Information
* is and produce a hexdump.
*/
cur_ptr += sizeof(tmp_val);
as_len = scsi_2btoul(cur_ptr);
cur_ptr += sizeof(uint16_t);
sbuf_printf(sb, "\tApplication Client Specific Information: ");
if (((as_len == SCSI_LTFS_VER0_LEN)
|| (as_len == SCSI_LTFS_VER1_LEN))
&& (strncmp(cur_ptr, SCSI_LTFS_STR_NAME, SCSI_LTFS_STR_LEN) == 0)) {
sbuf_printf(sb, "LTFS\n");
cur_ptr += SCSI_LTFS_STR_LEN + 1;
if (cur_ptr[SCSI_LTFS_UUID_LEN] != '\0')
cur_ptr[SCSI_LTFS_UUID_LEN] = '\0';
sbuf_printf(sb, "\tLTFS UUID: %s\n", cur_ptr);
cur_ptr += SCSI_LTFS_UUID_LEN + 1;
/* XXX KDM check the length */
sbuf_printf(sb, "\tLTFS Version: %d\n", *cur_ptr);
} else {
sbuf_printf(sb, "Unknown\n");
sbuf_hexdump(sb, cur_ptr, as_len, NULL, 0);
}
bailout:
return (retval);
}
int
scsi_attrib_vendser_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len)
{
size_t avail_len;
uint32_t field_size;
struct scsi_attrib_vendser *vendser;
cam_strvis_flags strvis_flags;
int retval = 0;
field_size = scsi_2btoul(hdr->length);
avail_len = valid_len - sizeof(*hdr);
if (field_size > avail_len) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "Available "
"length of attribute ID 0x%.4x %zu < field "
"length %u", scsi_2btoul(hdr->id), avail_len,
field_size);
}
retval = 1;
goto bailout;
} else if (field_size == 0) {
/*
* A field size of 0 doesn't make sense here. The device
* can at least give you the vendor ID, even if it can't
* give you the serial number.
*/
if (error_str != NULL) {
snprintf(error_str, error_str_len, "The length of "
"attribute ID 0x%.4x is 0",
scsi_2btoul(hdr->id));
}
retval = 1;
goto bailout;
}
vendser = (struct scsi_attrib_vendser *)hdr->attribute;
switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
break;
case SCSI_ATTR_OUTPUT_NONASCII_RAW:
strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
break;
case SCSI_ATTR_OUTPUT_NONASCII_ESC:
default:
strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
break;
}
cam_strvis_sbuf(sb, vendser->vendor, sizeof(vendser->vendor),
strvis_flags);
sbuf_putc(sb, ' ');
cam_strvis_sbuf(sb, vendser->serial_num, sizeof(vendser->serial_num),
strvis_flags);
bailout:
return (retval);
}
int
scsi_attrib_hexdump_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len)
{
uint32_t field_size;
ssize_t avail_len;
uint32_t print_len;
uint8_t *num_ptr;
int retval = 0;
field_size = scsi_2btoul(hdr->length);
avail_len = valid_len - sizeof(*hdr);
print_len = MIN(avail_len, field_size);
num_ptr = hdr->attribute;
if (print_len > 0) {
sbuf_printf(sb, "\n");
sbuf_hexdump(sb, num_ptr, print_len, NULL, 0);
}
return (retval);
}
int
scsi_attrib_int_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len)
{
uint64_t print_number;
size_t avail_len;
uint32_t number_size;
int retval = 0;
number_size = scsi_2btoul(hdr->length);
avail_len = valid_len - sizeof(*hdr);
if (avail_len < number_size) {
if (error_str != NULL) {
snprintf(error_str, error_str_len, "Available "
"length of attribute ID 0x%.4x %zu < field "
"length %u", scsi_2btoul(hdr->id), avail_len,
number_size);
}
retval = 1;
goto bailout;
}
switch (number_size) {
case 0:
/*
* We don't treat this as an error, since there may be
* scenarios where a device reports a field but then gives
* a length of 0. See the note in scsi_attrib_ascii_sbuf().
*/
goto bailout;
break; /*NOTREACHED*/
case 1:
print_number = hdr->attribute[0];
break;
case 2:
print_number = scsi_2btoul(hdr->attribute);
break;
case 3:
print_number = scsi_3btoul(hdr->attribute);
break;
case 4:
print_number = scsi_4btoul(hdr->attribute);
break;
case 8:
print_number = scsi_8btou64(hdr->attribute);
break;
default:
/*
* If we wind up here, the number is too big to print
* normally, so just do a hexdump.
*/
retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
flags, output_flags,
error_str, error_str_len);
goto bailout;
break;
}
if (flags & SCSI_ATTR_FLAG_FP) {
#ifndef _KERNEL
long double num_float;
num_float = (long double)print_number;
if (flags & SCSI_ATTR_FLAG_DIV_10)
num_float /= 10;
sbuf_printf(sb, "%.*Lf", (flags & SCSI_ATTR_FLAG_FP_1DIGIT) ?
1 : 0, num_float);
#else /* _KERNEL */
sbuf_printf(sb, "%ju", (flags & SCSI_ATTR_FLAG_DIV_10) ?
(print_number / 10) : print_number);
#endif /* _KERNEL */
} else if (flags & SCSI_ATTR_FLAG_HEX) {
sbuf_printf(sb, "0x%jx", (uintmax_t)print_number);
} else
sbuf_printf(sb, "%ju", (uintmax_t)print_number);
bailout:
return (retval);
}
int
scsi_attrib_ascii_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len)
{
size_t avail_len;
uint32_t field_size, print_size;
int retval = 0;
avail_len = valid_len - sizeof(*hdr);
field_size = scsi_2btoul(hdr->length);
print_size = MIN(avail_len, field_size);
if (print_size > 0) {
cam_strvis_flags strvis_flags;
switch (output_flags & SCSI_ATTR_OUTPUT_NONASCII_MASK) {
case SCSI_ATTR_OUTPUT_NONASCII_TRIM:
strvis_flags = CAM_STRVIS_FLAG_NONASCII_TRIM;
break;
case SCSI_ATTR_OUTPUT_NONASCII_RAW:
strvis_flags = CAM_STRVIS_FLAG_NONASCII_RAW;
break;
case SCSI_ATTR_OUTPUT_NONASCII_ESC:
default:
strvis_flags = CAM_STRVIS_FLAG_NONASCII_ESC;
break;
}
cam_strvis_sbuf(sb, hdr->attribute, print_size, strvis_flags);
} else if (avail_len < field_size) {
/*
* We only report an error if the user didn't allocate
* enough space to hold the full value of this field. If
* the field length is 0, that is allowed by the spec.
* e.g. in SPC-4r37, section 7.4.2.2.5, VOLUME IDENTIFIER
* "This attribute indicates the current volume identifier
* (see SMC-3) of the medium. If the device server supports
* this attribute but does not have access to the volume
* identifier, the device server shall report this attribute
* with an attribute length value of zero."
*/
if (error_str != NULL) {
snprintf(error_str, error_str_len, "Available "
"length of attribute ID 0x%.4x %zu < field "
"length %u", scsi_2btoul(hdr->id), avail_len,
field_size);
}
retval = 1;
}
return (retval);
}
int
scsi_attrib_text_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, uint32_t flags,
uint32_t output_flags, char *error_str,
int error_str_len)
{
size_t avail_len;
uint32_t field_size, print_size;
int retval = 0;
int esc_text = 1;
avail_len = valid_len - sizeof(*hdr);
field_size = scsi_2btoul(hdr->length);
print_size = MIN(avail_len, field_size);
if ((output_flags & SCSI_ATTR_OUTPUT_TEXT_MASK) ==
SCSI_ATTR_OUTPUT_TEXT_RAW)
esc_text = 0;
if (print_size > 0) {
uint32_t i;
for (i = 0; i < print_size; i++) {
if (hdr->attribute[i] == '\0')
continue;
else if (((unsigned char)hdr->attribute[i] < 0x80)
|| (esc_text == 0))
sbuf_putc(sb, hdr->attribute[i]);
else
sbuf_printf(sb, "%%%02x",
(unsigned char)hdr->attribute[i]);
}
} else if (avail_len < field_size) {
/*
* We only report an error if the user didn't allocate
* enough space to hold the full value of this field.
*/
if (error_str != NULL) {
snprintf(error_str, error_str_len, "Available "
"length of attribute ID 0x%.4x %zu < field "
"length %u", scsi_2btoul(hdr->id), avail_len,
field_size);
}
retval = 1;
}
return (retval);
}
struct scsi_attrib_table_entry *
scsi_find_attrib_entry(struct scsi_attrib_table_entry *table,
size_t num_table_entries, uint32_t id)
{
uint32_t i;
for (i = 0; i < num_table_entries; i++) {
if (table[i].id == id)
return (&table[i]);
}
return (NULL);
}
struct scsi_attrib_table_entry *
scsi_get_attrib_entry(uint32_t id)
{
return (scsi_find_attrib_entry(scsi_mam_attr_table,
nitems(scsi_mam_attr_table), id));
}
int
scsi_attrib_value_sbuf(struct sbuf *sb, uint32_t valid_len,
struct scsi_mam_attribute_header *hdr, uint32_t output_flags,
char *error_str, size_t error_str_len)
{
int retval;
switch (hdr->byte2 & SMA_FORMAT_MASK) {
case SMA_FORMAT_ASCII:
retval = scsi_attrib_ascii_sbuf(sb, hdr, valid_len,
SCSI_ATTR_FLAG_NONE, output_flags, error_str,error_str_len);
break;
case SMA_FORMAT_BINARY:
if (scsi_2btoul(hdr->length) <= 8)
retval = scsi_attrib_int_sbuf(sb, hdr, valid_len,
SCSI_ATTR_FLAG_NONE, output_flags, error_str,
error_str_len);
else
retval = scsi_attrib_hexdump_sbuf(sb, hdr, valid_len,
SCSI_ATTR_FLAG_NONE, output_flags, error_str,
error_str_len);
break;
case SMA_FORMAT_TEXT:
retval = scsi_attrib_text_sbuf(sb, hdr, valid_len,
SCSI_ATTR_FLAG_NONE, output_flags, error_str,
error_str_len);
break;
default:
if (error_str != NULL) {
snprintf(error_str, error_str_len, "Unknown attribute "
"format 0x%x", hdr->byte2 & SMA_FORMAT_MASK);
}
retval = 1;
goto bailout;
break; /*NOTREACHED*/
}
sbuf_trim(sb);
bailout:
return (retval);
}
void
scsi_attrib_prefix_sbuf(struct sbuf *sb, uint32_t output_flags,
struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, const char *desc)
{
int need_space = 0;
uint32_t len;
uint32_t id;
/*
* We can't do anything if we don't have enough valid data for the
* header.
*/
if (valid_len < sizeof(*hdr))
return;
id = scsi_2btoul(hdr->id);
/*
* Note that we print out the value of the attribute listed in the
* header, regardless of whether we actually got that many bytes
* back from the device through the controller. A truncated result
* could be the result of a failure to ask for enough data; the
* header indicates how many bytes are allocated for this attribute
* in the MAM.
*/
len = scsi_2btoul(hdr->length);
if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_MASK) ==
SCSI_ATTR_OUTPUT_FIELD_NONE)
return;
if ((output_flags & SCSI_ATTR_OUTPUT_FIELD_DESC)
&& (desc != NULL)) {
sbuf_printf(sb, "%s", desc);
need_space = 1;
}
if (output_flags & SCSI_ATTR_OUTPUT_FIELD_NUM) {
sbuf_printf(sb, "%s(0x%.4x)", (need_space) ? " " : "", id);
need_space = 0;
}
if (output_flags & SCSI_ATTR_OUTPUT_FIELD_SIZE) {
sbuf_printf(sb, "%s[%d]", (need_space) ? " " : "", len);
need_space = 0;
}
if (output_flags & SCSI_ATTR_OUTPUT_FIELD_RW) {
sbuf_printf(sb, "%s(%s)", (need_space) ? " " : "",
(hdr->byte2 & SMA_READ_ONLY) ? "RO" : "RW");
}
sbuf_printf(sb, ": ");
}
int
scsi_attrib_sbuf(struct sbuf *sb, struct scsi_mam_attribute_header *hdr,
uint32_t valid_len, struct scsi_attrib_table_entry *user_table,
size_t num_user_entries, int prefer_user_table,
uint32_t output_flags, char *error_str, int error_str_len)
{
int retval;
struct scsi_attrib_table_entry *table1 = NULL, *table2 = NULL;
struct scsi_attrib_table_entry *entry = NULL;
size_t table1_size = 0, table2_size = 0;
uint32_t id;
retval = 0;
if (valid_len < sizeof(*hdr)) {
retval = 1;
goto bailout;
}
id = scsi_2btoul(hdr->id);
if (user_table != NULL) {
if (prefer_user_table != 0) {
table1 = user_table;
table1_size = num_user_entries;
table2 = scsi_mam_attr_table;
table2_size = nitems(scsi_mam_attr_table);
} else {
table1 = scsi_mam_attr_table;
table1_size = nitems(scsi_mam_attr_table);
table2 = user_table;
table2_size = num_user_entries;
}
} else {
table1 = scsi_mam_attr_table;
table1_size = nitems(scsi_mam_attr_table);
}
entry = scsi_find_attrib_entry(table1, table1_size, id);
if (entry != NULL) {
scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len,
entry->desc);
if (entry->to_str == NULL)
goto print_default;
retval = entry->to_str(sb, hdr, valid_len, entry->flags,
output_flags, error_str, error_str_len);
goto bailout;
}
if (table2 != NULL) {
entry = scsi_find_attrib_entry(table2, table2_size, id);
if (entry != NULL) {
if (entry->to_str == NULL)
goto print_default;
scsi_attrib_prefix_sbuf(sb, output_flags, hdr,
valid_len, entry->desc);
retval = entry->to_str(sb, hdr, valid_len, entry->flags,
output_flags, error_str,
error_str_len);
goto bailout;
}
}
scsi_attrib_prefix_sbuf(sb, output_flags, hdr, valid_len, NULL);
print_default:
retval = scsi_attrib_value_sbuf(sb, valid_len, hdr, output_flags,
error_str, error_str_len);
bailout:
if (retval == 0) {
if ((entry != NULL)
&& (entry->suffix != NULL))
sbuf_printf(sb, " %s", entry->suffix);
sbuf_trim(sb);
sbuf_printf(sb, "\n");
}
return (retval);
}
void
scsi_test_unit_ready(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t sense_len, uint32_t timeout)
{
struct scsi_test_unit_ready *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
CAM_DIR_NONE,
tag_action,
/*data_ptr*/NULL,
/*dxfer_len*/0,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_test_unit_ready *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = TEST_UNIT_READY;
}
void
scsi_request_sense(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
void *data_ptr, uint8_t dxfer_len, uint8_t tag_action,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_request_sense *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
CAM_DIR_IN,
tag_action,
data_ptr,
dxfer_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_request_sense *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = REQUEST_SENSE;
scsi_cmd->length = dxfer_len;
}
void
scsi_inquiry(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t *inq_buf, uint32_t inq_len,
int evpd, uint8_t page_code, uint8_t sense_len,
uint32_t timeout)
{
struct scsi_inquiry *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*data_ptr*/inq_buf,
/*dxfer_len*/inq_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_inquiry *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = INQUIRY;
if (evpd) {
scsi_cmd->byte2 |= SI_EVPD;
scsi_cmd->page_code = page_code;
}
scsi_ulto2b(inq_len, scsi_cmd->length);
}
void
scsi_mode_sense(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
uint8_t sense_len, uint32_t timeout)
{
scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
pc, page, 0, param_buf, param_len, 0, sense_len, timeout);
}
void
scsi_mode_sense_len(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
int dbd, uint8_t pc, uint8_t page, uint8_t *param_buf, uint32_t param_len,
int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
{
scsi_mode_sense_subpage(csio, retries, cbfcnp, tag_action, dbd,
pc, page, 0, param_buf, param_len, minimum_cmd_size,
sense_len, timeout);
}
void
scsi_mode_sense_subpage(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *), uint8_t tag_action,
int dbd, uint8_t pc, uint8_t page, uint8_t subpage, uint8_t *param_buf,
uint32_t param_len, int minimum_cmd_size, uint8_t sense_len,
uint32_t timeout)
{
uint8_t cdb_len;
/*
* Use the smallest possible command to perform the operation.
*/
if ((param_len < 256)
&& (minimum_cmd_size < 10)) {
/*
* We can fit in a 6 byte cdb.
*/
struct scsi_mode_sense_6 *scsi_cmd;
scsi_cmd = (struct scsi_mode_sense_6 *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = MODE_SENSE_6;
if (dbd != 0)
scsi_cmd->byte2 |= SMS_DBD;
scsi_cmd->page = pc | page;
scsi_cmd->subpage = subpage;
scsi_cmd->length = param_len;
cdb_len = sizeof(*scsi_cmd);
} else {
/*
* Need a 10 byte cdb.
*/
struct scsi_mode_sense_10 *scsi_cmd;
scsi_cmd = (struct scsi_mode_sense_10 *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = MODE_SENSE_10;
if (dbd != 0)
scsi_cmd->byte2 |= SMS_DBD;
scsi_cmd->page = pc | page;
scsi_cmd->subpage = subpage;
scsi_ulto2b(param_len, scsi_cmd->length);
cdb_len = sizeof(*scsi_cmd);
}
cam_fill_csio(csio,
retries,
cbfcnp,
CAM_DIR_IN,
tag_action,
param_buf,
param_len,
sense_len,
cdb_len,
timeout);
}
void
scsi_mode_select(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int scsi_page_fmt, int save_pages,
uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
uint32_t timeout)
{
scsi_mode_select_len(csio, retries, cbfcnp, tag_action,
scsi_page_fmt, save_pages, param_buf,
param_len, 0, sense_len, timeout);
}
void
scsi_mode_select_len(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int scsi_page_fmt, int save_pages,
uint8_t *param_buf, uint32_t param_len,
int minimum_cmd_size, uint8_t sense_len,
uint32_t timeout)
{
uint8_t cdb_len;
/*
* Use the smallest possible command to perform the operation.
*/
if ((param_len < 256)
&& (minimum_cmd_size < 10)) {
/*
* We can fit in a 6 byte cdb.
*/
struct scsi_mode_select_6 *scsi_cmd;
scsi_cmd = (struct scsi_mode_select_6 *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = MODE_SELECT_6;
if (scsi_page_fmt != 0)
scsi_cmd->byte2 |= SMS_PF;
if (save_pages != 0)
scsi_cmd->byte2 |= SMS_SP;
scsi_cmd->length = param_len;
cdb_len = sizeof(*scsi_cmd);
} else {
/*
* Need a 10 byte cdb.
*/
struct scsi_mode_select_10 *scsi_cmd;
scsi_cmd =
(struct scsi_mode_select_10 *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = MODE_SELECT_10;
if (scsi_page_fmt != 0)
scsi_cmd->byte2 |= SMS_PF;
if (save_pages != 0)
scsi_cmd->byte2 |= SMS_SP;
scsi_ulto2b(param_len, scsi_cmd->length);
cdb_len = sizeof(*scsi_cmd);
}
cam_fill_csio(csio,
retries,
cbfcnp,
CAM_DIR_OUT,
tag_action,
param_buf,
param_len,
sense_len,
cdb_len,
timeout);
}
void
scsi_log_sense(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t page_code, uint8_t page,
int save_pages, int ppc, uint32_t paramptr,
uint8_t *param_buf, uint32_t param_len, uint8_t sense_len,
uint32_t timeout)
{
struct scsi_log_sense *scsi_cmd;
uint8_t cdb_len;
scsi_cmd = (struct scsi_log_sense *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = LOG_SENSE;
scsi_cmd->page = page_code | page;
if (save_pages != 0)
scsi_cmd->byte2 |= SLS_SP;
if (ppc != 0)
scsi_cmd->byte2 |= SLS_PPC;
scsi_ulto2b(paramptr, scsi_cmd->paramptr);
scsi_ulto2b(param_len, scsi_cmd->length);
cdb_len = sizeof(*scsi_cmd);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*data_ptr*/param_buf,
/*dxfer_len*/param_len,
sense_len,
cdb_len,
timeout);
}
void
scsi_log_select(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t page_code, int save_pages,
int pc_reset, uint8_t *param_buf, uint32_t param_len,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_log_select *scsi_cmd;
uint8_t cdb_len;
scsi_cmd = (struct scsi_log_select *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = LOG_SELECT;
scsi_cmd->page = page_code & SLS_PAGE_CODE;
if (save_pages != 0)
scsi_cmd->byte2 |= SLS_SP;
if (pc_reset != 0)
scsi_cmd->byte2 |= SLS_PCR;
scsi_ulto2b(param_len, scsi_cmd->length);
cdb_len = sizeof(*scsi_cmd);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_OUT,
tag_action,
/*data_ptr*/param_buf,
/*dxfer_len*/param_len,
sense_len,
cdb_len,
timeout);
}
/*
* Prevent or allow the user to remove the media
*/
void
scsi_prevent(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t action,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_prevent *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_NONE,
tag_action,
/*data_ptr*/NULL,
/*dxfer_len*/0,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_prevent *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = PREVENT_ALLOW;
scsi_cmd->how = action;
}
/* XXX allow specification of address and PMI bit and LBA */
void
scsi_read_capacity(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action,
struct scsi_read_capacity_data *rcap_buf,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_read_capacity *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*data_ptr*/(uint8_t *)rcap_buf,
/*dxfer_len*/sizeof(*rcap_buf),
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_read_capacity *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = READ_CAPACITY;
}
void
scsi_read_capacity_16(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint64_t lba, int reladr, int pmi,
uint8_t *rcap_buf, int rcap_buf_len, uint8_t sense_len,
uint32_t timeout)
{
struct scsi_read_capacity_16 *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*data_ptr*/(uint8_t *)rcap_buf,
/*dxfer_len*/rcap_buf_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_read_capacity_16 *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = SERVICE_ACTION_IN;
scsi_cmd->service_action = SRC16_SERVICE_ACTION;
scsi_u64to8b(lba, scsi_cmd->addr);
scsi_ulto4b(rcap_buf_len, scsi_cmd->alloc_len);
if (pmi)
reladr |= SRC16_PMI;
if (reladr)
reladr |= SRC16_RELADR;
}
void
scsi_report_luns(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t select_report,
struct scsi_report_luns_data *rpl_buf, uint32_t alloc_len,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_report_luns *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*data_ptr*/(uint8_t *)rpl_buf,
/*dxfer_len*/alloc_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_report_luns *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = REPORT_LUNS;
scsi_cmd->select_report = select_report;
scsi_ulto4b(alloc_len, scsi_cmd->length);
}
void
scsi_report_target_group(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t pdf,
void *buf, uint32_t alloc_len,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_target_group *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*data_ptr*/(uint8_t *)buf,
/*dxfer_len*/alloc_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = MAINTENANCE_IN;
scsi_cmd->service_action = REPORT_TARGET_PORT_GROUPS | pdf;
scsi_ulto4b(alloc_len, scsi_cmd->length);
}
void
scsi_report_timestamp(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t pdf,
void *buf, uint32_t alloc_len,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_timestamp *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*data_ptr*/(uint8_t *)buf,
/*dxfer_len*/alloc_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = MAINTENANCE_IN;
scsi_cmd->service_action = REPORT_TIMESTAMP | pdf;
scsi_ulto4b(alloc_len, scsi_cmd->length);
}
void
scsi_set_target_group(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, void *buf, uint32_t alloc_len,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_target_group *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_OUT,
tag_action,
/*data_ptr*/(uint8_t *)buf,
/*dxfer_len*/alloc_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_target_group *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = MAINTENANCE_OUT;
scsi_cmd->service_action = SET_TARGET_PORT_GROUPS;
scsi_ulto4b(alloc_len, scsi_cmd->length);
}
void
scsi_create_timestamp(uint8_t *timestamp_6b_buf,
uint64_t timestamp)
{
uint8_t buf[8];
scsi_u64to8b(timestamp, buf);
/*
* Using memcopy starting at buf[2] because the set timestamp parameters
* only has six bytes for the timestamp to fit into, and we don't have a
* scsi_u64to6b function.
*/
memcpy(timestamp_6b_buf, &buf[2], 6);
}
void
scsi_set_timestamp(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, void *buf, uint32_t alloc_len,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_timestamp *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_OUT,
tag_action,
/*data_ptr*/(uint8_t *) buf,
/*dxfer_len*/alloc_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_timestamp *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = MAINTENANCE_OUT;
scsi_cmd->service_action = SET_TIMESTAMP;
scsi_ulto4b(alloc_len, scsi_cmd->length);
}
/*
* Syncronize the media to the contents of the cache for
* the given lba/count pair. Specifying 0/0 means sync
* the whole cache.
*/
void
scsi_synchronize_cache(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint32_t begin_lba,
uint16_t lb_count, uint8_t sense_len,
uint32_t timeout)
{
struct scsi_sync_cache *scsi_cmd;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_NONE,
tag_action,
/*data_ptr*/NULL,
/*dxfer_len*/0,
sense_len,
sizeof(*scsi_cmd),
timeout);
scsi_cmd = (struct scsi_sync_cache *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = SYNCHRONIZE_CACHE;
scsi_ulto4b(begin_lba, scsi_cmd->begin_lba);
scsi_ulto2b(lb_count, scsi_cmd->lb_count);
}
void
scsi_read_write(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int readop, uint8_t byte2,
int minimum_cmd_size, uint64_t lba, uint32_t block_count,
uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
uint32_t timeout)
{
int read;
uint8_t cdb_len;
read = (readop & SCSI_RW_DIRMASK) == SCSI_RW_READ;
/*
* Use the smallest possible command to perform the operation
* as some legacy hardware does not support the 10 byte commands.
* If any of the bits in byte2 is set, we have to go with a larger
* command.
*/
if ((minimum_cmd_size < 10)
&& ((lba & 0x1fffff) == lba)
&& ((block_count & 0xff) == block_count)
&& (byte2 == 0)) {
/*
* We can fit in a 6 byte cdb.
*/
struct scsi_rw_6 *scsi_cmd;
scsi_cmd = (struct scsi_rw_6 *)&csio->cdb_io.cdb_bytes;
scsi_cmd->opcode = read ? READ_6 : WRITE_6;
scsi_ulto3b(lba, scsi_cmd->addr);
scsi_cmd->length = block_count & 0xff;
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
("6byte: %x%x%x:%d:%d\n", scsi_cmd->addr[0],
scsi_cmd->addr[1], scsi_cmd->addr[2],
scsi_cmd->length, dxfer_len));
} else if ((minimum_cmd_size < 12)
&& ((block_count & 0xffff) == block_count)
&& ((lba & 0xffffffff) == lba)) {
/*
* Need a 10 byte cdb.
*/
struct scsi_rw_10 *scsi_cmd;
scsi_cmd = (struct scsi_rw_10 *)&csio->cdb_io.cdb_bytes;
scsi_cmd->opcode = read ? READ_10 : WRITE_10;
scsi_cmd->byte2 = byte2;
scsi_ulto4b(lba, scsi_cmd->addr);
scsi_cmd->reserved = 0;
scsi_ulto2b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
scsi_cmd->addr[1], scsi_cmd->addr[2],
scsi_cmd->addr[3], scsi_cmd->length[0],
scsi_cmd->length[1], dxfer_len));
} else if ((minimum_cmd_size < 16)
&& ((block_count & 0xffffffff) == block_count)
&& ((lba & 0xffffffff) == lba)) {
/*
* The block count is too big for a 10 byte CDB, use a 12
* byte CDB.
*/
struct scsi_rw_12 *scsi_cmd;
scsi_cmd = (struct scsi_rw_12 *)&csio->cdb_io.cdb_bytes;
scsi_cmd->opcode = read ? READ_12 : WRITE_12;
scsi_cmd->byte2 = byte2;
scsi_ulto4b(lba, scsi_cmd->addr);
scsi_cmd->reserved = 0;
scsi_ulto4b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
("12byte: %x%x%x%x:%x%x%x%x: %d\n", scsi_cmd->addr[0],
scsi_cmd->addr[1], scsi_cmd->addr[2],
scsi_cmd->addr[3], scsi_cmd->length[0],
scsi_cmd->length[1], scsi_cmd->length[2],
scsi_cmd->length[3], dxfer_len));
} else {
/*
* 16 byte CDB. We'll only get here if the LBA is larger
* than 2^32, or if the user asks for a 16 byte command.
*/
struct scsi_rw_16 *scsi_cmd;
scsi_cmd = (struct scsi_rw_16 *)&csio->cdb_io.cdb_bytes;
scsi_cmd->opcode = read ? READ_16 : WRITE_16;
scsi_cmd->byte2 = byte2;
scsi_u64to8b(lba, scsi_cmd->addr);
scsi_cmd->reserved = 0;
scsi_ulto4b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
}
cam_fill_csio(csio,
retries,
cbfcnp,
(read ? CAM_DIR_IN : CAM_DIR_OUT) |
((readop & SCSI_RW_BIO) != 0 ? CAM_DATA_BIO : 0),
tag_action,
data_ptr,
dxfer_len,
sense_len,
cdb_len,
timeout);
}
void
scsi_write_same(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t byte2,
int minimum_cmd_size, uint64_t lba, uint32_t block_count,
uint8_t *data_ptr, uint32_t dxfer_len, uint8_t sense_len,
uint32_t timeout)
{
uint8_t cdb_len;
if ((minimum_cmd_size < 16) &&
((block_count & 0xffff) == block_count) &&
((lba & 0xffffffff) == lba)) {
/*
* Need a 10 byte cdb.
*/
struct scsi_write_same_10 *scsi_cmd;
scsi_cmd = (struct scsi_write_same_10 *)&csio->cdb_io.cdb_bytes;
scsi_cmd->opcode = WRITE_SAME_10;
scsi_cmd->byte2 = byte2;
scsi_ulto4b(lba, scsi_cmd->addr);
scsi_cmd->group = 0;
scsi_ulto2b(block_count, scsi_cmd->length);
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
("10byte: %x%x%x%x:%x%x: %d\n", scsi_cmd->addr[0],
scsi_cmd->addr[1], scsi_cmd->addr[2],
scsi_cmd->addr[3], scsi_cmd->length[0],
scsi_cmd->length[1], dxfer_len));
} else {
/*
* 16 byte CDB. We'll only get here if the LBA is larger
* than 2^32, or if the user asks for a 16 byte command.
*/
struct scsi_write_same_16 *scsi_cmd;
scsi_cmd = (struct scsi_write_same_16 *)&csio->cdb_io.cdb_bytes;
scsi_cmd->opcode = WRITE_SAME_16;
scsi_cmd->byte2 = byte2;
scsi_u64to8b(lba, scsi_cmd->addr);
scsi_ulto4b(block_count, scsi_cmd->length);
scsi_cmd->group = 0;
scsi_cmd->control = 0;
cdb_len = sizeof(*scsi_cmd);
CAM_DEBUG(csio->ccb_h.path, CAM_DEBUG_SUBTRACE,
("16byte: %x%x%x%x%x%x%x%x:%x%x%x%x: %d\n",
scsi_cmd->addr[0], scsi_cmd->addr[1],
scsi_cmd->addr[2], scsi_cmd->addr[3],
scsi_cmd->addr[4], scsi_cmd->addr[5],
scsi_cmd->addr[6], scsi_cmd->addr[7],
scsi_cmd->length[0], scsi_cmd->length[1],
scsi_cmd->length[2], scsi_cmd->length[3],
dxfer_len));
}
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_OUT,
tag_action,
data_ptr,
dxfer_len,
sense_len,
cdb_len,
timeout);
}
void
scsi_ata_identify(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t *data_ptr,
uint16_t dxfer_len, uint8_t sense_len,
uint32_t timeout)
{
scsi_ata_pass(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*protocol*/AP_PROTO_PIO_IN,
/*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
AP_FLAG_BYT_BLOK_BLOCKS |
AP_FLAG_TLEN_SECT_CNT,
/*features*/0,
/*sector_count*/dxfer_len / 512,
/*lba*/0,
/*command*/ATA_ATA_IDENTIFY,
/*device*/ 0,
/*icc*/ 0,
/*auxiliary*/ 0,
/*control*/0,
data_ptr,
dxfer_len,
/*cdb_storage*/ NULL,
/*cdb_storage_len*/ 0,
/*minimum_cmd_size*/ 0,
sense_len,
timeout);
}
void
scsi_ata_trim(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint16_t block_count,
uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
uint32_t timeout)
{
scsi_ata_pass_16(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_OUT,
tag_action,
/*protocol*/AP_EXTEND|AP_PROTO_DMA,
/*ata_flags*/AP_FLAG_TLEN_SECT_CNT|AP_FLAG_BYT_BLOK_BLOCKS,
/*features*/ATA_DSM_TRIM,
/*sector_count*/block_count,
/*lba*/0,
/*command*/ATA_DATA_SET_MANAGEMENT,
/*control*/0,
data_ptr,
dxfer_len,
sense_len,
timeout);
}
int
scsi_ata_read_log(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint32_t log_address,
uint32_t page_number, uint16_t block_count,
uint8_t protocol, uint8_t *data_ptr, uint32_t dxfer_len,
uint8_t sense_len, uint32_t timeout)
{
uint8_t command, protocol_out;
uint16_t count_out;
uint64_t lba;
int retval;
retval = 0;
switch (protocol) {
case AP_PROTO_DMA:
count_out = block_count;
command = ATA_READ_LOG_DMA_EXT;
protocol_out = AP_PROTO_DMA;
break;
case AP_PROTO_PIO_IN:
default:
count_out = block_count;
command = ATA_READ_LOG_EXT;
protocol_out = AP_PROTO_PIO_IN;
break;
}
lba = (((uint64_t)page_number & 0xff00) << 32) |
((page_number & 0x00ff) << 8) |
(log_address & 0xff);
protocol_out |= AP_EXTEND;
retval = scsi_ata_pass(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*protocol*/ protocol_out,
/*ata_flags*/AP_FLAG_TLEN_SECT_CNT |
AP_FLAG_BYT_BLOK_BLOCKS |
AP_FLAG_TDIR_FROM_DEV,
/*feature*/ 0,
/*sector_count*/ count_out,
/*lba*/ lba,
/*command*/ command,
/*device*/ 0,
/*icc*/ 0,
/*auxiliary*/ 0,
/*control*/0,
data_ptr,
dxfer_len,
/*cdb_storage*/ NULL,
/*cdb_storage_len*/ 0,
/*minimum_cmd_size*/ 0,
sense_len,
timeout);
return (retval);
}
int scsi_ata_setfeatures(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t feature,
uint64_t lba, uint32_t count,
uint8_t sense_len, uint32_t timeout)
{
return (scsi_ata_pass(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_NONE,
tag_action,
/*protocol*/AP_PROTO_PIO_IN,
/*ata_flags*/AP_FLAG_TDIR_FROM_DEV |
AP_FLAG_BYT_BLOK_BYTES |
AP_FLAG_TLEN_SECT_CNT,
/*features*/feature,
/*sector_count*/count,
/*lba*/lba,
/*command*/ATA_SETFEATURES,
/*device*/ 0,
/*icc*/ 0,
/*auxiliary*/0,
/*control*/0,
/*data_ptr*/NULL,
/*dxfer_len*/0,
/*cdb_storage*/NULL,
/*cdb_storage_len*/0,
/*minimum_cmd_size*/0,
sense_len,
timeout));
}
/*
* Note! This is an unusual CDB building function because it can return
* an error in the event that the command in question requires a variable
* length CDB, but the caller has not given storage space for one or has not
* given enough storage space. If there is enough space available in the
* standard SCSI CCB CDB bytes, we'll prefer that over passed in storage.
*/
int
scsi_ata_pass(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint32_t flags, uint8_t tag_action,
uint8_t protocol, uint8_t ata_flags, uint16_t features,
uint16_t sector_count, uint64_t lba, uint8_t command,
uint8_t device, uint8_t icc, uint32_t auxiliary,
uint8_t control, uint8_t *data_ptr, uint32_t dxfer_len,
uint8_t *cdb_storage, size_t cdb_storage_len,
int minimum_cmd_size, uint8_t sense_len, uint32_t timeout)
{
uint32_t cam_flags;
uint8_t *cdb_ptr;
int cmd_size;
int retval;
uint8_t cdb_len;
retval = 0;
cam_flags = flags;
/*
* Round the user's request to the nearest command size that is at
* least as big as what he requested.
*/
if (minimum_cmd_size <= 12)
cmd_size = 12;
else if (minimum_cmd_size > 16)
cmd_size = 32;
else
cmd_size = 16;
/*
* If we have parameters that require a 48-bit ATA command, we have to
* use the 16 byte ATA PASS-THROUGH command at least.
*/
if (((lba > ATA_MAX_28BIT_LBA)
|| (sector_count > 255)
|| (features > 255)
|| (protocol & AP_EXTEND))
&& ((cmd_size < 16)
|| ((protocol & AP_EXTEND) == 0))) {
if (cmd_size < 16)
cmd_size = 16;
protocol |= AP_EXTEND;
}
/*
* The icc and auxiliary ATA registers are only supported in the
* 32-byte version of the ATA PASS-THROUGH command.
*/
if ((icc != 0)
|| (auxiliary != 0)) {
cmd_size = 32;
protocol |= AP_EXTEND;
}
if ((cmd_size > sizeof(csio->cdb_io.cdb_bytes))
&& ((cdb_storage == NULL)
|| (cdb_storage_len < cmd_size))) {
retval = 1;
goto bailout;
}
/*
* At this point we know we have enough space to store the command
* in one place or another. We prefer the built-in array, but used
* the passed in storage if necessary.
*/
if (cmd_size <= sizeof(csio->cdb_io.cdb_bytes))
cdb_ptr = csio->cdb_io.cdb_bytes;
else {
cdb_ptr = cdb_storage;
cam_flags |= CAM_CDB_POINTER;
}
if (cmd_size <= 12) {
struct ata_pass_12 *cdb;
cdb = (struct ata_pass_12 *)cdb_ptr;
cdb_len = sizeof(*cdb);
bzero(cdb, cdb_len);
cdb->opcode = ATA_PASS_12;
cdb->protocol = protocol;
cdb->flags = ata_flags;
cdb->features = features;
cdb->sector_count = sector_count;
cdb->lba_low = lba & 0xff;
cdb->lba_mid = (lba >> 8) & 0xff;
cdb->lba_high = (lba >> 16) & 0xff;
cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
cdb->command = command;
cdb->control = control;
} else if (cmd_size <= 16) {
struct ata_pass_16 *cdb;
cdb = (struct ata_pass_16 *)cdb_ptr;
cdb_len = sizeof(*cdb);
bzero(cdb, cdb_len);
cdb->opcode = ATA_PASS_16;
cdb->protocol = protocol;
cdb->flags = ata_flags;
cdb->features = features & 0xff;
cdb->sector_count = sector_count & 0xff;
cdb->lba_low = lba & 0xff;
cdb->lba_mid = (lba >> 8) & 0xff;
cdb->lba_high = (lba >> 16) & 0xff;
/*
* If AP_EXTEND is set, we're sending a 48-bit command.
* Otherwise it's a 28-bit command.
*/
if (protocol & AP_EXTEND) {
cdb->lba_low_ext = (lba >> 24) & 0xff;
cdb->lba_mid_ext = (lba >> 32) & 0xff;
cdb->lba_high_ext = (lba >> 40) & 0xff;
cdb->features_ext = (features >> 8) & 0xff;
cdb->sector_count_ext = (sector_count >> 8) & 0xff;
cdb->device = device | ATA_DEV_LBA;
} else {
cdb->lba_low_ext = (lba >> 24) & 0xf;
cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
}
cdb->command = command;
cdb->control = control;
} else {
struct ata_pass_32 *cdb;
uint8_t tmp_lba[8];
cdb = (struct ata_pass_32 *)cdb_ptr;
cdb_len = sizeof(*cdb);
bzero(cdb, cdb_len);
cdb->opcode = VARIABLE_LEN_CDB;
cdb->control = control;
cdb->length = sizeof(*cdb) - __offsetof(struct ata_pass_32,
service_action);
scsi_ulto2b(ATA_PASS_32_SA, cdb->service_action);
cdb->protocol = protocol;
cdb->flags = ata_flags;
if ((protocol & AP_EXTEND) == 0) {
lba &= 0x0fffffff;
cdb->device = ((lba >> 24) & 0xf) | ATA_DEV_LBA;
features &= 0xff;
sector_count &= 0xff;
} else {
cdb->device = device | ATA_DEV_LBA;
}
scsi_u64to8b(lba, tmp_lba);
bcopy(&tmp_lba[2], cdb->lba, sizeof(cdb->lba));
scsi_ulto2b(features, cdb->features);
scsi_ulto2b(sector_count, cdb->count);
cdb->command = command;
cdb->icc = icc;
scsi_ulto4b(auxiliary, cdb->auxiliary);
}
cam_fill_csio(csio,
retries,
cbfcnp,
cam_flags,
tag_action,
data_ptr,
dxfer_len,
sense_len,
cmd_size,
timeout);
bailout:
return (retval);
}
void
scsi_ata_pass_16(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint32_t flags, uint8_t tag_action,
uint8_t protocol, uint8_t ata_flags, uint16_t features,
uint16_t sector_count, uint64_t lba, uint8_t command,
uint8_t control, uint8_t *data_ptr, uint16_t dxfer_len,
uint8_t sense_len, uint32_t timeout)
{
struct ata_pass_16 *ata_cmd;
ata_cmd = (struct ata_pass_16 *)&csio->cdb_io.cdb_bytes;
ata_cmd->opcode = ATA_PASS_16;
ata_cmd->protocol = protocol;
ata_cmd->flags = ata_flags;
ata_cmd->features_ext = features >> 8;
ata_cmd->features = features;
ata_cmd->sector_count_ext = sector_count >> 8;
ata_cmd->sector_count = sector_count;
ata_cmd->lba_low = lba;
ata_cmd->lba_mid = lba >> 8;
ata_cmd->lba_high = lba >> 16;
ata_cmd->device = ATA_DEV_LBA;
if (protocol & AP_EXTEND) {
ata_cmd->lba_low_ext = lba >> 24;
ata_cmd->lba_mid_ext = lba >> 32;
ata_cmd->lba_high_ext = lba >> 40;
} else
ata_cmd->device |= (lba >> 24) & 0x0f;
ata_cmd->command = command;
ata_cmd->control = control;
cam_fill_csio(csio,
retries,
cbfcnp,
flags,
tag_action,
data_ptr,
dxfer_len,
sense_len,
sizeof(*ata_cmd),
timeout);
}
void
scsi_unmap(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t byte2,
uint8_t *data_ptr, uint16_t dxfer_len, uint8_t sense_len,
uint32_t timeout)
{
struct scsi_unmap *scsi_cmd;
scsi_cmd = (struct scsi_unmap *)&csio->cdb_io.cdb_bytes;
scsi_cmd->opcode = UNMAP;
scsi_cmd->byte2 = byte2;
scsi_ulto4b(0, scsi_cmd->reserved);
scsi_cmd->group = 0;
scsi_ulto2b(dxfer_len, scsi_cmd->length);
scsi_cmd->control = 0;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_OUT,
tag_action,
data_ptr,
dxfer_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_receive_diagnostic_results(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb*),
uint8_t tag_action, int pcv, uint8_t page_code,
uint8_t *data_ptr, uint16_t allocation_length,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_receive_diag *scsi_cmd;
scsi_cmd = (struct scsi_receive_diag *)&csio->cdb_io.cdb_bytes;
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
scsi_cmd->opcode = RECEIVE_DIAGNOSTIC;
if (pcv) {
scsi_cmd->byte2 |= SRD_PCV;
scsi_cmd->page_code = page_code;
}
scsi_ulto2b(allocation_length, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
data_ptr,
allocation_length,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_send_diagnostic(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int unit_offline, int device_offline,
int self_test, int page_format, int self_test_code,
uint8_t *data_ptr, uint16_t param_list_length,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_send_diag *scsi_cmd;
scsi_cmd = (struct scsi_send_diag *)&csio->cdb_io.cdb_bytes;
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
scsi_cmd->opcode = SEND_DIAGNOSTIC;
/*
* The default self-test mode control and specific test
* control are mutually exclusive.
*/
if (self_test)
self_test_code = SSD_SELF_TEST_CODE_NONE;
scsi_cmd->byte2 = ((self_test_code << SSD_SELF_TEST_CODE_SHIFT)
& SSD_SELF_TEST_CODE_MASK)
| (unit_offline ? SSD_UNITOFFL : 0)
| (device_offline ? SSD_DEVOFFL : 0)
| (self_test ? SSD_SELFTEST : 0)
| (page_format ? SSD_PF : 0);
scsi_ulto2b(param_list_length, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
tag_action,
data_ptr,
param_list_length,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_get_physical_element_status(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t *data_ptr,
uint16_t allocation_length, uint8_t report_type,
uint32_t starting_element,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_get_physical_element_status *scsi_cmd;
scsi_cmd = (struct scsi_get_physical_element_status *)&csio->cdb_io.cdb_bytes;
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
scsi_cmd->opcode = SERVICE_ACTION_IN;
scsi_cmd->service_action = GET_PHYSICAL_ELEMENT_STATUS;
scsi_ulto4b(starting_element, scsi_cmd->starting_element);
scsi_ulto4b(allocation_length, scsi_cmd->allocation_length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/ CAM_DIR_IN,
tag_action,
data_ptr,
allocation_length,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_remove_element_and_truncate(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action,
uint64_t requested_capacity, uint32_t element_id,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_remove_element_and_truncate *scsi_cmd;
scsi_cmd = (struct scsi_remove_element_and_truncate *)&csio->cdb_io.cdb_bytes;
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
scsi_cmd->opcode = SERVICE_ACTION_IN;
scsi_cmd->service_action = REMOVE_ELEMENT_AND_TRUNCATE;
scsi_u64to8b(requested_capacity, scsi_cmd->requested_capacity);
scsi_ulto4b(element_id, scsi_cmd->element_identifier);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/ CAM_DIR_OUT,
tag_action,
NULL,
0,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_restore_elements_and_rebuild(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_service_action_in *scsi_cmd;
scsi_cmd = (struct scsi_service_action_in *)&csio->cdb_io.cdb_bytes;
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
scsi_cmd->opcode = SERVICE_ACTION_IN;
scsi_cmd->service_action = RESTORE_ELEMENTS_AND_REBUILD;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/ CAM_DIR_OUT,
tag_action,
NULL,
0,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_read_buffer(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb*),
uint8_t tag_action, int mode,
uint8_t buffer_id, uint32_t offset,
uint8_t *data_ptr, uint32_t allocation_length,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_read_buffer *scsi_cmd;
scsi_cmd = (struct scsi_read_buffer *)&csio->cdb_io.cdb_bytes;
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
scsi_cmd->opcode = READ_BUFFER;
scsi_cmd->byte2 = mode;
scsi_cmd->buffer_id = buffer_id;
scsi_ulto3b(offset, scsi_cmd->offset);
scsi_ulto3b(allocation_length, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
data_ptr,
allocation_length,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_write_buffer(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int mode,
uint8_t buffer_id, uint32_t offset,
uint8_t *data_ptr, uint32_t param_list_length,
uint8_t sense_len, uint32_t timeout)
{
struct scsi_write_buffer *scsi_cmd;
scsi_cmd = (struct scsi_write_buffer *)&csio->cdb_io.cdb_bytes;
memset(scsi_cmd, 0, sizeof(*scsi_cmd));
scsi_cmd->opcode = WRITE_BUFFER;
scsi_cmd->byte2 = mode;
scsi_cmd->buffer_id = buffer_id;
scsi_ulto3b(offset, scsi_cmd->offset);
scsi_ulto3b(param_list_length, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/param_list_length ? CAM_DIR_OUT : CAM_DIR_NONE,
tag_action,
data_ptr,
param_list_length,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_start_stop(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int start, int load_eject,
int immediate, uint8_t sense_len, uint32_t timeout)
{
struct scsi_start_stop_unit *scsi_cmd;
int extra_flags = 0;
scsi_cmd = (struct scsi_start_stop_unit *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = START_STOP_UNIT;
if (start != 0) {
scsi_cmd->how |= SSS_START;
/* it takes a lot of power to start a drive */
extra_flags |= CAM_HIGH_POWER;
}
if (load_eject != 0)
scsi_cmd->how |= SSS_LOEJ;
if (immediate != 0)
scsi_cmd->byte2 |= SSS_IMMED;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_NONE | extra_flags,
tag_action,
/*data_ptr*/NULL,
/*dxfer_len*/0,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_read_attribute(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint8_t service_action,
uint32_t element, uint8_t elem_type, int logical_volume,
int partition, uint32_t first_attribute, int cache,
uint8_t *data_ptr, uint32_t length, int sense_len,
uint32_t timeout)
{
struct scsi_read_attribute *scsi_cmd;
scsi_cmd = (struct scsi_read_attribute *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = READ_ATTRIBUTE;
scsi_cmd->service_action = service_action;
scsi_ulto2b(element, scsi_cmd->element);
scsi_cmd->elem_type = elem_type;
scsi_cmd->logical_volume = logical_volume;
scsi_cmd->partition = partition;
scsi_ulto2b(first_attribute, scsi_cmd->first_attribute);
scsi_ulto4b(length, scsi_cmd->length);
if (cache != 0)
scsi_cmd->cache |= SRA_CACHE;
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
/*data_ptr*/data_ptr,
/*dxfer_len*/length,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_write_attribute(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint32_t element, int logical_volume,
int partition, int wtc, uint8_t *data_ptr,
uint32_t length, int sense_len, uint32_t timeout)
{
struct scsi_write_attribute *scsi_cmd;
scsi_cmd = (struct scsi_write_attribute *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = WRITE_ATTRIBUTE;
if (wtc != 0)
scsi_cmd->byte2 = SWA_WTC;
scsi_ulto3b(element, scsi_cmd->element);
scsi_cmd->logical_volume = logical_volume;
scsi_cmd->partition = partition;
scsi_ulto4b(length, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_OUT,
tag_action,
/*data_ptr*/data_ptr,
/*dxfer_len*/length,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_persistent_reserve_in(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int service_action,
uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
int timeout)
{
struct scsi_per_res_in *scsi_cmd;
scsi_cmd = (struct scsi_per_res_in *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = PERSISTENT_RES_IN;
scsi_cmd->action = service_action;
scsi_ulto2b(dxfer_len, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
data_ptr,
dxfer_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_persistent_reserve_out(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int service_action,
int scope, int res_type, uint8_t *data_ptr,
uint32_t dxfer_len, int sense_len, int timeout)
{
struct scsi_per_res_out *scsi_cmd;
scsi_cmd = (struct scsi_per_res_out *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = PERSISTENT_RES_OUT;
scsi_cmd->action = service_action;
scsi_cmd->scope_type = scope | res_type;
scsi_ulto4b(dxfer_len, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_OUT,
tag_action,
/*data_ptr*/data_ptr,
/*dxfer_len*/dxfer_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_security_protocol_in(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint32_t security_protocol,
uint32_t security_protocol_specific, int byte4,
uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
int timeout)
{
struct scsi_security_protocol_in *scsi_cmd;
scsi_cmd = (struct scsi_security_protocol_in *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = SECURITY_PROTOCOL_IN;
scsi_cmd->security_protocol = security_protocol;
scsi_ulto2b(security_protocol_specific,
scsi_cmd->security_protocol_specific);
scsi_cmd->byte4 = byte4;
scsi_ulto4b(dxfer_len, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
data_ptr,
dxfer_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_security_protocol_out(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, uint32_t security_protocol,
uint32_t security_protocol_specific, int byte4,
uint8_t *data_ptr, uint32_t dxfer_len, int sense_len,
int timeout)
{
struct scsi_security_protocol_out *scsi_cmd;
scsi_cmd = (struct scsi_security_protocol_out *)&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = SECURITY_PROTOCOL_OUT;
scsi_cmd->security_protocol = security_protocol;
scsi_ulto2b(security_protocol_specific,
scsi_cmd->security_protocol_specific);
scsi_cmd->byte4 = byte4;
scsi_ulto4b(dxfer_len, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_OUT,
tag_action,
data_ptr,
dxfer_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
void
scsi_report_supported_opcodes(struct ccb_scsiio *csio, uint32_t retries,
void (*cbfcnp)(struct cam_periph *, union ccb *),
uint8_t tag_action, int options, int req_opcode,
int req_service_action, uint8_t *data_ptr,
uint32_t dxfer_len, int sense_len, int timeout)
{
struct scsi_report_supported_opcodes *scsi_cmd;
scsi_cmd = (struct scsi_report_supported_opcodes *)
&csio->cdb_io.cdb_bytes;
bzero(scsi_cmd, sizeof(*scsi_cmd));
scsi_cmd->opcode = MAINTENANCE_IN;
scsi_cmd->service_action = REPORT_SUPPORTED_OPERATION_CODES;
scsi_cmd->options = options;
scsi_cmd->requested_opcode = req_opcode;
scsi_ulto2b(req_service_action, scsi_cmd->requested_service_action);
scsi_ulto4b(dxfer_len, scsi_cmd->length);
cam_fill_csio(csio,
retries,
cbfcnp,
/*flags*/CAM_DIR_IN,
tag_action,
data_ptr,
dxfer_len,
sense_len,
sizeof(*scsi_cmd),
timeout);
}
/*
* Try make as good a match as possible with
* available sub drivers
*/
int
scsi_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
{
struct scsi_inquiry_pattern *entry;
struct scsi_inquiry_data *inq;
entry = (struct scsi_inquiry_pattern *)table_entry;
inq = (struct scsi_inquiry_data *)inqbuffer;
if (((SID_TYPE(inq) == entry->type)
|| (entry->type == T_ANY))
&& (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
: entry->media_type & SIP_MEDIA_FIXED)
&& (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
&& (cam_strmatch(inq->product, entry->product,
sizeof(inq->product)) == 0)
&& (cam_strmatch(inq->revision, entry->revision,
sizeof(inq->revision)) == 0)) {
return (0);
}
return (-1);
}
/*
* Try make as good a match as possible with
* available sub drivers
*/
int
scsi_static_inquiry_match(caddr_t inqbuffer, caddr_t table_entry)
{
struct scsi_static_inquiry_pattern *entry;
struct scsi_inquiry_data *inq;
entry = (struct scsi_static_inquiry_pattern *)table_entry;
inq = (struct scsi_inquiry_data *)inqbuffer;
if (((SID_TYPE(inq) == entry->type)
|| (entry->type == T_ANY))
&& (SID_IS_REMOVABLE(inq) ? entry->media_type & SIP_MEDIA_REMOVABLE
: entry->media_type & SIP_MEDIA_FIXED)
&& (cam_strmatch(inq->vendor, entry->vendor, sizeof(inq->vendor)) == 0)
&& (cam_strmatch(inq->product, entry->product,
sizeof(inq->product)) == 0)
&& (cam_strmatch(inq->revision, entry->revision,
sizeof(inq->revision)) == 0)) {
return (0);
}
return (-1);
}
/**
* Compare two buffers of vpd device descriptors for a match.
*
* \param lhs Pointer to first buffer of descriptors to compare.
* \param lhs_len The length of the first buffer.
* \param rhs Pointer to second buffer of descriptors to compare.
* \param rhs_len The length of the second buffer.
*
* \return 0 on a match, -1 otherwise.
*
* Treat rhs and lhs as arrays of vpd device id descriptors. Walk lhs matching
* against each element in rhs until all data are exhausted or we have found
* a match.
*/
int
scsi_devid_match(uint8_t *lhs, size_t lhs_len, uint8_t *rhs, size_t rhs_len)
{
struct scsi_vpd_id_descriptor *lhs_id;
struct scsi_vpd_id_descriptor *lhs_last;
struct scsi_vpd_id_descriptor *rhs_last;
uint8_t *lhs_end;
uint8_t *rhs_end;
lhs_end = lhs + lhs_len;
rhs_end = rhs + rhs_len;
/*
* rhs_last and lhs_last are the last possible position of a valid
* descriptor assuming it had a zero length identifier. We use
* these variables to insure we can safely dereference the length
* field in our loop termination tests.
*/
lhs_last = (struct scsi_vpd_id_descriptor *)
(lhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
rhs_last = (struct scsi_vpd_id_descriptor *)
(rhs_end - __offsetof(struct scsi_vpd_id_descriptor, identifier));
lhs_id = (struct scsi_vpd_id_descriptor *)lhs;
while (lhs_id <= lhs_last
&& (lhs_id->identifier + lhs_id->length) <= lhs_end) {
struct scsi_vpd_id_descriptor *rhs_id;
rhs_id = (struct scsi_vpd_id_descriptor *)rhs;
while (rhs_id <= rhs_last
&& (rhs_id->identifier + rhs_id->length) <= rhs_end) {
if ((rhs_id->id_type &
(SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK)) ==
(lhs_id->id_type &
(SVPD_ID_ASSOC_MASK | SVPD_ID_TYPE_MASK))
&& rhs_id->length == lhs_id->length
&& memcmp(rhs_id->identifier, lhs_id->identifier,
rhs_id->length) == 0)
return (0);
rhs_id = (struct scsi_vpd_id_descriptor *)
(rhs_id->identifier + rhs_id->length);
}
lhs_id = (struct scsi_vpd_id_descriptor *)
(lhs_id->identifier + lhs_id->length);
}
return (-1);
}
#ifdef _KERNEL
int
scsi_vpd_supported_page(struct cam_periph *periph, uint8_t page_id)
{
struct cam_ed *device;
struct scsi_vpd_supported_pages *vpds;
int i, num_pages;
device = periph->path->device;
vpds = (struct scsi_vpd_supported_pages *)device->supported_vpds;
if (vpds != NULL) {
num_pages = device->supported_vpds_len -
SVPD_SUPPORTED_PAGES_HDR_LEN;
for (i = 0; i < num_pages; i++) {
if (vpds->page_list[i] == page_id)
return (1);
}
}
return (0);
}
static void
init_scsi_delay(void)
{
int delay;
delay = SCSI_DELAY;
TUNABLE_INT_FETCH("kern.cam.scsi_delay", &delay);
if (set_scsi_delay(delay) != 0) {
printf("cam: invalid value for tunable kern.cam.scsi_delay\n");
set_scsi_delay(SCSI_DELAY);
}
}
SYSINIT(scsi_delay, SI_SUB_TUNABLES, SI_ORDER_ANY, init_scsi_delay, NULL);
static int
sysctl_scsi_delay(SYSCTL_HANDLER_ARGS)
{
int error, delay;
delay = scsi_delay;
error = sysctl_handle_int(oidp, &delay, 0, req);
if (error != 0 || req->newptr == NULL)
return (error);
return (set_scsi_delay(delay));
}
SYSCTL_PROC(_kern_cam, OID_AUTO, scsi_delay,
CTLTYPE_INT | CTLFLAG_RWTUN | CTLFLAG_NOFETCH | CTLFLAG_MPSAFE,
0, 0, sysctl_scsi_delay, "I",
"Delay to allow devices to settle after a SCSI bus reset (ms)");
static int
set_scsi_delay(int delay)
{
/*
* If someone sets this to 0, we assume that they want the
* minimum allowable bus settle delay.
*/
if (delay == 0) {
printf("cam: using minimum scsi_delay (%dms)\n",
SCSI_MIN_DELAY);
delay = SCSI_MIN_DELAY;
}
if (delay < SCSI_MIN_DELAY)
return (EINVAL);
scsi_delay = delay;
return (0);
}
#endif /* _KERNEL */