/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2013 George V. Neville-Neil
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* The following set of constants are from Document SFF-8472
* "Diagnostic Monitoring Interface for Optical Transceivers" revision
* 11.3 published by the SFF Committee on June 11, 2013
*
* The SFF standard defines two ranges of addresses, each 255 bytes
* long for the storage of data and diagnostics on cables, such as
* SFP+ optics and TwinAx cables. The ranges are defined in the
* following way:
*
* Base Address 0xa0 (Identification Data)
* 0-95 Serial ID Defined by SFP MSA
* 96-127 Vendor Specific Data
* 128-255 Reserved
*
* Base Address 0xa2 (Diagnostic Data)
* 0-55 Alarm and Warning Thresholds
* 56-95 Cal Constants
* 96-119 Real Time Diagnostic Interface
* 120-127 Vendor Specific
* 128-247 User Writable EEPROM
* 248-255 Vendor Specific
*
* Note that not all addresses are supported. Where support is
* optional this is noted and instructions for checking for the
* support are supplied.
*
* All these values are read across an I2C (i squared C) bus. Any
* device wishing to read these addresses must first have support for
* i2c calls. The Chelsio T4/T5 driver (dev/cxgbe) is one such
* driver.
*/
/* Table 3.1 Two-wire interface ID: Data Fields */
enum {
SFF_8472_BASE = 0xa0, /* Base address for all our queries. */
SFF_8472_ID = 0, /* Transceiver Type (Table 3.2) */
SFF_8472_EXT_ID = 1, /* Extended transceiver type (Table 3.3) */
SFF_8472_CONNECTOR = 2, /* Connector type (Table 3.4) */
SFF_8472_TRANS_START = 3, /* Elec or Optical Compatibility
* (Table 3.5) */
SFF_8472_TRANS_END = 10,
SFF_8472_ENCODING = 11, /* Encoding Code for high speed
* serial encoding algorithm (see
* Table 3.6) */
SFF_8472_BITRATE = 12, /* Nominal signaling rate, units
* of 100MBd. (see details for
* rates > 25.0Gb/s) */
SFF_8472_RATEID = 13, /* Type of rate select
* functionality (see Table
* 3.6a) */
SFF_8472_LEN_SMF_KM = 14, /* Link length supported for single
* mode fiber, units of km */
SFF_8472_LEN_SMF = 15, /* Link length supported for single
* mode fiber, units of 100 m */
SFF_8472_LEN_50UM = 16, /* Link length supported for 50 um
* OM2 fiber, units of 10 m */
SFF_8472_LEN_625UM = 17, /* Link length supported for 62.5
* um OM1 fiber, units of 10 m */
SFF_8472_LEN_OM4 = 18, /* Link length supported for 50um
* OM4 fiber, units of 10m.
* Alternatively copper or direct
* attach cable, units of m */
SFF_8472_LEN_OM3 = 19, /* Link length supported for 50 um OM3 fiber, units of 10 m */
SFF_8472_VENDOR_START = 20, /* Vendor name [Address A0h, Bytes
* 20-35] */
SFF_8472_VENDOR_END = 35,
SFF_8472_TRANS = 36, /* Transceiver Code for electronic
* or optical compatibility (see
* Table 3.5) */
SFF_8472_VENDOR_OUI_START = 37, /* Vendor OUI SFP vendor IEEE
* company ID */
SFF_8472_VENDOR_OUI_END = 39,
SFF_8472_PN_START = 40, /* Vendor PN */
SFF_8472_PN_END = 55,
SFF_8472_REV_START = 56, /* Vendor Revision */
SFF_8472_REV_END = 59,
SFF_8472_WAVELEN_START = 60, /* Wavelength Laser wavelength
* (Passive/Active Cable
* Specification Compliance) */
SFF_8472_WAVELEN_END = 61,
SFF_8472_CC_BASE = 63, /* CC_BASE Check code for Base ID
* Fields (addresses 0 to 62) */
/*
* Extension Fields (optional) check the options before reading other
* addresses.
*/
SFF_8472_OPTIONS_MSB = 64, /* Options Indicates which optional
* transceiver signals are
* implemented */
SFF_8472_OPTIONS_LSB = 65, /* (see Table 3.7) */
SFF_8472_BR_MAX = 66, /* BR max Upper bit rate margin,
* units of % (see details for
* rates > 25.0Gb/s) */
SFF_8472_BR_MIN = 67, /* Lower bit rate margin, units of
* % (see details for rates >
* 25.0Gb/s) */
SFF_8472_SN_START = 68, /* Vendor SN [Address A0h, Bytes 68-83] */
SFF_8472_SN_END = 83,
SFF_8472_DATE_START = 84, /* Date code Vendor’s manufacturing
* date code (see Table 3.8) */
SFF_8472_DATE_END = 91,
SFF_8472_DIAG_TYPE = 92, /* Diagnostic Monitoring Type
* Indicates which type of
* diagnostic monitoring is
* implemented (if any) in the
* transceiver (see Table 3.9)
*/
SFF_8472_ENHANCED = 93, /* Enhanced Options Indicates which
* optional enhanced features are
* implemented (if any) in the
* transceiver (see Table 3.10) */
SFF_8472_COMPLIANCE = 94, /* SFF-8472 Compliance Indicates
* which revision of SFF-8472 the
* transceiver complies with. (see
* Table 3.12)*/
SFF_8472_CC_EXT = 95, /* Check code for the Extended ID
* Fields (addresses 64 to 94)
*/
SFF_8472_VENDOR_RSRVD_START = 96,
SFF_8472_VENDOR_RSRVD_END = 127,
SFF_8472_RESERVED_START = 128,
SFF_8472_RESERVED_END = 255
};
#define SFF_8472_DIAG_IMPL (1 << 6) /* Required to be 1 */
#define SFF_8472_DIAG_INTERNAL (1 << 5) /* Internal measurements. */
#define SFF_8472_DIAG_EXTERNAL (1 << 4) /* External measurements. */
#define SFF_8472_DIAG_POWER (1 << 3) /* Power measurement type */
#define SFF_8472_DIAG_ADDR_CHG (1 << 2) /* Address change required.
* See SFF-8472 doc. */
/*
* Diagnostics are available at the two wire address 0xa2. All
* diagnostics are OPTIONAL so you should check 0xa0 registers 92 to
* see which, if any are supported.
*/
enum {SFF_8472_DIAG = 0xa2}; /* Base address for diagnostics. */
/*
* Table 3.15 Alarm and Warning Thresholds All values are 2 bytes
* and MUST be read in a single read operation starting at the MSB
*/
enum {
SFF_8472_TEMP_HIGH_ALM = 0, /* Temp High Alarm */
SFF_8472_TEMP_LOW_ALM = 2, /* Temp Low Alarm */
SFF_8472_TEMP_HIGH_WARN = 4, /* Temp High Warning */
SFF_8472_TEMP_LOW_WARN = 6, /* Temp Low Warning */
SFF_8472_VOLTAGE_HIGH_ALM = 8, /* Voltage High Alarm */
SFF_8472_VOLTAGE_LOW_ALM = 10, /* Voltage Low Alarm */
SFF_8472_VOLTAGE_HIGH_WARN = 12, /* Voltage High Warning */
SFF_8472_VOLTAGE_LOW_WARN = 14, /* Voltage Low Warning */
SFF_8472_BIAS_HIGH_ALM = 16, /* Bias High Alarm */
SFF_8472_BIAS_LOW_ALM = 18, /* Bias Low Alarm */
SFF_8472_BIAS_HIGH_WARN = 20, /* Bias High Warning */
SFF_8472_BIAS_LOW_WARN = 22, /* Bias Low Warning */
SFF_8472_TX_POWER_HIGH_ALM = 24, /* TX Power High Alarm */
SFF_8472_TX_POWER_LOW_ALM = 26, /* TX Power Low Alarm */
SFF_8472_TX_POWER_HIGH_WARN = 28, /* TX Power High Warning */
SFF_8472_TX_POWER_LOW_WARN = 30, /* TX Power Low Warning */
SFF_8472_RX_POWER_HIGH_ALM = 32, /* RX Power High Alarm */
SFF_8472_RX_POWER_LOW_ALM = 34, /* RX Power Low Alarm */
SFF_8472_RX_POWER_HIGH_WARN = 36, /* RX Power High Warning */
SFF_8472_RX_POWER_LOW_WARN = 38, /* RX Power Low Warning */
SFF_8472_RX_POWER4 = 56, /* Rx_PWR(4) Single precision
* floating point calibration data
* - Rx optical power. Bit 7 of
* byte 56 is MSB. Bit 0 of byte
* 59 is LSB. Rx_PWR(4) should be
* set to zero for “internally
* calibrated” devices. */
SFF_8472_RX_POWER3 = 60, /* Rx_PWR(3) Single precision
* floating point calibration data
* - Rx optical power. Bit 7 of
* byte 60 is MSB. Bit 0 of byte 63
* is LSB. Rx_PWR(3) should be set
* to zero for “internally
* calibrated” devices.*/
SFF_8472_RX_POWER2 = 64, /* Rx_PWR(2) Single precision
* floating point calibration data,
* Rx optical power. Bit 7 of byte
* 64 is MSB, bit 0 of byte 67 is
* LSB. Rx_PWR(2) should be set to
* zero for “internally calibrated”
* devices. */
SFF_8472_RX_POWER1 = 68, /* Rx_PWR(1) Single precision
* floating point calibration data,
* Rx optical power. Bit 7 of byte
* 68 is MSB, bit 0 of byte 71 is
* LSB. Rx_PWR(1) should be set to
* 1 for “internally calibrated”
* devices. */
SFF_8472_RX_POWER0 = 72, /* Rx_PWR(0) Single precision
* floating point calibration data,
* Rx optical power. Bit 7 of byte
* 72 is MSB, bit 0 of byte 75 is
* LSB. Rx_PWR(0) should be set to
* zero for “internally calibrated”
* devices. */
SFF_8472_TX_I_SLOPE = 76, /* Tx_I(Slope) Fixed decimal
* (unsigned) calibration data,
* laser bias current. Bit 7 of
* byte 76 is MSB, bit 0 of byte 77
* is LSB. Tx_I(Slope) should be
* set to 1 for “internally
* calibrated” devices. */
SFF_8472_TX_I_OFFSET = 78, /* Tx_I(Offset) Fixed decimal
* (signed two’s complement)
* calibration data, laser bias
* current. Bit 7 of byte 78 is
* MSB, bit 0 of byte 79 is
* LSB. Tx_I(Offset) should be set
* to zero for “internally
* calibrated” devices. */
SFF_8472_TX_POWER_SLOPE = 80, /* Tx_PWR(Slope) Fixed decimal
* (unsigned) calibration data,
* transmitter coupled output
* power. Bit 7 of byte 80 is MSB,
* bit 0 of byte 81 is LSB.
* Tx_PWR(Slope) should be set to 1
* for “internally calibrated”
* devices. */
SFF_8472_TX_POWER_OFFSET = 82, /* Tx_PWR(Offset) Fixed decimal
* (signed two’s complement)
* calibration data, transmitter
* coupled output power. Bit 7 of
* byte 82 is MSB, bit 0 of byte 83
* is LSB. Tx_PWR(Offset) should be
* set to zero for “internally
* calibrated” devices. */
SFF_8472_T_SLOPE = 84, /* T (Slope) Fixed decimal
* (unsigned) calibration data,
* internal module temperature. Bit
* 7 of byte 84 is MSB, bit 0 of
* byte 85 is LSB. T(Slope) should
* be set to 1 for “internally
* calibrated” devices. */
SFF_8472_T_OFFSET = 86, /* T (Offset) Fixed decimal (signed
* two’s complement) calibration
* data, internal module
* temperature. Bit 7 of byte 86 is
* MSB, bit 0 of byte 87 is LSB.
* T(Offset) should be set to zero
* for “internally calibrated”
* devices. */
SFF_8472_V_SLOPE = 88, /* V (Slope) Fixed decimal
* (unsigned) calibration data,
* internal module supply
* voltage. Bit 7 of byte 88 is
* MSB, bit 0 of byte 89 is
* LSB. V(Slope) should be set to 1
* for “internally calibrated”
* devices. */
SFF_8472_V_OFFSET = 90, /* V (Offset) Fixed decimal (signed
* two’s complement) calibration
* data, internal module supply
* voltage. Bit 7 of byte 90 is
* MSB. Bit 0 of byte 91 is
* LSB. V(Offset) should be set to
* zero for “internally calibrated”
* devices. */
SFF_8472_CHECKSUM = 95, /* Checksum Byte 95 contains the
* low order 8 bits of the sum of
* bytes 0 – 94. */
/* Internal measurements. */
SFF_8472_TEMP = 96, /* Internally measured module temperature. */
SFF_8472_VCC = 98, /* Internally measured supply
* voltage in transceiver.
*/
SFF_8472_TX_BIAS = 100, /* Internally measured TX Bias Current. */
SFF_8472_TX_POWER = 102, /* Measured TX output power. */
SFF_8472_RX_POWER = 104, /* Measured RX input power. */
SFF_8472_STATUS = 110 /* See below */
};
/* Status Bits Described */
/*
* TX Disable State Digital state of the TX Disable Input Pin. Updated
* within 100ms of change on pin.
*/
#define SFF_8472_STATUS_TX_DISABLE (1 << 7)
/*
* Select Read/write bit that allows software disable of
* laser. Writing ‘1’ disables laser. See Table 3.11 for
* enable/disable timing requirements. This bit is “OR”d with the hard
* TX_DISABLE pin value. Note, per SFP MSA TX_DISABLE pin is default
* enabled unless pulled low by hardware. If Soft TX Disable is not
* implemented, the transceiver ignores the value of this bit. Default
* power up value is zero/low.
*/
#define SFF_8472_STATUS_SOFT_TX_DISABLE (1 << 6)
/*
* RS(1) State Digital state of SFP input pin AS(1) per SFF-8079 or
* RS(1) per SFF-8431. Updated within 100ms of change on pin. See A2h
* Byte 118, Bit 3 for Soft RS(1) Select control information.
*/
#define SFF_8472_RS_STATE (1 << 5)
/*
* Rate_Select State [aka. “RS(0)”] Digital state of the SFP
* Rate_Select Input Pin. Updated within 100ms of change on pin. Note:
* This pin is also known as AS(0) in SFF-8079 and RS(0) in SFF-8431.
*/
#define SFF_8472_STATUS_SELECT_STATE (1 << 4)
/*
* Read/write bit that allows software rate select control. Writing
* ‘1’ selects full bandwidth operation. This bit is “OR’d with the
* hard Rate_Select, AS(0) or RS(0) pin value. See Table 3.11 for
* timing requirements. Default at power up is logic zero/low. If Soft
* Rate Select is not implemented, the transceiver ignores the value
* of this bit. Note: Specific transceiver behaviors of this bit are
* identified in Table 3.6a and referenced documents. See Table 3.18a,
* byte 118, bit 3 for Soft RS(1) Select.
*/
#define SFF_8472_STATUS_SOFT_RATE_SELECT (1 << 3)
/*
* TX Fault State Digital state of the TX Fault Output Pin. Updated
* within 100ms of change on pin.
*/
#define SFF_8472_STATUS_TX_FAULT_STATE (1 << 2)
/*
* Digital state of the RX_LOS Output Pin. Updated within 100ms of
* change on pin.
*/
#define SFF_8472_STATUS_RX_LOS (1 << 1)
/*
* Indicates transceiver has achieved power up and data is ready. Bit
* remains high until data is ready to be read at which time the
* device sets the bit low.
*/
#define SFF_8472_STATUS_DATA_READY (1 << 0)
/*
* Table 3.2 Identifier values.
* Identifier constants has taken from SFF-8024 rev 4.6 table 4.1
* (as referenced by table 3.2 footer)
* */
enum {
SFF_8024_ID_UNKNOWN = 0x0, /* Unknown or unspecified */
SFF_8024_ID_GBIC = 0x1, /* GBIC */
SFF_8024_ID_SFF = 0x2, /* Module soldered to motherboard (ex: SFF)*/
SFF_8024_ID_SFP = 0x3, /* SFP or SFP “Plus” */
SFF_8024_ID_XBI = 0x4, /* 300 pin XBI */
SFF_8024_ID_XENPAK = 0x5, /* Xenpak */
SFF_8024_ID_XFP = 0x6, /* XFP */
SFF_8024_ID_XFF = 0x7, /* XFF */
SFF_8024_ID_XFPE = 0x8, /* XFP-E */
SFF_8024_ID_XPAK = 0x9, /* XPAk */
SFF_8024_ID_X2 = 0xA, /* X2 */
SFF_8024_ID_DWDM_SFP = 0xB, /* DWDM-SFP */
SFF_8024_ID_QSFP = 0xC, /* QSFP */
SFF_8024_ID_QSFPPLUS = 0xD, /* QSFP+ or later */
SFF_8024_ID_CXP = 0xE, /* CXP */
SFF_8024_ID_HD4X = 0xF, /* Shielded Mini Multilane HD 4X */
SFF_8024_ID_HD8X = 0x10, /* Shielded Mini Multilane HD 8X */
SFF_8024_ID_QSFP28 = 0x11, /* QSFP28 or later */
SFF_8024_ID_CXP2 = 0x12, /* CXP2 (aka CXP28) */
SFF_8024_ID_CDFP = 0x13, /* CDFP (Style 1/Style 2) */
SFF_8024_ID_SMM4 = 0x14, /* Shielded Mini Multilate HD 4X Fanout */
SFF_8024_ID_SMM8 = 0x15, /* Shielded Mini Multilate HD 8X Fanout */
SFF_8024_ID_CDFP3 = 0x16, /* CDFP (Style3) */
SFF_8024_ID_MICROQSFP = 0x17, /* microQSFP */
SFF_8024_ID_QSFP_DD = 0x18, /* QSFP-DD 8X Pluggable Transceiver */
SFF_8024_ID_OSFP8X = 0x19, /* OSFP 8X Pluggable Transceiver */
SFF_8024_ID_SFP_DD = 0x1A, /* SFP-DD 2X Pluggable Transceiver */
SFF_8024_ID_DSFP = 0x1B, /* DSFP Dual SFF Pluggable Transceiver */
SFF_8024_ID_X4ML = 0x1C, /* x4 MiniLink/OcuLink */
SFF_8024_ID_X8ML = 0x1D, /* x8 MiniLink */
SFF_8024_ID_QSFP_CMIS = 0x1E, /* QSFP+ or later w/ Common Management
Interface Specification */
SFF_8024_ID_LAST = SFF_8024_ID_QSFP_CMIS
};
static const char *sff_8024_id[SFF_8024_ID_LAST + 1] = {
"Unknown",
"GBIC",
"SFF",
"SFP/SFP+/SFP28",
"XBI",
"Xenpak",
"XFP",
"XFF",
"XFP-E",
"XPAK",
"X2",
"DWDM-SFP/SFP+",
"QSFP",
"QSFP+",
"CXP",
"HD4X",
"HD8X",
"QSFP28",
"CXP2",
"CDFP",
"SMM4",
"SMM8",
"CDFP3",
"microQSFP",
"QSFP-DD",
"QSFP8X",
"SFP-DD",
"DSFP",
"x4MiniLink/OcuLink",
"x8MiniLink",
"QSFP+(CIMS)"
};
/* Keep compatibility with old definitions */
#define SFF_8472_ID_UNKNOWN SFF_8024_ID_UNKNOWN
#define SFF_8472_ID_GBIC SFF_8024_ID_GBIC
#define SFF_8472_ID_SFF SFF_8024_ID_SFF
#define SFF_8472_ID_SFP SFF_8024_ID_SFP
#define SFF_8472_ID_XBI SFF_8024_ID_XBI
#define SFF_8472_ID_XENPAK SFF_8024_ID_XENPAK
#define SFF_8472_ID_XFP SFF_8024_ID_XFP
#define SFF_8472_ID_XFF SFF_8024_ID_XFF
#define SFF_8472_ID_XFPE SFF_8024_ID_XFPE
#define SFF_8472_ID_XPAK SFF_8024_ID_XPAK
#define SFF_8472_ID_X2 SFF_8024_ID_X2
#define SFF_8472_ID_DWDM_SFP SFF_8024_ID_DWDM_SFP
#define SFF_8472_ID_QSFP SFF_8024_ID_QSFP
#define SFF_8472_ID_LAST SFF_8024_ID_LAST
#define sff_8472_id sff_8024_id
/*
* Table 3.9 Diagnostic Monitoring Type (byte 92)
* bits described.
*/
/*
* Digital diagnostic monitoring implemented.
* Set to 1 for transceivers implementing DDM.
*/
#define SFF_8472_DDM_DONE (1 << 6)
/*
* Measurements are internally calibrated.
*/
#define SFF_8472_DDM_INTERNAL (1 << 5)
/*
* Measurements are externally calibrated.
*/
#define SFF_8472_DDM_EXTERNAL (1 << 4)
/*
* Received power measurement type
* 0 = OMA, 1 = average power
*/
#define SFF_8472_DDM_PMTYPE (1 << 3)
/* Table 3.13 and 3.14 Temperature Conversion Values */
#define SFF_8472_TEMP_SIGN (1 << 15)
#define SFF_8472_TEMP_SHIFT 8
#define SFF_8472_TEMP_MSK 0xEF00
#define SFF_8472_TEMP_FRAC 0x00FF
/* Internal Callibration Conversion factors */
/*
* Represented as a 16 bit unsigned integer with the voltage defined
* as the full 16 bit value (0 – 65535) with LSB equal to 100 uVolt,
* yielding a total range of 0 to +6.55 Volts.
*/
#define SFF_8472_VCC_FACTOR 10000.0
/*
* Represented as a 16 bit unsigned integer with the current defined
* as the full 16 bit value (0 – 65535) with LSB equal to 2 uA,
* yielding a total range of 0 to 131 mA.
*/
#define SFF_8472_BIAS_FACTOR 2000.0
/*
* Represented as a 16 bit unsigned integer with the power defined as
* the full 16 bit value (0 – 65535) with LSB equal to 0.1 uW,
* yielding a total range of 0 to 6.5535 mW (~ -40 to +8.2 dBm).
*/
#define SFF_8472_POWER_FACTOR 10000.0