/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2013 The FreeBSD Foundation
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/bus.h>
#include <sys/interrupt.h>
#include <sys/kernel.h>
#include <sys/ktr.h>
#include <sys/limits.h>
#include <sys/lock.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/proc.h>
#include <sys/rwlock.h>
#include <sys/rman.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/uio.h>
#include <sys/vmem.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <vm/vm_pager.h>
#include <vm/vm_map.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/atomic.h>
#include <machine/bus.h>
#include <machine/md_var.h>
#include <machine/specialreg.h>
#include <x86/include/busdma_impl.h>
#include <dev/iommu/busdma_iommu.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/intel_dmar.h>
static MALLOC_DEFINE(M_DMAR_CTX, "dmar_ctx", "Intel DMAR Context");
static MALLOC_DEFINE(M_DMAR_DOMAIN, "dmar_dom", "Intel DMAR Domain");
static void dmar_unref_domain_locked(struct dmar_unit *dmar,
struct dmar_domain *domain);
static void dmar_domain_destroy(struct dmar_domain *domain);
static void
dmar_ensure_ctx_page(struct dmar_unit *dmar, int bus)
{
struct sf_buf *sf;
dmar_root_entry_t *re;
vm_page_t ctxm;
/*
* Allocated context page must be linked.
*/
ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, IOMMU_PGF_NOALLOC);
if (ctxm != NULL)
return;
/*
* Page not present, allocate and link. Note that other
* thread might execute this sequence in parallel. This
* should be safe, because the context entries written by both
* threads are equal.
*/
TD_PREP_PINNED_ASSERT;
ctxm = dmar_pgalloc(dmar->ctx_obj, 1 + bus, IOMMU_PGF_ZERO |
IOMMU_PGF_WAITOK);
re = dmar_map_pgtbl(dmar->ctx_obj, 0, IOMMU_PGF_NOALLOC, &sf);
re += bus;
dmar_pte_store(&re->r1, DMAR_ROOT_R1_P | (DMAR_ROOT_R1_CTP_MASK &
VM_PAGE_TO_PHYS(ctxm)));
dmar_flush_root_to_ram(dmar, re);
dmar_unmap_pgtbl(sf);
TD_PINNED_ASSERT;
}
static dmar_ctx_entry_t *
dmar_map_ctx_entry(struct dmar_ctx *ctx, struct sf_buf **sfp)
{
struct dmar_unit *dmar;
dmar_ctx_entry_t *ctxp;
dmar = CTX2DMAR(ctx);
ctxp = dmar_map_pgtbl(dmar->ctx_obj, 1 + PCI_RID2BUS(ctx->context.rid),
IOMMU_PGF_NOALLOC | IOMMU_PGF_WAITOK, sfp);
ctxp += ctx->context.rid & 0xff;
return (ctxp);
}
static void
device_tag_init(struct dmar_ctx *ctx, device_t dev)
{
struct dmar_domain *domain;
bus_addr_t maxaddr;
domain = CTX2DOM(ctx);
maxaddr = MIN(domain->iodom.end, BUS_SPACE_MAXADDR);
ctx->context.tag->common.ref_count = 1; /* Prevent free */
ctx->context.tag->common.impl = &bus_dma_iommu_impl;
ctx->context.tag->common.boundary = 0;
ctx->context.tag->common.lowaddr = maxaddr;
ctx->context.tag->common.highaddr = maxaddr;
ctx->context.tag->common.maxsize = maxaddr;
ctx->context.tag->common.nsegments = BUS_SPACE_UNRESTRICTED;
ctx->context.tag->common.maxsegsz = maxaddr;
ctx->context.tag->ctx = CTX2IOCTX(ctx);
ctx->context.tag->owner = dev;
}
static void
ctx_id_entry_init_one(dmar_ctx_entry_t *ctxp, struct dmar_domain *domain,
vm_page_t ctx_root)
{
/*
* For update due to move, the store is not atomic. It is
* possible that DMAR read upper doubleword, while low
* doubleword is not yet updated. The domain id is stored in
* the upper doubleword, while the table pointer in the lower.
*
* There is no good solution, for the same reason it is wrong
* to clear P bit in the ctx entry for update.
*/
dmar_pte_store1(&ctxp->ctx2, DMAR_CTX2_DID(domain->domain) |
domain->awlvl);
if (ctx_root == NULL) {
dmar_pte_store1(&ctxp->ctx1, DMAR_CTX1_T_PASS | DMAR_CTX1_P);
} else {
dmar_pte_store1(&ctxp->ctx1, DMAR_CTX1_T_UNTR |
(DMAR_CTX1_ASR_MASK & VM_PAGE_TO_PHYS(ctx_root)) |
DMAR_CTX1_P);
}
}
static void
ctx_id_entry_init(struct dmar_ctx *ctx, dmar_ctx_entry_t *ctxp, bool move,
int busno)
{
struct dmar_unit *unit;
struct dmar_domain *domain;
vm_page_t ctx_root;
int i;
domain = CTX2DOM(ctx);
unit = DOM2DMAR(domain);
KASSERT(move || (ctxp->ctx1 == 0 && ctxp->ctx2 == 0),
("dmar%d: initialized ctx entry %d:%d:%d 0x%jx 0x%jx",
unit->iommu.unit, busno, pci_get_slot(ctx->context.tag->owner),
pci_get_function(ctx->context.tag->owner),
ctxp->ctx1, ctxp->ctx2));
if ((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0 &&
(unit->hw_ecap & DMAR_ECAP_PT) != 0) {
KASSERT(domain->pgtbl_obj == NULL,
("ctx %p non-null pgtbl_obj", ctx));
ctx_root = NULL;
} else {
ctx_root = dmar_pgalloc(domain->pgtbl_obj, 0,
IOMMU_PGF_NOALLOC);
}
if (iommu_is_buswide_ctx(DMAR2IOMMU(unit), busno)) {
MPASS(!move);
for (i = 0; i <= PCI_BUSMAX; i++) {
ctx_id_entry_init_one(&ctxp[i], domain, ctx_root);
}
} else {
ctx_id_entry_init_one(ctxp, domain, ctx_root);
}
dmar_flush_ctx_to_ram(unit, ctxp);
}
static int
dmar_flush_for_ctx_entry(struct dmar_unit *dmar, bool force)
{
int error;
/*
* If dmar declares Caching Mode as Set, follow 11.5 "Caching
* Mode Consideration" and do the (global) invalidation of the
* negative TLB entries.
*/
if ((dmar->hw_cap & DMAR_CAP_CM) == 0 && !force)
return (0);
if (dmar->qi_enabled) {
dmar_qi_invalidate_ctx_glob_locked(dmar);
if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0 || force)
dmar_qi_invalidate_iotlb_glob_locked(dmar);
return (0);
}
error = dmar_inv_ctx_glob(dmar);
if (error == 0 && ((dmar->hw_ecap & DMAR_ECAP_DI) != 0 || force))
error = dmar_inv_iotlb_glob(dmar);
return (error);
}
static int
domain_init_rmrr(struct dmar_domain *domain, device_t dev, int bus,
int slot, int func, int dev_domain, int dev_busno,
const void *dev_path, int dev_path_len)
{
struct iommu_map_entries_tailq rmrr_entries;
struct iommu_map_entry *entry, *entry1;
vm_page_t *ma;
iommu_gaddr_t start, end;
vm_pindex_t size, i;
int error, error1;
error = 0;
TAILQ_INIT(&rmrr_entries);
dmar_dev_parse_rmrr(domain, dev_domain, dev_busno, dev_path,
dev_path_len, &rmrr_entries);
TAILQ_FOREACH_SAFE(entry, &rmrr_entries, dmamap_link, entry1) {
/*
* VT-d specification requires that the start of an
* RMRR entry is 4k-aligned. Buggy BIOSes put
* anything into the start and end fields. Truncate
* and round as neccesary.
*
* We also allow the overlapping RMRR entries, see
* iommu_gas_alloc_region().
*/
start = entry->start;
end = entry->end;
if (bootverbose)
printf("dmar%d ctx pci%d:%d:%d RMRR [%#jx, %#jx]\n",
domain->iodom.iommu->unit, bus, slot, func,
(uintmax_t)start, (uintmax_t)end);
entry->start = trunc_page(start);
entry->end = round_page(end);
if (entry->start == entry->end) {
/* Workaround for some AMI (?) BIOSes */
if (bootverbose) {
if (dev != NULL)
device_printf(dev, "");
printf("pci%d:%d:%d ", bus, slot, func);
printf("BIOS bug: dmar%d RMRR "
"region (%jx, %jx) corrected\n",
domain->iodom.iommu->unit, start, end);
}
entry->end += DMAR_PAGE_SIZE * 0x20;
}
size = OFF_TO_IDX(entry->end - entry->start);
ma = malloc(sizeof(vm_page_t) * size, M_TEMP, M_WAITOK);
for (i = 0; i < size; i++) {
ma[i] = vm_page_getfake(entry->start + PAGE_SIZE * i,
VM_MEMATTR_DEFAULT);
}
error1 = iommu_gas_map_region(DOM2IODOM(domain), entry,
IOMMU_MAP_ENTRY_READ | IOMMU_MAP_ENTRY_WRITE,
IOMMU_MF_CANWAIT | IOMMU_MF_RMRR, ma);
/*
* Non-failed RMRR entries are owned by context rb
* tree. Get rid of the failed entry, but do not stop
* the loop. Rest of the parsed RMRR entries are
* loaded and removed on the context destruction.
*/
if (error1 == 0 && entry->end != entry->start) {
IOMMU_LOCK(domain->iodom.iommu);
domain->refs++; /* XXXKIB prevent free */
domain->iodom.flags |= IOMMU_DOMAIN_RMRR;
IOMMU_UNLOCK(domain->iodom.iommu);
} else {
if (error1 != 0) {
if (dev != NULL)
device_printf(dev, "");
printf("pci%d:%d:%d ", bus, slot, func);
printf(
"dmar%d failed to map RMRR region (%jx, %jx) %d\n",
domain->iodom.iommu->unit, start, end,
error1);
error = error1;
}
TAILQ_REMOVE(&rmrr_entries, entry, dmamap_link);
iommu_gas_free_entry(entry);
}
for (i = 0; i < size; i++)
vm_page_putfake(ma[i]);
free(ma, M_TEMP);
}
return (error);
}
/*
* PCI memory address space is shared between memory-mapped devices (MMIO) and
* host memory (which may be remapped by an IOMMU). Device accesses to an
* address within a memory aperture in a PCIe root port will be treated as
* peer-to-peer and not forwarded to an IOMMU. To avoid this, reserve the
* address space of the root port's memory apertures in the address space used
* by the IOMMU for remapping.
*/
static int
dmar_reserve_pci_regions(struct dmar_domain *domain, device_t dev)
{
struct iommu_domain *iodom;
device_t root;
uint32_t val;
uint64_t base, limit;
int error;
iodom = DOM2IODOM(domain);
root = pci_find_pcie_root_port(dev);
if (root == NULL)
return (0);
/* Disable downstream memory */
base = PCI_PPBMEMBASE(0, pci_read_config(root, PCIR_MEMBASE_1, 2));
limit = PCI_PPBMEMLIMIT(0, pci_read_config(root, PCIR_MEMLIMIT_1, 2));
error = iommu_gas_reserve_region_extend(iodom, base, limit + 1);
if (bootverbose || error != 0)
device_printf(dev, "DMAR reserve [%#jx-%#jx] (error %d)\n",
base, limit + 1, error);
if (error != 0)
return (error);
/* Disable downstream prefetchable memory */
val = pci_read_config(root, PCIR_PMBASEL_1, 2);
if (val != 0 || pci_read_config(root, PCIR_PMLIMITL_1, 2) != 0) {
if ((val & PCIM_BRPM_MASK) == PCIM_BRPM_64) {
base = PCI_PPBMEMBASE(
pci_read_config(root, PCIR_PMBASEH_1, 4),
val);
limit = PCI_PPBMEMLIMIT(
pci_read_config(root, PCIR_PMLIMITH_1, 4),
pci_read_config(root, PCIR_PMLIMITL_1, 2));
} else {
base = PCI_PPBMEMBASE(0, val);
limit = PCI_PPBMEMLIMIT(0,
pci_read_config(root, PCIR_PMLIMITL_1, 2));
}
error = iommu_gas_reserve_region_extend(iodom, base,
limit + 1);
if (bootverbose || error != 0)
device_printf(dev, "DMAR reserve [%#jx-%#jx] "
"(error %d)\n", base, limit + 1, error);
if (error != 0)
return (error);
}
return (error);
}
static struct dmar_domain *
dmar_domain_alloc(struct dmar_unit *dmar, bool id_mapped)
{
struct iommu_domain *iodom;
struct iommu_unit *unit;
struct dmar_domain *domain;
int error, id, mgaw;
id = alloc_unr(dmar->domids);
if (id == -1)
return (NULL);
domain = malloc(sizeof(*domain), M_DMAR_DOMAIN, M_WAITOK | M_ZERO);
iodom = DOM2IODOM(domain);
unit = DMAR2IOMMU(dmar);
domain->domain = id;
LIST_INIT(&domain->contexts);
iommu_domain_init(unit, iodom, &dmar_domain_map_ops);
domain->dmar = dmar;
/*
* For now, use the maximal usable physical address of the
* installed memory to calculate the mgaw on id_mapped domain.
* It is useful for the identity mapping, and less so for the
* virtualized bus address space.
*/
domain->iodom.end = id_mapped ? ptoa(Maxmem) : BUS_SPACE_MAXADDR;
mgaw = dmar_maxaddr2mgaw(dmar, domain->iodom.end, !id_mapped);
error = domain_set_agaw(domain, mgaw);
if (error != 0)
goto fail;
if (!id_mapped)
/* Use all supported address space for remapping. */
domain->iodom.end = 1ULL << (domain->agaw - 1);
iommu_gas_init_domain(DOM2IODOM(domain));
if (id_mapped) {
if ((dmar->hw_ecap & DMAR_ECAP_PT) == 0) {
domain->pgtbl_obj = domain_get_idmap_pgtbl(domain,
domain->iodom.end);
}
domain->iodom.flags |= IOMMU_DOMAIN_IDMAP;
} else {
error = domain_alloc_pgtbl(domain);
if (error != 0)
goto fail;
/* Disable local apic region access */
error = iommu_gas_reserve_region(iodom, 0xfee00000,
0xfeefffff + 1, &iodom->msi_entry);
if (error != 0)
goto fail;
}
return (domain);
fail:
dmar_domain_destroy(domain);
return (NULL);
}
static struct dmar_ctx *
dmar_ctx_alloc(struct dmar_domain *domain, uint16_t rid)
{
struct dmar_ctx *ctx;
ctx = malloc(sizeof(*ctx), M_DMAR_CTX, M_WAITOK | M_ZERO);
ctx->context.domain = DOM2IODOM(domain);
ctx->context.tag = malloc(sizeof(struct bus_dma_tag_iommu),
M_DMAR_CTX, M_WAITOK | M_ZERO);
ctx->context.rid = rid;
ctx->refs = 1;
return (ctx);
}
static void
dmar_ctx_link(struct dmar_ctx *ctx)
{
struct dmar_domain *domain;
domain = CTX2DOM(ctx);
IOMMU_ASSERT_LOCKED(domain->iodom.iommu);
KASSERT(domain->refs >= domain->ctx_cnt,
("dom %p ref underflow %d %d", domain, domain->refs,
domain->ctx_cnt));
domain->refs++;
domain->ctx_cnt++;
LIST_INSERT_HEAD(&domain->contexts, ctx, link);
}
static void
dmar_ctx_unlink(struct dmar_ctx *ctx)
{
struct dmar_domain *domain;
domain = CTX2DOM(ctx);
IOMMU_ASSERT_LOCKED(domain->iodom.iommu);
KASSERT(domain->refs > 0,
("domain %p ctx dtr refs %d", domain, domain->refs));
KASSERT(domain->ctx_cnt >= domain->refs,
("domain %p ctx dtr refs %d ctx_cnt %d", domain,
domain->refs, domain->ctx_cnt));
domain->refs--;
domain->ctx_cnt--;
LIST_REMOVE(ctx, link);
}
static void
dmar_domain_destroy(struct dmar_domain *domain)
{
struct iommu_domain *iodom;
struct dmar_unit *dmar;
iodom = DOM2IODOM(domain);
KASSERT(TAILQ_EMPTY(&domain->iodom.unload_entries),
("unfinished unloads %p", domain));
KASSERT(LIST_EMPTY(&domain->contexts),
("destroying dom %p with contexts", domain));
KASSERT(domain->ctx_cnt == 0,
("destroying dom %p with ctx_cnt %d", domain, domain->ctx_cnt));
KASSERT(domain->refs == 0,
("destroying dom %p with refs %d", domain, domain->refs));
if ((domain->iodom.flags & IOMMU_DOMAIN_GAS_INITED) != 0) {
DMAR_DOMAIN_LOCK(domain);
iommu_gas_fini_domain(iodom);
DMAR_DOMAIN_UNLOCK(domain);
}
if ((domain->iodom.flags & IOMMU_DOMAIN_PGTBL_INITED) != 0) {
if (domain->pgtbl_obj != NULL)
DMAR_DOMAIN_PGLOCK(domain);
domain_free_pgtbl(domain);
}
iommu_domain_fini(iodom);
dmar = DOM2DMAR(domain);
free_unr(dmar->domids, domain->domain);
free(domain, M_DMAR_DOMAIN);
}
static struct dmar_ctx *
dmar_get_ctx_for_dev1(struct dmar_unit *dmar, device_t dev, uint16_t rid,
int dev_domain, int dev_busno, const void *dev_path, int dev_path_len,
bool id_mapped, bool rmrr_init)
{
struct dmar_domain *domain, *domain1;
struct dmar_ctx *ctx, *ctx1;
struct iommu_unit *unit __diagused;
dmar_ctx_entry_t *ctxp;
struct sf_buf *sf;
int bus, slot, func, error;
bool enable;
if (dev != NULL) {
bus = pci_get_bus(dev);
slot = pci_get_slot(dev);
func = pci_get_function(dev);
} else {
bus = PCI_RID2BUS(rid);
slot = PCI_RID2SLOT(rid);
func = PCI_RID2FUNC(rid);
}
enable = false;
TD_PREP_PINNED_ASSERT;
unit = DMAR2IOMMU(dmar);
DMAR_LOCK(dmar);
KASSERT(!iommu_is_buswide_ctx(unit, bus) || (slot == 0 && func == 0),
("iommu%d pci%d:%d:%d get_ctx for buswide", dmar->iommu.unit, bus,
slot, func));
ctx = dmar_find_ctx_locked(dmar, rid);
error = 0;
if (ctx == NULL) {
/*
* Perform the allocations which require sleep or have
* higher chance to succeed if the sleep is allowed.
*/
DMAR_UNLOCK(dmar);
dmar_ensure_ctx_page(dmar, PCI_RID2BUS(rid));
domain1 = dmar_domain_alloc(dmar, id_mapped);
if (domain1 == NULL) {
TD_PINNED_ASSERT;
return (NULL);
}
if (!id_mapped) {
error = domain_init_rmrr(domain1, dev, bus,
slot, func, dev_domain, dev_busno, dev_path,
dev_path_len);
if (error == 0 && dev != NULL)
error = dmar_reserve_pci_regions(domain1, dev);
if (error != 0) {
dmar_domain_destroy(domain1);
TD_PINNED_ASSERT;
return (NULL);
}
}
ctx1 = dmar_ctx_alloc(domain1, rid);
ctxp = dmar_map_ctx_entry(ctx1, &sf);
DMAR_LOCK(dmar);
/*
* Recheck the contexts, other thread might have
* already allocated needed one.
*/
ctx = dmar_find_ctx_locked(dmar, rid);
if (ctx == NULL) {
domain = domain1;
ctx = ctx1;
dmar_ctx_link(ctx);
ctx->context.tag->owner = dev;
device_tag_init(ctx, dev);
/*
* This is the first activated context for the
* DMAR unit. Enable the translation after
* everything is set up.
*/
if (LIST_EMPTY(&dmar->domains))
enable = true;
LIST_INSERT_HEAD(&dmar->domains, domain, link);
ctx_id_entry_init(ctx, ctxp, false, bus);
if (dev != NULL) {
device_printf(dev,
"dmar%d pci%d:%d:%d:%d rid %x domain %d mgaw %d "
"agaw %d %s-mapped\n",
dmar->iommu.unit, dmar->segment, bus, slot,
func, rid, domain->domain, domain->mgaw,
domain->agaw, id_mapped ? "id" : "re");
}
dmar_unmap_pgtbl(sf);
} else {
dmar_unmap_pgtbl(sf);
dmar_domain_destroy(domain1);
/* Nothing needs to be done to destroy ctx1. */
free(ctx1, M_DMAR_CTX);
domain = CTX2DOM(ctx);
ctx->refs++; /* tag referenced us */
}
} else {
domain = CTX2DOM(ctx);
if (ctx->context.tag->owner == NULL)
ctx->context.tag->owner = dev;
ctx->refs++; /* tag referenced us */
}
error = dmar_flush_for_ctx_entry(dmar, enable);
if (error != 0) {
dmar_free_ctx_locked(dmar, ctx);
TD_PINNED_ASSERT;
return (NULL);
}
/*
* The dmar lock was potentially dropped between check for the
* empty context list and now. Recheck the state of GCMD_TE
* to avoid unneeded command.
*/
if (enable && !rmrr_init && (dmar->hw_gcmd & DMAR_GCMD_TE) == 0) {
error = dmar_disable_protected_regions(dmar);
if (error != 0)
printf("dmar%d: Failed to disable protected regions\n",
dmar->iommu.unit);
error = dmar_enable_translation(dmar);
if (error == 0) {
if (bootverbose) {
printf("dmar%d: enabled translation\n",
dmar->iommu.unit);
}
} else {
printf("dmar%d: enabling translation failed, "
"error %d\n", dmar->iommu.unit, error);
dmar_free_ctx_locked(dmar, ctx);
TD_PINNED_ASSERT;
return (NULL);
}
}
DMAR_UNLOCK(dmar);
TD_PINNED_ASSERT;
return (ctx);
}
struct dmar_ctx *
dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev, uint16_t rid,
bool id_mapped, bool rmrr_init)
{
int dev_domain, dev_path_len, dev_busno;
dev_domain = pci_get_domain(dev);
dev_path_len = dmar_dev_depth(dev);
ACPI_DMAR_PCI_PATH dev_path[dev_path_len];
dmar_dev_path(dev, &dev_busno, dev_path, dev_path_len);
return (dmar_get_ctx_for_dev1(dmar, dev, rid, dev_domain, dev_busno,
dev_path, dev_path_len, id_mapped, rmrr_init));
}
struct dmar_ctx *
dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid,
int dev_domain, int dev_busno,
const void *dev_path, int dev_path_len,
bool id_mapped, bool rmrr_init)
{
return (dmar_get_ctx_for_dev1(dmar, NULL, rid, dev_domain, dev_busno,
dev_path, dev_path_len, id_mapped, rmrr_init));
}
int
dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx)
{
struct dmar_unit *dmar;
struct dmar_domain *old_domain;
dmar_ctx_entry_t *ctxp;
struct sf_buf *sf;
int error;
dmar = domain->dmar;
old_domain = CTX2DOM(ctx);
if (domain == old_domain)
return (0);
KASSERT(old_domain->iodom.iommu == domain->iodom.iommu,
("domain %p %u moving between dmars %u %u", domain,
domain->domain, old_domain->iodom.iommu->unit,
domain->iodom.iommu->unit));
TD_PREP_PINNED_ASSERT;
ctxp = dmar_map_ctx_entry(ctx, &sf);
DMAR_LOCK(dmar);
dmar_ctx_unlink(ctx);
ctx->context.domain = &domain->iodom;
dmar_ctx_link(ctx);
ctx_id_entry_init(ctx, ctxp, true, PCI_BUSMAX + 100);
dmar_unmap_pgtbl(sf);
error = dmar_flush_for_ctx_entry(dmar, true);
/* If flush failed, rolling back would not work as well. */
printf("dmar%d rid %x domain %d->%d %s-mapped\n",
dmar->iommu.unit, ctx->context.rid, old_domain->domain,
domain->domain, (domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0 ?
"id" : "re");
dmar_unref_domain_locked(dmar, old_domain);
TD_PINNED_ASSERT;
return (error);
}
static void
dmar_unref_domain_locked(struct dmar_unit *dmar, struct dmar_domain *domain)
{
DMAR_ASSERT_LOCKED(dmar);
KASSERT(domain->refs >= 1,
("dmar %d domain %p refs %u", dmar->iommu.unit, domain,
domain->refs));
KASSERT(domain->refs > domain->ctx_cnt,
("dmar %d domain %p refs %d ctx_cnt %d", dmar->iommu.unit, domain,
domain->refs, domain->ctx_cnt));
if (domain->refs > 1) {
domain->refs--;
DMAR_UNLOCK(dmar);
return;
}
KASSERT((domain->iodom.flags & IOMMU_DOMAIN_RMRR) == 0,
("lost ref on RMRR domain %p", domain));
LIST_REMOVE(domain, link);
DMAR_UNLOCK(dmar);
taskqueue_drain(dmar->iommu.delayed_taskqueue,
&domain->iodom.unload_task);
dmar_domain_destroy(domain);
}
void
dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx)
{
struct sf_buf *sf;
dmar_ctx_entry_t *ctxp;
struct dmar_domain *domain;
DMAR_ASSERT_LOCKED(dmar);
KASSERT(ctx->refs >= 1,
("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs));
/*
* If our reference is not last, only the dereference should
* be performed.
*/
if (ctx->refs > 1) {
ctx->refs--;
DMAR_UNLOCK(dmar);
return;
}
KASSERT((ctx->context.flags & IOMMU_CTX_DISABLED) == 0,
("lost ref on disabled ctx %p", ctx));
/*
* Otherwise, the context entry must be cleared before the
* page table is destroyed. The mapping of the context
* entries page could require sleep, unlock the dmar.
*/
DMAR_UNLOCK(dmar);
TD_PREP_PINNED_ASSERT;
ctxp = dmar_map_ctx_entry(ctx, &sf);
DMAR_LOCK(dmar);
KASSERT(ctx->refs >= 1,
("dmar %p ctx %p refs %u", dmar, ctx, ctx->refs));
/*
* Other thread might have referenced the context, in which
* case again only the dereference should be performed.
*/
if (ctx->refs > 1) {
ctx->refs--;
DMAR_UNLOCK(dmar);
dmar_unmap_pgtbl(sf);
TD_PINNED_ASSERT;
return;
}
KASSERT((ctx->context.flags & IOMMU_CTX_DISABLED) == 0,
("lost ref on disabled ctx %p", ctx));
/*
* Clear the context pointer and flush the caches.
* XXXKIB: cannot do this if any RMRR entries are still present.
*/
dmar_pte_clear(&ctxp->ctx1);
ctxp->ctx2 = 0;
dmar_flush_ctx_to_ram(dmar, ctxp);
dmar_inv_ctx_glob(dmar);
if ((dmar->hw_ecap & DMAR_ECAP_DI) != 0) {
if (dmar->qi_enabled)
dmar_qi_invalidate_iotlb_glob_locked(dmar);
else
dmar_inv_iotlb_glob(dmar);
}
dmar_unmap_pgtbl(sf);
domain = CTX2DOM(ctx);
dmar_ctx_unlink(ctx);
free(ctx->context.tag, M_DMAR_CTX);
free(ctx, M_DMAR_CTX);
dmar_unref_domain_locked(dmar, domain);
TD_PINNED_ASSERT;
}
void
dmar_free_ctx(struct dmar_ctx *ctx)
{
struct dmar_unit *dmar;
dmar = CTX2DMAR(ctx);
DMAR_LOCK(dmar);
dmar_free_ctx_locked(dmar, ctx);
}
/*
* Returns with the domain locked.
*/
struct dmar_ctx *
dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid)
{
struct dmar_domain *domain;
struct dmar_ctx *ctx;
DMAR_ASSERT_LOCKED(dmar);
LIST_FOREACH(domain, &dmar->domains, link) {
LIST_FOREACH(ctx, &domain->contexts, link) {
if (ctx->context.rid == rid)
return (ctx);
}
}
return (NULL);
}
void
dmar_domain_free_entry(struct iommu_map_entry *entry, bool free)
{
if ((entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0)
iommu_gas_free_region(entry);
else
iommu_gas_free_space(entry);
if (free)
iommu_gas_free_entry(entry);
else
entry->flags = 0;
}
/*
* If the given value for "free" is true, then the caller must not be using
* the entry's dmamap_link field.
*/
void
iommu_domain_unload_entry(struct iommu_map_entry *entry, bool free,
bool cansleep)
{
struct dmar_domain *domain;
struct dmar_unit *unit;
domain = IODOM2DOM(entry->domain);
unit = DOM2DMAR(domain);
/*
* If "free" is false, then the IOTLB invalidation must be performed
* synchronously. Otherwise, the caller might free the entry before
* dmar_qi_task() is finished processing it.
*/
if (unit->qi_enabled) {
if (free) {
DMAR_LOCK(unit);
dmar_qi_invalidate_locked(domain, entry, true);
DMAR_UNLOCK(unit);
} else {
dmar_qi_invalidate_sync(domain, entry->start,
entry->end - entry->start, cansleep);
dmar_domain_free_entry(entry, false);
}
} else {
domain_flush_iotlb_sync(domain, entry->start, entry->end -
entry->start);
dmar_domain_free_entry(entry, free);
}
}
static bool
dmar_domain_unload_emit_wait(struct dmar_domain *domain,
struct iommu_map_entry *entry)
{
if (TAILQ_NEXT(entry, dmamap_link) == NULL)
return (true);
return (domain->batch_no++ % dmar_batch_coalesce == 0);
}
void
iommu_domain_unload(struct iommu_domain *iodom,
struct iommu_map_entries_tailq *entries, bool cansleep)
{
struct dmar_domain *domain;
struct dmar_unit *unit;
struct iommu_map_entry *entry, *entry1;
int error __diagused;
domain = IODOM2DOM(iodom);
unit = DOM2DMAR(domain);
TAILQ_FOREACH_SAFE(entry, entries, dmamap_link, entry1) {
KASSERT((entry->flags & IOMMU_MAP_ENTRY_MAP) != 0,
("not mapped entry %p %p", domain, entry));
error = iodom->ops->unmap(iodom, entry->start, entry->end -
entry->start, cansleep ? IOMMU_PGF_WAITOK : 0);
KASSERT(error == 0, ("unmap %p error %d", domain, error));
if (!unit->qi_enabled) {
domain_flush_iotlb_sync(domain, entry->start,
entry->end - entry->start);
TAILQ_REMOVE(entries, entry, dmamap_link);
dmar_domain_free_entry(entry, true);
}
}
if (TAILQ_EMPTY(entries))
return;
KASSERT(unit->qi_enabled, ("loaded entry left"));
DMAR_LOCK(unit);
while ((entry = TAILQ_FIRST(entries)) != NULL) {
TAILQ_REMOVE(entries, entry, dmamap_link);
dmar_qi_invalidate_locked(domain, entry,
dmar_domain_unload_emit_wait(domain, entry));
}
DMAR_UNLOCK(unit);
}
struct iommu_ctx *
iommu_get_ctx(struct iommu_unit *iommu, device_t dev, uint16_t rid,
bool id_mapped, bool rmrr_init)
{
struct dmar_unit *dmar;
struct dmar_ctx *ret;
dmar = IOMMU2DMAR(iommu);
ret = dmar_get_ctx_for_dev(dmar, dev, rid, id_mapped, rmrr_init);
return (CTX2IOCTX(ret));
}
void
iommu_free_ctx_locked(struct iommu_unit *iommu, struct iommu_ctx *context)
{
struct dmar_unit *dmar;
struct dmar_ctx *ctx;
dmar = IOMMU2DMAR(iommu);
ctx = IOCTX2CTX(context);
dmar_free_ctx_locked(dmar, ctx);
}
void
iommu_free_ctx(struct iommu_ctx *context)
{
struct dmar_ctx *ctx;
ctx = IOCTX2CTX(context);
dmar_free_ctx(ctx);
}