/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2013-2015 The FreeBSD Foundation
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#ifndef __X86_IOMMU_INTEL_DMAR_H
#define __X86_IOMMU_INTEL_DMAR_H
#include <dev/iommu/iommu.h>
struct dmar_unit;
/*
* Locking annotations:
* (u) - Protected by iommu unit lock
* (d) - Protected by domain lock
* (c) - Immutable after initialization
*/
/*
* The domain abstraction. Most non-constant members of the domain
* are protected by owning dmar unit lock, not by the domain lock.
* Most important, the dmar lock protects the contexts list.
*
* The domain lock protects the address map for the domain, and list
* of unload entries delayed.
*
* Page tables pages and pages content is protected by the vm object
* lock pgtbl_obj, which contains the page tables pages.
*/
struct dmar_domain {
struct iommu_domain iodom;
int domain; /* (c) DID, written in context entry */
int mgaw; /* (c) Real max address width */
int agaw; /* (c) Adjusted guest address width */
int pglvl; /* (c) The pagelevel */
int awlvl; /* (c) The pagelevel as the bitmask,
to set in context entry */
u_int ctx_cnt; /* (u) Number of contexts owned */
u_int refs; /* (u) Refs, including ctx */
struct dmar_unit *dmar; /* (c) */
LIST_ENTRY(dmar_domain) link; /* (u) Member in the dmar list */
LIST_HEAD(, dmar_ctx) contexts; /* (u) */
vm_object_t pgtbl_obj; /* (c) Page table pages */
u_int batch_no;
};
struct dmar_ctx {
struct iommu_ctx context;
uint64_t last_fault_rec[2]; /* Last fault reported */
LIST_ENTRY(dmar_ctx) link; /* (u) Member in the domain list */
u_int refs; /* (u) References from tags */
};
#define DMAR_DOMAIN_PGLOCK(dom) VM_OBJECT_WLOCK((dom)->pgtbl_obj)
#define DMAR_DOMAIN_PGTRYLOCK(dom) VM_OBJECT_TRYWLOCK((dom)->pgtbl_obj)
#define DMAR_DOMAIN_PGUNLOCK(dom) VM_OBJECT_WUNLOCK((dom)->pgtbl_obj)
#define DMAR_DOMAIN_ASSERT_PGLOCKED(dom) \
VM_OBJECT_ASSERT_WLOCKED((dom)->pgtbl_obj)
#define DMAR_DOMAIN_LOCK(dom) mtx_lock(&(dom)->iodom.lock)
#define DMAR_DOMAIN_UNLOCK(dom) mtx_unlock(&(dom)->iodom.lock)
#define DMAR_DOMAIN_ASSERT_LOCKED(dom) mtx_assert(&(dom)->iodom.lock, MA_OWNED)
#define DMAR2IOMMU(dmar) &((dmar)->iommu)
#define IOMMU2DMAR(dmar) \
__containerof((dmar), struct dmar_unit, iommu)
#define DOM2IODOM(domain) &((domain)->iodom)
#define IODOM2DOM(domain) \
__containerof((domain), struct dmar_domain, iodom)
#define CTX2IOCTX(ctx) &((ctx)->context)
#define IOCTX2CTX(ctx) \
__containerof((ctx), struct dmar_ctx, context)
#define CTX2DOM(ctx) IODOM2DOM((ctx)->context.domain)
#define CTX2DMAR(ctx) (CTX2DOM(ctx)->dmar)
#define DOM2DMAR(domain) ((domain)->dmar)
struct dmar_msi_data {
int irq;
int irq_rid;
struct resource *irq_res;
void *intr_handle;
int (*handler)(void *);
int msi_data_reg;
int msi_addr_reg;
int msi_uaddr_reg;
void (*enable_intr)(struct dmar_unit *);
void (*disable_intr)(struct dmar_unit *);
const char *name;
};
#define DMAR_INTR_FAULT 0
#define DMAR_INTR_QI 1
#define DMAR_INTR_TOTAL 2
struct dmar_unit {
struct iommu_unit iommu;
device_t dev;
uint16_t segment;
uint64_t base;
/* Resources */
int reg_rid;
struct resource *regs;
struct dmar_msi_data intrs[DMAR_INTR_TOTAL];
/* Hardware registers cache */
uint32_t hw_ver;
uint64_t hw_cap;
uint64_t hw_ecap;
uint32_t hw_gcmd;
/* Data for being a dmar */
LIST_HEAD(, dmar_domain) domains;
struct unrhdr *domids;
vm_object_t ctx_obj;
u_int barrier_flags;
/* Fault handler data */
struct mtx fault_lock;
uint64_t *fault_log;
int fault_log_head;
int fault_log_tail;
int fault_log_size;
struct task fault_task;
struct taskqueue *fault_taskqueue;
/* QI */
int qi_enabled;
char *inv_queue;
vm_size_t inv_queue_size;
uint32_t inv_queue_avail;
uint32_t inv_queue_tail;
volatile uint32_t inv_waitd_seq_hw; /* hw writes there on wait
descr completion */
uint64_t inv_waitd_seq_hw_phys;
uint32_t inv_waitd_seq; /* next sequence number to use for wait descr */
u_int inv_waitd_gen; /* seq number generation AKA seq overflows */
u_int inv_seq_waiters; /* count of waiters for seq */
u_int inv_queue_full; /* informational counter */
/* IR */
int ir_enabled;
vm_paddr_t irt_phys;
dmar_irte_t *irt;
u_int irte_cnt;
vmem_t *irtids;
/*
* Delayed freeing of map entries queue processing:
*
* tlb_flush_head and tlb_flush_tail are used to implement a FIFO
* queue that supports concurrent dequeues and enqueues. However,
* there can only be a single dequeuer (accessing tlb_flush_head) and
* a single enqueuer (accessing tlb_flush_tail) at a time. Since the
* unit's qi_task is the only dequeuer, it can access tlb_flush_head
* without any locking. In contrast, there may be multiple enqueuers,
* so the enqueuers acquire the iommu unit lock to serialize their
* accesses to tlb_flush_tail.
*
* In this FIFO queue implementation, the key to enabling concurrent
* dequeues and enqueues is that the dequeuer never needs to access
* tlb_flush_tail and the enqueuer never needs to access
* tlb_flush_head. In particular, tlb_flush_head and tlb_flush_tail
* are never NULL, so neither a dequeuer nor an enqueuer ever needs to
* update both. Instead, tlb_flush_head always points to a "zombie"
* struct, which previously held the last dequeued item. Thus, the
* zombie's next field actually points to the struct holding the first
* item in the queue. When an item is dequeued, the current zombie is
* finally freed, and the struct that held the just dequeued item
* becomes the new zombie. When the queue is empty, tlb_flush_tail
* also points to the zombie.
*/
struct iommu_map_entry *tlb_flush_head;
struct iommu_map_entry *tlb_flush_tail;
struct task qi_task;
struct taskqueue *qi_taskqueue;
};
#define DMAR_LOCK(dmar) mtx_lock(&(dmar)->iommu.lock)
#define DMAR_UNLOCK(dmar) mtx_unlock(&(dmar)->iommu.lock)
#define DMAR_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->iommu.lock, MA_OWNED)
#define DMAR_FAULT_LOCK(dmar) mtx_lock_spin(&(dmar)->fault_lock)
#define DMAR_FAULT_UNLOCK(dmar) mtx_unlock_spin(&(dmar)->fault_lock)
#define DMAR_FAULT_ASSERT_LOCKED(dmar) mtx_assert(&(dmar)->fault_lock, MA_OWNED)
#define DMAR_IS_COHERENT(dmar) (((dmar)->hw_ecap & DMAR_ECAP_C) != 0)
#define DMAR_HAS_QI(dmar) (((dmar)->hw_ecap & DMAR_ECAP_QI) != 0)
#define DMAR_X2APIC(dmar) \
(x2apic_mode && ((dmar)->hw_ecap & DMAR_ECAP_EIM) != 0)
/* Barrier ids */
#define DMAR_BARRIER_RMRR 0
#define DMAR_BARRIER_USEQ 1
struct dmar_unit *dmar_find(device_t dev, bool verbose);
struct dmar_unit *dmar_find_hpet(device_t dev, uint16_t *rid);
struct dmar_unit *dmar_find_ioapic(u_int apic_id, uint16_t *rid);
u_int dmar_nd2mask(u_int nd);
bool dmar_pglvl_supported(struct dmar_unit *unit, int pglvl);
int domain_set_agaw(struct dmar_domain *domain, int mgaw);
int dmar_maxaddr2mgaw(struct dmar_unit *unit, iommu_gaddr_t maxaddr,
bool allow_less);
vm_pindex_t pglvl_max_pages(int pglvl);
int domain_is_sp_lvl(struct dmar_domain *domain, int lvl);
iommu_gaddr_t pglvl_page_size(int total_pglvl, int lvl);
iommu_gaddr_t domain_page_size(struct dmar_domain *domain, int lvl);
int calc_am(struct dmar_unit *unit, iommu_gaddr_t base, iommu_gaddr_t size,
iommu_gaddr_t *isizep);
struct vm_page *dmar_pgalloc(vm_object_t obj, vm_pindex_t idx, int flags);
void dmar_pgfree(vm_object_t obj, vm_pindex_t idx, int flags);
void *dmar_map_pgtbl(vm_object_t obj, vm_pindex_t idx, int flags,
struct sf_buf **sf);
void dmar_unmap_pgtbl(struct sf_buf *sf);
int dmar_load_root_entry_ptr(struct dmar_unit *unit);
int dmar_inv_ctx_glob(struct dmar_unit *unit);
int dmar_inv_iotlb_glob(struct dmar_unit *unit);
int dmar_flush_write_bufs(struct dmar_unit *unit);
void dmar_flush_pte_to_ram(struct dmar_unit *unit, dmar_pte_t *dst);
void dmar_flush_ctx_to_ram(struct dmar_unit *unit, dmar_ctx_entry_t *dst);
void dmar_flush_root_to_ram(struct dmar_unit *unit, dmar_root_entry_t *dst);
int dmar_disable_protected_regions(struct dmar_unit *unit);
int dmar_enable_translation(struct dmar_unit *unit);
int dmar_disable_translation(struct dmar_unit *unit);
int dmar_load_irt_ptr(struct dmar_unit *unit);
int dmar_enable_ir(struct dmar_unit *unit);
int dmar_disable_ir(struct dmar_unit *unit);
bool dmar_barrier_enter(struct dmar_unit *dmar, u_int barrier_id);
void dmar_barrier_exit(struct dmar_unit *dmar, u_int barrier_id);
uint64_t dmar_get_timeout(void);
void dmar_update_timeout(uint64_t newval);
int dmar_fault_intr(void *arg);
void dmar_enable_fault_intr(struct dmar_unit *unit);
void dmar_disable_fault_intr(struct dmar_unit *unit);
int dmar_init_fault_log(struct dmar_unit *unit);
void dmar_fini_fault_log(struct dmar_unit *unit);
int dmar_qi_intr(void *arg);
void dmar_enable_qi_intr(struct dmar_unit *unit);
void dmar_disable_qi_intr(struct dmar_unit *unit);
int dmar_init_qi(struct dmar_unit *unit);
void dmar_fini_qi(struct dmar_unit *unit);
void dmar_qi_invalidate_locked(struct dmar_domain *domain,
struct iommu_map_entry *entry, bool emit_wait);
void dmar_qi_invalidate_sync(struct dmar_domain *domain, iommu_gaddr_t start,
iommu_gaddr_t size, bool cansleep);
void dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit);
void dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit);
void dmar_qi_invalidate_iec_glob(struct dmar_unit *unit);
void dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt);
vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain,
iommu_gaddr_t maxaddr);
void put_idmap_pgtbl(vm_object_t obj);
void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base,
iommu_gaddr_t size);
int domain_alloc_pgtbl(struct dmar_domain *domain);
void domain_free_pgtbl(struct dmar_domain *domain);
extern const struct iommu_domain_map_ops dmar_domain_map_ops;
int dmar_dev_depth(device_t child);
void dmar_dev_path(device_t child, int *busno, void *path1, int depth);
struct dmar_ctx *dmar_get_ctx_for_dev(struct dmar_unit *dmar, device_t dev,
uint16_t rid, bool id_mapped, bool rmrr_init);
struct dmar_ctx *dmar_get_ctx_for_devpath(struct dmar_unit *dmar, uint16_t rid,
int dev_domain, int dev_busno, const void *dev_path, int dev_path_len,
bool id_mapped, bool rmrr_init);
int dmar_move_ctx_to_domain(struct dmar_domain *domain, struct dmar_ctx *ctx);
void dmar_free_ctx_locked(struct dmar_unit *dmar, struct dmar_ctx *ctx);
void dmar_free_ctx(struct dmar_ctx *ctx);
struct dmar_ctx *dmar_find_ctx_locked(struct dmar_unit *dmar, uint16_t rid);
void dmar_domain_free_entry(struct iommu_map_entry *entry, bool free);
void dmar_dev_parse_rmrr(struct dmar_domain *domain, int dev_domain,
int dev_busno, const void *dev_path, int dev_path_len,
struct iommu_map_entries_tailq *rmrr_entries);
int dmar_instantiate_rmrr_ctxs(struct iommu_unit *dmar);
void dmar_quirks_post_ident(struct dmar_unit *dmar);
void dmar_quirks_pre_use(struct iommu_unit *dmar);
int dmar_init_irt(struct dmar_unit *unit);
void dmar_fini_irt(struct dmar_unit *unit);
extern iommu_haddr_t dmar_high;
extern int haw;
extern int dmar_tbl_pagecnt;
extern int dmar_batch_coalesce;
static inline uint32_t
dmar_read4(const struct dmar_unit *unit, int reg)
{
return (bus_read_4(unit->regs, reg));
}
static inline uint64_t
dmar_read8(const struct dmar_unit *unit, int reg)
{
#ifdef __i386__
uint32_t high, low;
low = bus_read_4(unit->regs, reg);
high = bus_read_4(unit->regs, reg + 4);
return (low | ((uint64_t)high << 32));
#else
return (bus_read_8(unit->regs, reg));
#endif
}
static inline void
dmar_write4(const struct dmar_unit *unit, int reg, uint32_t val)
{
KASSERT(reg != DMAR_GCMD_REG || (val & DMAR_GCMD_TE) ==
(unit->hw_gcmd & DMAR_GCMD_TE),
("dmar%d clearing TE 0x%08x 0x%08x", unit->iommu.unit,
unit->hw_gcmd, val));
bus_write_4(unit->regs, reg, val);
}
static inline void
dmar_write8(const struct dmar_unit *unit, int reg, uint64_t val)
{
KASSERT(reg != DMAR_GCMD_REG, ("8byte GCMD write"));
#ifdef __i386__
uint32_t high, low;
low = val;
high = val >> 32;
bus_write_4(unit->regs, reg, low);
bus_write_4(unit->regs, reg + 4, high);
#else
bus_write_8(unit->regs, reg, val);
#endif
}
/*
* dmar_pte_store and dmar_pte_clear ensure that on i386, 32bit writes
* are issued in the correct order. For store, the lower word,
* containing the P or R and W bits, is set only after the high word
* is written. For clear, the P bit is cleared first, then the high
* word is cleared.
*
* dmar_pte_update updates the pte. For amd64, the update is atomic.
* For i386, it first disables the entry by clearing the word
* containing the P bit, and then defer to dmar_pte_store. The locked
* cmpxchg8b is probably available on any machine having DMAR support,
* but interrupt translation table may be mapped uncached.
*/
static inline void
dmar_pte_store1(volatile uint64_t *dst, uint64_t val)
{
#ifdef __i386__
volatile uint32_t *p;
uint32_t hi, lo;
hi = val >> 32;
lo = val;
p = (volatile uint32_t *)dst;
*(p + 1) = hi;
*p = lo;
#else
*dst = val;
#endif
}
static inline void
dmar_pte_store(volatile uint64_t *dst, uint64_t val)
{
KASSERT(*dst == 0, ("used pte %p oldval %jx newval %jx",
dst, (uintmax_t)*dst, (uintmax_t)val));
dmar_pte_store1(dst, val);
}
static inline void
dmar_pte_update(volatile uint64_t *dst, uint64_t val)
{
#ifdef __i386__
volatile uint32_t *p;
p = (volatile uint32_t *)dst;
*p = 0;
#endif
dmar_pte_store1(dst, val);
}
static inline void
dmar_pte_clear(volatile uint64_t *dst)
{
#ifdef __i386__
volatile uint32_t *p;
p = (volatile uint32_t *)dst;
*p = 0;
*(p + 1) = 0;
#else
*dst = 0;
#endif
}
extern struct timespec dmar_hw_timeout;
#define DMAR_WAIT_UNTIL(cond) \
{ \
struct timespec last, curr; \
bool forever; \
\
if (dmar_hw_timeout.tv_sec == 0 && \
dmar_hw_timeout.tv_nsec == 0) { \
forever = true; \
} else { \
forever = false; \
nanouptime(&curr); \
timespecadd(&curr, &dmar_hw_timeout, &last); \
} \
for (;;) { \
if (cond) { \
error = 0; \
break; \
} \
nanouptime(&curr); \
if (!forever && timespeccmp(&last, &curr, <)) { \
error = ETIMEDOUT; \
break; \
} \
cpu_spinwait(); \
} \
}
#ifdef INVARIANTS
#define TD_PREP_PINNED_ASSERT \
int old_td_pinned; \
old_td_pinned = curthread->td_pinned
#define TD_PINNED_ASSERT \
KASSERT(curthread->td_pinned == old_td_pinned, \
("pin count leak: %d %d %s:%d", curthread->td_pinned, \
old_td_pinned, __FILE__, __LINE__))
#else
#define TD_PREP_PINNED_ASSERT
#define TD_PINNED_ASSERT
#endif
#endif