/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2013 The FreeBSD Foundation * * This software was developed by Konstantin Belousov <kib@FreeBSD.org> * under sponsorship from the FreeBSD Foundation. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> #include <sys/param.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/bus.h> #include <sys/interrupt.h> #include <sys/kernel.h> #include <sys/ktr.h> #include <sys/lock.h> #include <sys/memdesc.h> #include <sys/mutex.h> #include <sys/proc.h> #include <sys/rwlock.h> #include <sys/rman.h> #include <sys/sf_buf.h> #include <sys/sysctl.h> #include <sys/taskqueue.h> #include <sys/tree.h> #include <sys/uio.h> #include <sys/vmem.h> #include <vm/vm.h> #include <vm/vm_extern.h> #include <vm/vm_kern.h> #include <vm/vm_object.h> #include <vm/vm_page.h> #include <vm/vm_pager.h> #include <vm/vm_map.h> #include <dev/pci/pcireg.h> #include <machine/atomic.h> #include <machine/bus.h> #include <machine/cpu.h> #include <machine/md_var.h> #include <machine/specialreg.h> #include <x86/include/busdma_impl.h> #include <dev/iommu/busdma_iommu.h> #include <x86/iommu/intel_reg.h> #include <x86/iommu/intel_dmar.h> static int domain_unmap_buf_locked(struct dmar_domain *domain, iommu_gaddr_t base, iommu_gaddr_t size, int flags); /* * The cache of the identity mapping page tables for the DMARs. Using * the cache saves significant amount of memory for page tables by * reusing the page tables, since usually DMARs are identical and have * the same capabilities. Still, cache records the information needed * to match DMAR capabilities and page table format, to correctly * handle different DMARs. */ struct idpgtbl { iommu_gaddr_t maxaddr; /* Page table covers the guest address range [0..maxaddr) */ int pglvl; /* Total page table levels ignoring superpages */ int leaf; /* The last materialized page table level, it is non-zero if superpages are supported */ vm_object_t pgtbl_obj; /* The page table pages */ LIST_ENTRY(idpgtbl) link; }; static struct sx idpgtbl_lock; SX_SYSINIT(idpgtbl, &idpgtbl_lock, "idpgtbl"); static LIST_HEAD(, idpgtbl) idpgtbls = LIST_HEAD_INITIALIZER(idpgtbls); static MALLOC_DEFINE(M_DMAR_IDPGTBL, "dmar_idpgtbl", "Intel DMAR Identity mappings cache elements"); /* * Build the next level of the page tables for the identity mapping. * - lvl is the level to build; * - idx is the index of the page table page in the pgtbl_obj, which is * being allocated filled now; * - addr is the starting address in the bus address space which is * mapped by the page table page. */ static void domain_idmap_nextlvl(struct idpgtbl *tbl, int lvl, vm_pindex_t idx, iommu_gaddr_t addr) { vm_page_t m1; dmar_pte_t *pte; struct sf_buf *sf; iommu_gaddr_t f, pg_sz; vm_pindex_t base; int i; VM_OBJECT_ASSERT_LOCKED(tbl->pgtbl_obj); if (addr >= tbl->maxaddr) return; (void)dmar_pgalloc(tbl->pgtbl_obj, idx, IOMMU_PGF_OBJL | IOMMU_PGF_WAITOK | IOMMU_PGF_ZERO); base = idx * DMAR_NPTEPG + 1; /* Index of the first child page of idx */ pg_sz = pglvl_page_size(tbl->pglvl, lvl); if (lvl != tbl->leaf) { for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) domain_idmap_nextlvl(tbl, lvl + 1, base + i, f); } VM_OBJECT_WUNLOCK(tbl->pgtbl_obj); pte = dmar_map_pgtbl(tbl->pgtbl_obj, idx, IOMMU_PGF_WAITOK, &sf); if (lvl == tbl->leaf) { for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) { if (f >= tbl->maxaddr) break; pte[i].pte = (DMAR_PTE_ADDR_MASK & f) | DMAR_PTE_R | DMAR_PTE_W; } } else { for (i = 0, f = addr; i < DMAR_NPTEPG; i++, f += pg_sz) { if (f >= tbl->maxaddr) break; m1 = dmar_pgalloc(tbl->pgtbl_obj, base + i, IOMMU_PGF_NOALLOC); KASSERT(m1 != NULL, ("lost page table page")); pte[i].pte = (DMAR_PTE_ADDR_MASK & VM_PAGE_TO_PHYS(m1)) | DMAR_PTE_R | DMAR_PTE_W; } } /* domain_get_idmap_pgtbl flushes CPU cache if needed. */ dmar_unmap_pgtbl(sf); VM_OBJECT_WLOCK(tbl->pgtbl_obj); } /* * Find a ready and compatible identity-mapping page table in the * cache. If not found, populate the identity-mapping page table for * the context, up to the maxaddr. The maxaddr byte is allowed to be * not mapped, which is aligned with the definition of Maxmem as the * highest usable physical address + 1. If superpages are used, the * maxaddr is typically mapped. */ vm_object_t domain_get_idmap_pgtbl(struct dmar_domain *domain, iommu_gaddr_t maxaddr) { struct dmar_unit *unit; struct idpgtbl *tbl; vm_object_t res; vm_page_t m; int leaf, i; leaf = 0; /* silence gcc */ /* * First, determine where to stop the paging structures. */ for (i = 0; i < domain->pglvl; i++) { if (i == domain->pglvl - 1 || domain_is_sp_lvl(domain, i)) { leaf = i; break; } } /* * Search the cache for a compatible page table. Qualified * page table must map up to maxaddr, its level must be * supported by the DMAR and leaf should be equal to the * calculated value. The later restriction could be lifted * but I believe it is currently impossible to have any * deviations for existing hardware. */ sx_slock(&idpgtbl_lock); LIST_FOREACH(tbl, &idpgtbls, link) { if (tbl->maxaddr >= maxaddr && dmar_pglvl_supported(domain->dmar, tbl->pglvl) && tbl->leaf == leaf) { res = tbl->pgtbl_obj; vm_object_reference(res); sx_sunlock(&idpgtbl_lock); domain->pglvl = tbl->pglvl; /* XXXKIB ? */ goto end; } } /* * Not found in cache, relock the cache into exclusive mode to * be able to add element, and recheck cache again after the * relock. */ sx_sunlock(&idpgtbl_lock); sx_xlock(&idpgtbl_lock); LIST_FOREACH(tbl, &idpgtbls, link) { if (tbl->maxaddr >= maxaddr && dmar_pglvl_supported(domain->dmar, tbl->pglvl) && tbl->leaf == leaf) { res = tbl->pgtbl_obj; vm_object_reference(res); sx_xunlock(&idpgtbl_lock); domain->pglvl = tbl->pglvl; /* XXXKIB ? */ return (res); } } /* * Still not found, create new page table. */ tbl = malloc(sizeof(*tbl), M_DMAR_IDPGTBL, M_WAITOK); tbl->pglvl = domain->pglvl; tbl->leaf = leaf; tbl->maxaddr = maxaddr; tbl->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL, IDX_TO_OFF(pglvl_max_pages(tbl->pglvl)), 0, 0, NULL); VM_OBJECT_WLOCK(tbl->pgtbl_obj); domain_idmap_nextlvl(tbl, 0, 0, 0); VM_OBJECT_WUNLOCK(tbl->pgtbl_obj); LIST_INSERT_HEAD(&idpgtbls, tbl, link); res = tbl->pgtbl_obj; vm_object_reference(res); sx_xunlock(&idpgtbl_lock); end: /* * Table was found or created. * * If DMAR does not snoop paging structures accesses, flush * CPU cache to memory. Note that dmar_unmap_pgtbl() coherent * argument was possibly invalid at the time of the identity * page table creation, since DMAR which was passed at the * time of creation could be coherent, while current DMAR is * not. * * If DMAR cannot look into the chipset write buffer, flush it * as well. */ unit = domain->dmar; if (!DMAR_IS_COHERENT(unit)) { VM_OBJECT_WLOCK(res); for (m = vm_page_lookup(res, 0); m != NULL; m = vm_page_next(m)) pmap_invalidate_cache_pages(&m, 1); VM_OBJECT_WUNLOCK(res); } if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) { DMAR_LOCK(unit); dmar_flush_write_bufs(unit); DMAR_UNLOCK(unit); } return (res); } /* * Return a reference to the identity mapping page table to the cache. */ void put_idmap_pgtbl(vm_object_t obj) { struct idpgtbl *tbl, *tbl1; vm_object_t rmobj; sx_slock(&idpgtbl_lock); KASSERT(obj->ref_count >= 2, ("lost cache reference")); vm_object_deallocate(obj); /* * Cache always owns one last reference on the page table object. * If there is an additional reference, object must stay. */ if (obj->ref_count > 1) { sx_sunlock(&idpgtbl_lock); return; } /* * Cache reference is the last, remove cache element and free * page table object, returning the page table pages to the * system. */ sx_sunlock(&idpgtbl_lock); sx_xlock(&idpgtbl_lock); LIST_FOREACH_SAFE(tbl, &idpgtbls, link, tbl1) { rmobj = tbl->pgtbl_obj; if (rmobj->ref_count == 1) { LIST_REMOVE(tbl, link); atomic_subtract_int(&dmar_tbl_pagecnt, rmobj->resident_page_count); vm_object_deallocate(rmobj); free(tbl, M_DMAR_IDPGTBL); } } sx_xunlock(&idpgtbl_lock); } /* * The core routines to map and unmap host pages at the given guest * address. Support superpages. */ /* * Index of the pte for the guest address base in the page table at * the level lvl. */ static int domain_pgtbl_pte_off(struct dmar_domain *domain, iommu_gaddr_t base, int lvl) { base >>= DMAR_PAGE_SHIFT + (domain->pglvl - lvl - 1) * DMAR_NPTEPGSHIFT; return (base & DMAR_PTEMASK); } /* * Returns the page index of the page table page in the page table * object, which maps the given address base at the page table level * lvl. */ static vm_pindex_t domain_pgtbl_get_pindex(struct dmar_domain *domain, iommu_gaddr_t base, int lvl) { vm_pindex_t idx, pidx; int i; KASSERT(lvl >= 0 && lvl < domain->pglvl, ("wrong lvl %p %d", domain, lvl)); for (pidx = idx = 0, i = 0; i < lvl; i++, pidx = idx) { idx = domain_pgtbl_pte_off(domain, base, i) + pidx * DMAR_NPTEPG + 1; } return (idx); } static dmar_pte_t * domain_pgtbl_map_pte(struct dmar_domain *domain, iommu_gaddr_t base, int lvl, int flags, vm_pindex_t *idxp, struct sf_buf **sf) { vm_page_t m; struct sf_buf *sfp; dmar_pte_t *pte, *ptep; vm_pindex_t idx, idx1; DMAR_DOMAIN_ASSERT_PGLOCKED(domain); KASSERT((flags & IOMMU_PGF_OBJL) != 0, ("lost PGF_OBJL")); idx = domain_pgtbl_get_pindex(domain, base, lvl); if (*sf != NULL && idx == *idxp) { pte = (dmar_pte_t *)sf_buf_kva(*sf); } else { if (*sf != NULL) dmar_unmap_pgtbl(*sf); *idxp = idx; retry: pte = dmar_map_pgtbl(domain->pgtbl_obj, idx, flags, sf); if (pte == NULL) { KASSERT(lvl > 0, ("lost root page table page %p", domain)); /* * Page table page does not exist, allocate * it and create a pte in the preceeding page level * to reference the allocated page table page. */ m = dmar_pgalloc(domain->pgtbl_obj, idx, flags | IOMMU_PGF_ZERO); if (m == NULL) return (NULL); /* * Prevent potential free while pgtbl_obj is * unlocked in the recursive call to * domain_pgtbl_map_pte(), if other thread did * pte write and clean while the lock is * dropped. */ m->ref_count++; sfp = NULL; ptep = domain_pgtbl_map_pte(domain, base, lvl - 1, flags, &idx1, &sfp); if (ptep == NULL) { KASSERT(m->pindex != 0, ("loosing root page %p", domain)); m->ref_count--; dmar_pgfree(domain->pgtbl_obj, m->pindex, flags); return (NULL); } dmar_pte_store(&ptep->pte, DMAR_PTE_R | DMAR_PTE_W | VM_PAGE_TO_PHYS(m)); dmar_flush_pte_to_ram(domain->dmar, ptep); sf_buf_page(sfp)->ref_count += 1; m->ref_count--; dmar_unmap_pgtbl(sfp); /* Only executed once. */ goto retry; } } pte += domain_pgtbl_pte_off(domain, base, lvl); return (pte); } static int domain_map_buf_locked(struct dmar_domain *domain, iommu_gaddr_t base, iommu_gaddr_t size, vm_page_t *ma, uint64_t pflags, int flags) { dmar_pte_t *pte; struct sf_buf *sf; iommu_gaddr_t pg_sz, base1; vm_pindex_t pi, c, idx, run_sz; int lvl; bool superpage; DMAR_DOMAIN_ASSERT_PGLOCKED(domain); base1 = base; flags |= IOMMU_PGF_OBJL; TD_PREP_PINNED_ASSERT; for (sf = NULL, pi = 0; size > 0; base += pg_sz, size -= pg_sz, pi += run_sz) { for (lvl = 0, c = 0, superpage = false;; lvl++) { pg_sz = domain_page_size(domain, lvl); run_sz = pg_sz >> DMAR_PAGE_SHIFT; if (lvl == domain->pglvl - 1) break; /* * Check if the current base suitable for the * superpage mapping. First, verify the level. */ if (!domain_is_sp_lvl(domain, lvl)) continue; /* * Next, look at the size of the mapping and * alignment of both guest and host addresses. */ if (size < pg_sz || (base & (pg_sz - 1)) != 0 || (VM_PAGE_TO_PHYS(ma[pi]) & (pg_sz - 1)) != 0) continue; /* All passed, check host pages contiguouty. */ if (c == 0) { for (c = 1; c < run_sz; c++) { if (VM_PAGE_TO_PHYS(ma[pi + c]) != VM_PAGE_TO_PHYS(ma[pi + c - 1]) + PAGE_SIZE) break; } } if (c >= run_sz) { superpage = true; break; } } KASSERT(size >= pg_sz, ("mapping loop overflow %p %jx %jx %jx", domain, (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz)); KASSERT(pg_sz > 0, ("pg_sz 0 lvl %d", lvl)); pte = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf); if (pte == NULL) { KASSERT((flags & IOMMU_PGF_WAITOK) == 0, ("failed waitable pte alloc %p", domain)); if (sf != NULL) dmar_unmap_pgtbl(sf); domain_unmap_buf_locked(domain, base1, base - base1, flags); TD_PINNED_ASSERT; return (ENOMEM); } dmar_pte_store(&pte->pte, VM_PAGE_TO_PHYS(ma[pi]) | pflags | (superpage ? DMAR_PTE_SP : 0)); dmar_flush_pte_to_ram(domain->dmar, pte); sf_buf_page(sf)->ref_count += 1; } if (sf != NULL) dmar_unmap_pgtbl(sf); TD_PINNED_ASSERT; return (0); } static int domain_map_buf(struct iommu_domain *iodom, iommu_gaddr_t base, iommu_gaddr_t size, vm_page_t *ma, uint64_t eflags, int flags) { struct dmar_domain *domain; struct dmar_unit *unit; uint64_t pflags; int error; pflags = ((eflags & IOMMU_MAP_ENTRY_READ) != 0 ? DMAR_PTE_R : 0) | ((eflags & IOMMU_MAP_ENTRY_WRITE) != 0 ? DMAR_PTE_W : 0) | ((eflags & IOMMU_MAP_ENTRY_SNOOP) != 0 ? DMAR_PTE_SNP : 0) | ((eflags & IOMMU_MAP_ENTRY_TM) != 0 ? DMAR_PTE_TM : 0); domain = IODOM2DOM(iodom); unit = domain->dmar; KASSERT((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) == 0, ("modifying idmap pagetable domain %p", domain)); KASSERT((base & DMAR_PAGE_MASK) == 0, ("non-aligned base %p %jx %jx", domain, (uintmax_t)base, (uintmax_t)size)); KASSERT((size & DMAR_PAGE_MASK) == 0, ("non-aligned size %p %jx %jx", domain, (uintmax_t)base, (uintmax_t)size)); KASSERT(size > 0, ("zero size %p %jx %jx", domain, (uintmax_t)base, (uintmax_t)size)); KASSERT(base < (1ULL << domain->agaw), ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base, (uintmax_t)size, domain->agaw)); KASSERT(base + size < (1ULL << domain->agaw), ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base, (uintmax_t)size, domain->agaw)); KASSERT(base + size > base, ("size overflow %p %jx %jx", domain, (uintmax_t)base, (uintmax_t)size)); KASSERT((pflags & (DMAR_PTE_R | DMAR_PTE_W)) != 0, ("neither read nor write %jx", (uintmax_t)pflags)); KASSERT((pflags & ~(DMAR_PTE_R | DMAR_PTE_W | DMAR_PTE_SNP | DMAR_PTE_TM)) == 0, ("invalid pte flags %jx", (uintmax_t)pflags)); KASSERT((pflags & DMAR_PTE_SNP) == 0 || (unit->hw_ecap & DMAR_ECAP_SC) != 0, ("PTE_SNP for dmar without snoop control %p %jx", domain, (uintmax_t)pflags)); KASSERT((pflags & DMAR_PTE_TM) == 0 || (unit->hw_ecap & DMAR_ECAP_DI) != 0, ("PTE_TM for dmar without DIOTLB %p %jx", domain, (uintmax_t)pflags)); KASSERT((flags & ~IOMMU_PGF_WAITOK) == 0, ("invalid flags %x", flags)); DMAR_DOMAIN_PGLOCK(domain); error = domain_map_buf_locked(domain, base, size, ma, pflags, flags); DMAR_DOMAIN_PGUNLOCK(domain); if (error != 0) return (error); if ((unit->hw_cap & DMAR_CAP_CM) != 0) domain_flush_iotlb_sync(domain, base, size); else if ((unit->hw_cap & DMAR_CAP_RWBF) != 0) { /* See 11.1 Write Buffer Flushing. */ DMAR_LOCK(unit); dmar_flush_write_bufs(unit); DMAR_UNLOCK(unit); } return (0); } static void domain_unmap_clear_pte(struct dmar_domain *domain, iommu_gaddr_t base, int lvl, int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_fs); static void domain_free_pgtbl_pde(struct dmar_domain *domain, iommu_gaddr_t base, int lvl, int flags) { struct sf_buf *sf; dmar_pte_t *pde; vm_pindex_t idx; sf = NULL; pde = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf); domain_unmap_clear_pte(domain, base, lvl, flags, pde, &sf, true); } static void domain_unmap_clear_pte(struct dmar_domain *domain, iommu_gaddr_t base, int lvl, int flags, dmar_pte_t *pte, struct sf_buf **sf, bool free_sf) { vm_page_t m; dmar_pte_clear(&pte->pte); dmar_flush_pte_to_ram(domain->dmar, pte); m = sf_buf_page(*sf); if (free_sf) { dmar_unmap_pgtbl(*sf); *sf = NULL; } m->ref_count--; if (m->ref_count != 0) return; KASSERT(lvl != 0, ("lost reference (lvl) on root pg domain %p base %jx lvl %d", domain, (uintmax_t)base, lvl)); KASSERT(m->pindex != 0, ("lost reference (idx) on root pg domain %p base %jx lvl %d", domain, (uintmax_t)base, lvl)); dmar_pgfree(domain->pgtbl_obj, m->pindex, flags); domain_free_pgtbl_pde(domain, base, lvl - 1, flags); } /* * Assumes that the unmap is never partial. */ static int domain_unmap_buf_locked(struct dmar_domain *domain, iommu_gaddr_t base, iommu_gaddr_t size, int flags) { dmar_pte_t *pte; struct sf_buf *sf; vm_pindex_t idx; iommu_gaddr_t pg_sz; int lvl; DMAR_DOMAIN_ASSERT_PGLOCKED(domain); if (size == 0) return (0); KASSERT((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) == 0, ("modifying idmap pagetable domain %p", domain)); KASSERT((base & DMAR_PAGE_MASK) == 0, ("non-aligned base %p %jx %jx", domain, (uintmax_t)base, (uintmax_t)size)); KASSERT((size & DMAR_PAGE_MASK) == 0, ("non-aligned size %p %jx %jx", domain, (uintmax_t)base, (uintmax_t)size)); KASSERT(base < (1ULL << domain->agaw), ("base too high %p %jx %jx agaw %d", domain, (uintmax_t)base, (uintmax_t)size, domain->agaw)); KASSERT(base + size < (1ULL << domain->agaw), ("end too high %p %jx %jx agaw %d", domain, (uintmax_t)base, (uintmax_t)size, domain->agaw)); KASSERT(base + size > base, ("size overflow %p %jx %jx", domain, (uintmax_t)base, (uintmax_t)size)); KASSERT((flags & ~IOMMU_PGF_WAITOK) == 0, ("invalid flags %x", flags)); pg_sz = 0; /* silence gcc */ flags |= IOMMU_PGF_OBJL; TD_PREP_PINNED_ASSERT; for (sf = NULL; size > 0; base += pg_sz, size -= pg_sz) { for (lvl = 0; lvl < domain->pglvl; lvl++) { if (lvl != domain->pglvl - 1 && !domain_is_sp_lvl(domain, lvl)) continue; pg_sz = domain_page_size(domain, lvl); if (pg_sz > size) continue; pte = domain_pgtbl_map_pte(domain, base, lvl, flags, &idx, &sf); KASSERT(pte != NULL, ("sleeping or page missed %p %jx %d 0x%x", domain, (uintmax_t)base, lvl, flags)); if ((pte->pte & DMAR_PTE_SP) != 0 || lvl == domain->pglvl - 1) { domain_unmap_clear_pte(domain, base, lvl, flags, pte, &sf, false); break; } } KASSERT(size >= pg_sz, ("unmapping loop overflow %p %jx %jx %jx", domain, (uintmax_t)base, (uintmax_t)size, (uintmax_t)pg_sz)); } if (sf != NULL) dmar_unmap_pgtbl(sf); /* * See 11.1 Write Buffer Flushing for an explanation why RWBF * can be ignored there. */ TD_PINNED_ASSERT; return (0); } static int domain_unmap_buf(struct iommu_domain *iodom, iommu_gaddr_t base, iommu_gaddr_t size, int flags) { struct dmar_domain *domain; int error; domain = IODOM2DOM(iodom); DMAR_DOMAIN_PGLOCK(domain); error = domain_unmap_buf_locked(domain, base, size, flags); DMAR_DOMAIN_PGUNLOCK(domain); return (error); } int domain_alloc_pgtbl(struct dmar_domain *domain) { vm_page_t m; KASSERT(domain->pgtbl_obj == NULL, ("already initialized %p", domain)); domain->pgtbl_obj = vm_pager_allocate(OBJT_PHYS, NULL, IDX_TO_OFF(pglvl_max_pages(domain->pglvl)), 0, 0, NULL); DMAR_DOMAIN_PGLOCK(domain); m = dmar_pgalloc(domain->pgtbl_obj, 0, IOMMU_PGF_WAITOK | IOMMU_PGF_ZERO | IOMMU_PGF_OBJL); /* No implicit free of the top level page table page. */ m->ref_count = 1; DMAR_DOMAIN_PGUNLOCK(domain); DMAR_LOCK(domain->dmar); domain->iodom.flags |= IOMMU_DOMAIN_PGTBL_INITED; DMAR_UNLOCK(domain->dmar); return (0); } void domain_free_pgtbl(struct dmar_domain *domain) { vm_object_t obj; vm_page_t m; obj = domain->pgtbl_obj; if (obj == NULL) { KASSERT((domain->dmar->hw_ecap & DMAR_ECAP_PT) != 0 && (domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0, ("lost pagetable object domain %p", domain)); return; } DMAR_DOMAIN_ASSERT_PGLOCKED(domain); domain->pgtbl_obj = NULL; if ((domain->iodom.flags & IOMMU_DOMAIN_IDMAP) != 0) { put_idmap_pgtbl(obj); domain->iodom.flags &= ~IOMMU_DOMAIN_IDMAP; return; } /* Obliterate ref_counts */ VM_OBJECT_ASSERT_WLOCKED(obj); for (m = vm_page_lookup(obj, 0); m != NULL; m = vm_page_next(m)) m->ref_count = 0; VM_OBJECT_WUNLOCK(obj); vm_object_deallocate(obj); } static inline uint64_t domain_wait_iotlb_flush(struct dmar_unit *unit, uint64_t wt, int iro) { uint64_t iotlbr; dmar_write8(unit, iro + DMAR_IOTLB_REG_OFF, DMAR_IOTLB_IVT | DMAR_IOTLB_DR | DMAR_IOTLB_DW | wt); for (;;) { iotlbr = dmar_read8(unit, iro + DMAR_IOTLB_REG_OFF); if ((iotlbr & DMAR_IOTLB_IVT) == 0) break; cpu_spinwait(); } return (iotlbr); } void domain_flush_iotlb_sync(struct dmar_domain *domain, iommu_gaddr_t base, iommu_gaddr_t size) { struct dmar_unit *unit; iommu_gaddr_t isize; uint64_t iotlbr; int am, iro; unit = domain->dmar; KASSERT(!unit->qi_enabled, ("dmar%d: sync iotlb flush call", unit->iommu.unit)); iro = DMAR_ECAP_IRO(unit->hw_ecap) * 16; DMAR_LOCK(unit); if ((unit->hw_cap & DMAR_CAP_PSI) == 0 || size > 2 * 1024 * 1024) { iotlbr = domain_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_DOM | DMAR_IOTLB_DID(domain->domain), iro); KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) != DMAR_IOTLB_IAIG_INVLD, ("dmar%d: invalidation failed %jx", unit->iommu.unit, (uintmax_t)iotlbr)); } else { for (; size > 0; base += isize, size -= isize) { am = calc_am(unit, base, size, &isize); dmar_write8(unit, iro, base | am); iotlbr = domain_wait_iotlb_flush(unit, DMAR_IOTLB_IIRG_PAGE | DMAR_IOTLB_DID(domain->domain), iro); KASSERT((iotlbr & DMAR_IOTLB_IAIG_MASK) != DMAR_IOTLB_IAIG_INVLD, ("dmar%d: PSI invalidation failed " "iotlbr 0x%jx base 0x%jx size 0x%jx am %d", unit->iommu.unit, (uintmax_t)iotlbr, (uintmax_t)base, (uintmax_t)size, am)); /* * Any non-page granularity covers whole guest * address space for the domain. */ if ((iotlbr & DMAR_IOTLB_IAIG_MASK) != DMAR_IOTLB_IAIG_PAGE) break; } } DMAR_UNLOCK(unit); } const struct iommu_domain_map_ops dmar_domain_map_ops = { .map = domain_map_buf, .unmap = domain_unmap_buf, };