/*-
* Copyright (c) 2015 The FreeBSD Foundation
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/lock.h>
#include <sys/malloc.h>
#include <sys/memdesc.h>
#include <sys/mutex.h>
#include <sys/rman.h>
#include <sys/rwlock.h>
#include <sys/sysctl.h>
#include <sys/taskqueue.h>
#include <sys/tree.h>
#include <sys/vmem.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_object.h>
#include <vm/vm_page.h>
#include <dev/pci/pcireg.h>
#include <dev/pci/pcivar.h>
#include <machine/bus.h>
#include <machine/intr_machdep.h>
#include <x86/include/apicreg.h>
#include <x86/include/apicvar.h>
#include <x86/include/busdma_impl.h>
#include <dev/iommu/busdma_iommu.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/intel_dmar.h>
#include <x86/iommu/iommu_intrmap.h>
static struct dmar_unit *dmar_ir_find(device_t src, uint16_t *rid,
int *is_dmar);
static void dmar_ir_program_irte(struct dmar_unit *unit, u_int idx,
uint64_t low, uint16_t rid);
static int dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie);
int
iommu_alloc_msi_intr(device_t src, u_int *cookies, u_int count)
{
struct dmar_unit *unit;
vmem_addr_t vmem_res;
u_int idx, i;
int error;
unit = dmar_ir_find(src, NULL, NULL);
if (unit == NULL || !unit->ir_enabled) {
for (i = 0; i < count; i++)
cookies[i] = -1;
return (EOPNOTSUPP);
}
error = vmem_alloc(unit->irtids, count, M_FIRSTFIT | M_NOWAIT,
&vmem_res);
if (error != 0) {
KASSERT(error != EOPNOTSUPP,
("impossible EOPNOTSUPP from vmem"));
return (error);
}
idx = vmem_res;
for (i = 0; i < count; i++)
cookies[i] = idx + i;
return (0);
}
int
iommu_map_msi_intr(device_t src, u_int cpu, u_int vector, u_int cookie,
uint64_t *addr, uint32_t *data)
{
struct dmar_unit *unit;
uint64_t low;
uint16_t rid;
int is_dmar;
unit = dmar_ir_find(src, &rid, &is_dmar);
if (is_dmar) {
KASSERT(unit == NULL, ("DMAR cannot translate itself"));
/*
* See VT-d specification, 5.1.6 Remapping Hardware -
* Interrupt Programming.
*/
*data = vector;
*addr = MSI_INTEL_ADDR_BASE | ((cpu & 0xff) << 12);
if (x2apic_mode)
*addr |= ((uint64_t)cpu & 0xffffff00) << 32;
else
KASSERT(cpu <= 0xff, ("cpu id too big %d", cpu));
return (0);
}
if (unit == NULL || !unit->ir_enabled || cookie == -1)
return (EOPNOTSUPP);
low = (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) :
DMAR_IRTE1_DST_xAPIC(cpu)) | DMAR_IRTE1_V(vector) |
DMAR_IRTE1_DLM_FM | DMAR_IRTE1_TM_EDGE | DMAR_IRTE1_RH_DIRECT |
DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P;
dmar_ir_program_irte(unit, cookie, low, rid);
if (addr != NULL) {
/*
* See VT-d specification, 5.1.5.2 MSI and MSI-X
* Register Programming.
*/
*addr = MSI_INTEL_ADDR_BASE | ((cookie & 0x7fff) << 5) |
((cookie & 0x8000) << 2) | 0x18;
*data = 0;
}
return (0);
}
int
iommu_unmap_msi_intr(device_t src, u_int cookie)
{
struct dmar_unit *unit;
if (cookie == -1)
return (0);
unit = dmar_ir_find(src, NULL, NULL);
return (dmar_ir_free_irte(unit, cookie));
}
int
iommu_map_ioapic_intr(u_int ioapic_id, u_int cpu, u_int vector, bool edge,
bool activehi, int irq, u_int *cookie, uint32_t *hi, uint32_t *lo)
{
struct dmar_unit *unit;
vmem_addr_t vmem_res;
uint64_t low, iorte;
u_int idx;
int error;
uint16_t rid;
unit = dmar_find_ioapic(ioapic_id, &rid);
if (unit == NULL || !unit->ir_enabled) {
*cookie = -1;
return (EOPNOTSUPP);
}
error = vmem_alloc(unit->irtids, 1, M_FIRSTFIT | M_NOWAIT, &vmem_res);
if (error != 0) {
KASSERT(error != EOPNOTSUPP,
("impossible EOPNOTSUPP from vmem"));
return (error);
}
idx = vmem_res;
low = 0;
switch (irq) {
case IRQ_EXTINT:
low |= DMAR_IRTE1_DLM_ExtINT;
break;
case IRQ_NMI:
low |= DMAR_IRTE1_DLM_NMI;
break;
case IRQ_SMI:
low |= DMAR_IRTE1_DLM_SMI;
break;
default:
KASSERT(vector != 0, ("No vector for IRQ %u", irq));
low |= DMAR_IRTE1_DLM_FM | DMAR_IRTE1_V(vector);
break;
}
low |= (DMAR_X2APIC(unit) ? DMAR_IRTE1_DST_x2APIC(cpu) :
DMAR_IRTE1_DST_xAPIC(cpu)) |
(edge ? DMAR_IRTE1_TM_EDGE : DMAR_IRTE1_TM_LEVEL) |
DMAR_IRTE1_RH_DIRECT | DMAR_IRTE1_DM_PHYSICAL | DMAR_IRTE1_P;
dmar_ir_program_irte(unit, idx, low, rid);
if (hi != NULL) {
/*
* See VT-d specification, 5.1.5.1 I/OxAPIC
* Programming.
*/
iorte = (1ULL << 48) | ((uint64_t)(idx & 0x7fff) << 49) |
((idx & 0x8000) != 0 ? (1 << 11) : 0) |
(edge ? IOART_TRGREDG : IOART_TRGRLVL) |
(activehi ? IOART_INTAHI : IOART_INTALO) |
IOART_DELFIXED | vector;
*hi = iorte >> 32;
*lo = iorte;
}
*cookie = idx;
return (0);
}
int
iommu_unmap_ioapic_intr(u_int ioapic_id, u_int *cookie)
{
struct dmar_unit *unit;
u_int idx;
idx = *cookie;
if (idx == -1)
return (0);
*cookie = -1;
unit = dmar_find_ioapic(ioapic_id, NULL);
KASSERT(unit != NULL && unit->ir_enabled,
("unmap: cookie %d unit %p", idx, unit));
return (dmar_ir_free_irte(unit, idx));
}
static struct dmar_unit *
dmar_ir_find(device_t src, uint16_t *rid, int *is_dmar)
{
devclass_t src_class;
struct dmar_unit *unit;
/*
* We need to determine if the interrupt source generates FSB
* interrupts. If yes, it is either DMAR, in which case
* interrupts are not remapped. Or it is HPET, and interrupts
* are remapped. For HPET, source id is reported by HPET
* record in DMAR ACPI table.
*/
if (is_dmar != NULL)
*is_dmar = FALSE;
src_class = device_get_devclass(src);
if (src_class == devclass_find("dmar")) {
unit = NULL;
if (is_dmar != NULL)
*is_dmar = TRUE;
} else if (src_class == devclass_find("hpet")) {
unit = dmar_find_hpet(src, rid);
} else {
unit = dmar_find(src, bootverbose);
if (unit != NULL && rid != NULL)
iommu_get_requester(src, rid);
}
return (unit);
}
static void
dmar_ir_program_irte(struct dmar_unit *unit, u_int idx, uint64_t low,
uint16_t rid)
{
dmar_irte_t *irte;
uint64_t high;
KASSERT(idx < unit->irte_cnt,
("bad cookie %d %d", idx, unit->irte_cnt));
irte = &(unit->irt[idx]);
high = DMAR_IRTE2_SVT_RID | DMAR_IRTE2_SQ_RID |
DMAR_IRTE2_SID_RID(rid);
if (bootverbose) {
device_printf(unit->dev,
"programming irte[%d] rid %#x high %#jx low %#jx\n",
idx, rid, (uintmax_t)high, (uintmax_t)low);
}
DMAR_LOCK(unit);
if ((irte->irte1 & DMAR_IRTE1_P) != 0) {
/*
* The rte is already valid. Assume that the request
* is to remap the interrupt for balancing. Only low
* word of rte needs to be changed. Assert that the
* high word contains expected value.
*/
KASSERT(irte->irte2 == high,
("irte2 mismatch, %jx %jx", (uintmax_t)irte->irte2,
(uintmax_t)high));
dmar_pte_update(&irte->irte1, low);
} else {
dmar_pte_store(&irte->irte2, high);
dmar_pte_store(&irte->irte1, low);
}
dmar_qi_invalidate_iec(unit, idx, 1);
DMAR_UNLOCK(unit);
}
static int
dmar_ir_free_irte(struct dmar_unit *unit, u_int cookie)
{
dmar_irte_t *irte;
KASSERT(unit != NULL && unit->ir_enabled,
("unmap: cookie %d unit %p", cookie, unit));
KASSERT(cookie < unit->irte_cnt,
("bad cookie %u %u", cookie, unit->irte_cnt));
irte = &(unit->irt[cookie]);
dmar_pte_clear(&irte->irte1);
dmar_pte_clear(&irte->irte2);
DMAR_LOCK(unit);
dmar_qi_invalidate_iec(unit, cookie, 1);
DMAR_UNLOCK(unit);
vmem_free(unit->irtids, cookie, 1);
return (0);
}
static u_int
clp2(u_int v)
{
return (powerof2(v) ? v : 1 << fls(v));
}
int
dmar_init_irt(struct dmar_unit *unit)
{
if ((unit->hw_ecap & DMAR_ECAP_IR) == 0)
return (0);
unit->ir_enabled = 1;
TUNABLE_INT_FETCH("hw.dmar.ir", &unit->ir_enabled);
if (!unit->ir_enabled)
return (0);
if (!unit->qi_enabled) {
unit->ir_enabled = 0;
if (bootverbose)
device_printf(unit->dev,
"QI disabled, disabling interrupt remapping\n");
return (0);
}
unit->irte_cnt = clp2(num_io_irqs);
unit->irt = kmem_alloc_contig(unit->irte_cnt * sizeof(dmar_irte_t),
M_ZERO | M_WAITOK, 0, dmar_high, PAGE_SIZE, 0,
DMAR_IS_COHERENT(unit) ?
VM_MEMATTR_DEFAULT : VM_MEMATTR_UNCACHEABLE);
if (unit->irt == NULL)
return (ENOMEM);
unit->irt_phys = pmap_kextract((vm_offset_t)unit->irt);
unit->irtids = vmem_create("dmarirt", 0, unit->irte_cnt, 1, 0,
M_FIRSTFIT | M_NOWAIT);
DMAR_LOCK(unit);
dmar_load_irt_ptr(unit);
dmar_qi_invalidate_iec_glob(unit);
DMAR_UNLOCK(unit);
/*
* Initialize mappings for already configured interrupt pins.
* Required, because otherwise the interrupts fault without
* irtes.
*/
intr_reprogram();
DMAR_LOCK(unit);
dmar_enable_ir(unit);
DMAR_UNLOCK(unit);
return (0);
}
void
dmar_fini_irt(struct dmar_unit *unit)
{
unit->ir_enabled = 0;
if (unit->irt != NULL) {
dmar_disable_ir(unit);
dmar_qi_invalidate_iec_glob(unit);
vmem_destroy(unit->irtids);
kmem_free(unit->irt, unit->irte_cnt * sizeof(dmar_irte_t));
}
}