/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2013 The FreeBSD Foundation
*
* This software was developed by Konstantin Belousov <kib@FreeBSD.org>
* under sponsorship from the FreeBSD Foundation.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_acpi.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/malloc.h>
#include <sys/memdesc.h>
#include <sys/module.h>
#include <sys/rman.h>
#include <sys/taskqueue.h>
#include <sys/time.h>
#include <sys/tree.h>
#include <sys/vmem.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include <dev/pci/pcireg.h>
#include <machine/bus.h>
#include <machine/cpu.h>
#include <x86/include/busdma_impl.h>
#include <dev/iommu/busdma_iommu.h>
#include <x86/iommu/intel_reg.h>
#include <x86/iommu/intel_dmar.h>
static bool
dmar_qi_seq_processed(const struct dmar_unit *unit,
const struct iommu_qi_genseq *pseq)
{
u_int gen;
gen = unit->inv_waitd_gen;
return (pseq->gen < gen ||
(pseq->gen == gen && pseq->seq <= unit->inv_waitd_seq_hw));
}
static int
dmar_enable_qi(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd |= DMAR_GCMD_QIE;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES)
!= 0));
return (error);
}
static int
dmar_disable_qi(struct dmar_unit *unit)
{
int error;
DMAR_ASSERT_LOCKED(unit);
unit->hw_gcmd &= ~DMAR_GCMD_QIE;
dmar_write4(unit, DMAR_GCMD_REG, unit->hw_gcmd);
DMAR_WAIT_UNTIL(((dmar_read4(unit, DMAR_GSTS_REG) & DMAR_GSTS_QIES)
== 0));
return (error);
}
static void
dmar_qi_advance_tail(struct dmar_unit *unit)
{
DMAR_ASSERT_LOCKED(unit);
dmar_write4(unit, DMAR_IQT_REG, unit->inv_queue_tail);
}
static void
dmar_qi_ensure(struct dmar_unit *unit, int descr_count)
{
uint32_t head;
int bytes;
DMAR_ASSERT_LOCKED(unit);
bytes = descr_count << DMAR_IQ_DESCR_SZ_SHIFT;
for (;;) {
if (bytes <= unit->inv_queue_avail)
break;
/* refill */
head = dmar_read4(unit, DMAR_IQH_REG);
head &= DMAR_IQH_MASK;
unit->inv_queue_avail = head - unit->inv_queue_tail -
DMAR_IQ_DESCR_SZ;
if (head <= unit->inv_queue_tail)
unit->inv_queue_avail += unit->inv_queue_size;
if (bytes <= unit->inv_queue_avail)
break;
/*
* No space in the queue, do busy wait. Hardware must
* make a progress. But first advance the tail to
* inform the descriptor streamer about entries we
* might have already filled, otherwise they could
* clog the whole queue..
*
* See dmar_qi_invalidate_locked() for a discussion
* about data race prevention.
*/
dmar_qi_advance_tail(unit);
unit->inv_queue_full++;
cpu_spinwait();
}
unit->inv_queue_avail -= bytes;
}
static void
dmar_qi_emit(struct dmar_unit *unit, uint64_t data1, uint64_t data2)
{
DMAR_ASSERT_LOCKED(unit);
*(volatile uint64_t *)(unit->inv_queue + unit->inv_queue_tail) = data1;
unit->inv_queue_tail += DMAR_IQ_DESCR_SZ / 2;
KASSERT(unit->inv_queue_tail <= unit->inv_queue_size,
("tail overflow 0x%x 0x%jx", unit->inv_queue_tail,
(uintmax_t)unit->inv_queue_size));
unit->inv_queue_tail &= unit->inv_queue_size - 1;
*(volatile uint64_t *)(unit->inv_queue + unit->inv_queue_tail) = data2;
unit->inv_queue_tail += DMAR_IQ_DESCR_SZ / 2;
KASSERT(unit->inv_queue_tail <= unit->inv_queue_size,
("tail overflow 0x%x 0x%jx", unit->inv_queue_tail,
(uintmax_t)unit->inv_queue_size));
unit->inv_queue_tail &= unit->inv_queue_size - 1;
}
static void
dmar_qi_emit_wait_descr(struct dmar_unit *unit, uint32_t seq, bool intr,
bool memw, bool fence)
{
DMAR_ASSERT_LOCKED(unit);
dmar_qi_emit(unit, DMAR_IQ_DESCR_WAIT_ID |
(intr ? DMAR_IQ_DESCR_WAIT_IF : 0) |
(memw ? DMAR_IQ_DESCR_WAIT_SW : 0) |
(fence ? DMAR_IQ_DESCR_WAIT_FN : 0) |
(memw ? DMAR_IQ_DESCR_WAIT_SD(seq) : 0),
memw ? unit->inv_waitd_seq_hw_phys : 0);
}
static void
dmar_qi_emit_wait_seq(struct dmar_unit *unit, struct iommu_qi_genseq *pseq,
bool emit_wait)
{
struct iommu_qi_genseq gsec;
uint32_t seq;
KASSERT(pseq != NULL, ("wait descriptor with no place for seq"));
DMAR_ASSERT_LOCKED(unit);
if (unit->inv_waitd_seq == 0xffffffff) {
gsec.gen = unit->inv_waitd_gen;
gsec.seq = unit->inv_waitd_seq;
dmar_qi_ensure(unit, 1);
dmar_qi_emit_wait_descr(unit, gsec.seq, false, true, false);
dmar_qi_advance_tail(unit);
while (!dmar_qi_seq_processed(unit, &gsec))
cpu_spinwait();
unit->inv_waitd_gen++;
unit->inv_waitd_seq = 1;
}
seq = unit->inv_waitd_seq++;
pseq->gen = unit->inv_waitd_gen;
pseq->seq = seq;
if (emit_wait) {
dmar_qi_ensure(unit, 1);
dmar_qi_emit_wait_descr(unit, seq, true, true, false);
}
}
/*
* To avoid missed wakeups, callers must increment the unit's waiters count
* before advancing the tail past the wait descriptor.
*/
static void
dmar_qi_wait_for_seq(struct dmar_unit *unit, const struct iommu_qi_genseq *gseq,
bool nowait)
{
DMAR_ASSERT_LOCKED(unit);
KASSERT(unit->inv_seq_waiters > 0, ("%s: no waiters", __func__));
while (!dmar_qi_seq_processed(unit, gseq)) {
if (cold || nowait) {
cpu_spinwait();
} else {
msleep(&unit->inv_seq_waiters, &unit->iommu.lock, 0,
"dmarse", hz);
}
}
unit->inv_seq_waiters--;
}
static void
dmar_qi_invalidate_emit(struct dmar_domain *domain, iommu_gaddr_t base,
iommu_gaddr_t size, struct iommu_qi_genseq *pseq, bool emit_wait)
{
struct dmar_unit *unit;
iommu_gaddr_t isize;
int am;
unit = domain->dmar;
DMAR_ASSERT_LOCKED(unit);
for (; size > 0; base += isize, size -= isize) {
am = calc_am(unit, base, size, &isize);
dmar_qi_ensure(unit, 1);
dmar_qi_emit(unit, DMAR_IQ_DESCR_IOTLB_INV |
DMAR_IQ_DESCR_IOTLB_PAGE | DMAR_IQ_DESCR_IOTLB_DW |
DMAR_IQ_DESCR_IOTLB_DR |
DMAR_IQ_DESCR_IOTLB_DID(domain->domain),
base | am);
}
dmar_qi_emit_wait_seq(unit, pseq, emit_wait);
}
/*
* The caller must not be using the entry's dmamap_link field.
*/
void
dmar_qi_invalidate_locked(struct dmar_domain *domain,
struct iommu_map_entry *entry, bool emit_wait)
{
struct dmar_unit *unit;
unit = domain->dmar;
DMAR_ASSERT_LOCKED(unit);
dmar_qi_invalidate_emit(domain, entry->start, entry->end -
entry->start, &entry->gseq, emit_wait);
/*
* To avoid a data race in dmar_qi_task(), the entry's gseq must be
* initialized before the entry is added to the TLB flush list, and the
* entry must be added to that list before the tail is advanced. More
* precisely, the tail must not be advanced past the wait descriptor
* that will generate the interrupt that schedules dmar_qi_task() for
* execution before the entry is added to the list. While an earlier
* call to dmar_qi_ensure() might have advanced the tail, it will not
* advance it past the wait descriptor.
*
* See the definition of struct dmar_unit for more information on
* synchronization.
*/
entry->tlb_flush_next = NULL;
atomic_store_rel_ptr((uintptr_t *)&unit->tlb_flush_tail->tlb_flush_next,
(uintptr_t)entry);
unit->tlb_flush_tail = entry;
dmar_qi_advance_tail(unit);
}
void
dmar_qi_invalidate_sync(struct dmar_domain *domain, iommu_gaddr_t base,
iommu_gaddr_t size, bool cansleep)
{
struct dmar_unit *unit;
struct iommu_qi_genseq gseq;
unit = domain->dmar;
DMAR_LOCK(unit);
dmar_qi_invalidate_emit(domain, base, size, &gseq, true);
/*
* To avoid a missed wakeup in dmar_qi_task(), the unit's waiters count
* must be incremented before the tail is advanced.
*/
unit->inv_seq_waiters++;
dmar_qi_advance_tail(unit);
dmar_qi_wait_for_seq(unit, &gseq, !cansleep);
DMAR_UNLOCK(unit);
}
void
dmar_qi_invalidate_ctx_glob_locked(struct dmar_unit *unit)
{
struct iommu_qi_genseq gseq;
DMAR_ASSERT_LOCKED(unit);
dmar_qi_ensure(unit, 2);
dmar_qi_emit(unit, DMAR_IQ_DESCR_CTX_INV | DMAR_IQ_DESCR_CTX_GLOB, 0);
dmar_qi_emit_wait_seq(unit, &gseq, true);
/* See dmar_qi_invalidate_sync(). */
unit->inv_seq_waiters++;
dmar_qi_advance_tail(unit);
dmar_qi_wait_for_seq(unit, &gseq, false);
}
void
dmar_qi_invalidate_iotlb_glob_locked(struct dmar_unit *unit)
{
struct iommu_qi_genseq gseq;
DMAR_ASSERT_LOCKED(unit);
dmar_qi_ensure(unit, 2);
dmar_qi_emit(unit, DMAR_IQ_DESCR_IOTLB_INV | DMAR_IQ_DESCR_IOTLB_GLOB |
DMAR_IQ_DESCR_IOTLB_DW | DMAR_IQ_DESCR_IOTLB_DR, 0);
dmar_qi_emit_wait_seq(unit, &gseq, true);
/* See dmar_qi_invalidate_sync(). */
unit->inv_seq_waiters++;
dmar_qi_advance_tail(unit);
dmar_qi_wait_for_seq(unit, &gseq, false);
}
void
dmar_qi_invalidate_iec_glob(struct dmar_unit *unit)
{
struct iommu_qi_genseq gseq;
DMAR_ASSERT_LOCKED(unit);
dmar_qi_ensure(unit, 2);
dmar_qi_emit(unit, DMAR_IQ_DESCR_IEC_INV, 0);
dmar_qi_emit_wait_seq(unit, &gseq, true);
/* See dmar_qi_invalidate_sync(). */
unit->inv_seq_waiters++;
dmar_qi_advance_tail(unit);
dmar_qi_wait_for_seq(unit, &gseq, false);
}
void
dmar_qi_invalidate_iec(struct dmar_unit *unit, u_int start, u_int cnt)
{
struct iommu_qi_genseq gseq;
u_int c, l;
DMAR_ASSERT_LOCKED(unit);
KASSERT(start < unit->irte_cnt && start < start + cnt &&
start + cnt <= unit->irte_cnt,
("inv iec overflow %d %d %d", unit->irte_cnt, start, cnt));
for (; cnt > 0; cnt -= c, start += c) {
l = ffs(start | cnt) - 1;
c = 1 << l;
dmar_qi_ensure(unit, 1);
dmar_qi_emit(unit, DMAR_IQ_DESCR_IEC_INV |
DMAR_IQ_DESCR_IEC_IDX | DMAR_IQ_DESCR_IEC_IIDX(start) |
DMAR_IQ_DESCR_IEC_IM(l), 0);
}
dmar_qi_ensure(unit, 1);
dmar_qi_emit_wait_seq(unit, &gseq, true);
/*
* Since dmar_qi_wait_for_seq() will not sleep, this increment's
* placement relative to advancing the tail doesn't matter.
*/
unit->inv_seq_waiters++;
dmar_qi_advance_tail(unit);
/*
* The caller of the function, in particular,
* dmar_ir_program_irte(), may be called from the context
* where the sleeping is forbidden (in fact, the
* intr_table_lock mutex may be held, locked from
* intr_shuffle_irqs()). Wait for the invalidation completion
* using the busy wait.
*
* The impact on the interrupt input setup code is small, the
* expected overhead is comparable with the chipset register
* read. It is more harmful for the parallel DMA operations,
* since we own the dmar unit lock until whole invalidation
* queue is processed, which includes requests possibly issued
* before our request.
*/
dmar_qi_wait_for_seq(unit, &gseq, true);
}
int
dmar_qi_intr(void *arg)
{
struct dmar_unit *unit;
unit = arg;
KASSERT(unit->qi_enabled, ("dmar%d: QI is not enabled",
unit->iommu.unit));
taskqueue_enqueue(unit->qi_taskqueue, &unit->qi_task);
return (FILTER_HANDLED);
}
static void
dmar_qi_drain_tlb_flush(struct dmar_unit *unit)
{
struct iommu_map_entry *entry, *head;
for (head = unit->tlb_flush_head;; head = entry) {
entry = (struct iommu_map_entry *)
atomic_load_acq_ptr((uintptr_t *)&head->tlb_flush_next);
if (entry == NULL ||
!dmar_qi_seq_processed(unit, &entry->gseq))
break;
unit->tlb_flush_head = entry;
iommu_gas_free_entry(head);
if ((entry->flags & IOMMU_MAP_ENTRY_RMRR) != 0)
iommu_gas_free_region(entry);
else
iommu_gas_free_space(entry);
}
}
static void
dmar_qi_task(void *arg, int pending __unused)
{
struct dmar_unit *unit;
uint32_t ics;
unit = arg;
dmar_qi_drain_tlb_flush(unit);
/*
* Request an interrupt on the completion of the next invalidation
* wait descriptor with the IF field set.
*/
ics = dmar_read4(unit, DMAR_ICS_REG);
if ((ics & DMAR_ICS_IWC) != 0) {
ics = DMAR_ICS_IWC;
dmar_write4(unit, DMAR_ICS_REG, ics);
/*
* Drain a second time in case the DMAR processes an entry
* after the first call and before clearing DMAR_ICS_IWC.
* Otherwise, such entries will linger until a later entry
* that requests an interrupt is processed.
*/
dmar_qi_drain_tlb_flush(unit);
}
if (unit->inv_seq_waiters > 0) {
/*
* Acquire the DMAR lock so that wakeup() is called only after
* the waiter is sleeping.
*/
DMAR_LOCK(unit);
wakeup(&unit->inv_seq_waiters);
DMAR_UNLOCK(unit);
}
}
int
dmar_init_qi(struct dmar_unit *unit)
{
uint64_t iqa;
uint32_t ics;
int qi_sz;
if (!DMAR_HAS_QI(unit) || (unit->hw_cap & DMAR_CAP_CM) != 0)
return (0);
unit->qi_enabled = 1;
TUNABLE_INT_FETCH("hw.dmar.qi", &unit->qi_enabled);
if (!unit->qi_enabled)
return (0);
unit->tlb_flush_head = unit->tlb_flush_tail =
iommu_gas_alloc_entry(NULL, 0);
TASK_INIT(&unit->qi_task, 0, dmar_qi_task, unit);
unit->qi_taskqueue = taskqueue_create_fast("dmarqf", M_WAITOK,
taskqueue_thread_enqueue, &unit->qi_taskqueue);
taskqueue_start_threads(&unit->qi_taskqueue, 1, PI_AV,
"dmar%d qi taskq", unit->iommu.unit);
unit->inv_waitd_gen = 0;
unit->inv_waitd_seq = 1;
qi_sz = DMAR_IQA_QS_DEF;
TUNABLE_INT_FETCH("hw.dmar.qi_size", &qi_sz);
if (qi_sz > DMAR_IQA_QS_MAX)
qi_sz = DMAR_IQA_QS_MAX;
unit->inv_queue_size = (1ULL << qi_sz) * PAGE_SIZE;
/* Reserve one descriptor to prevent wraparound. */
unit->inv_queue_avail = unit->inv_queue_size - DMAR_IQ_DESCR_SZ;
/* The invalidation queue reads by DMARs are always coherent. */
unit->inv_queue = kmem_alloc_contig(unit->inv_queue_size, M_WAITOK |
M_ZERO, 0, dmar_high, PAGE_SIZE, 0, VM_MEMATTR_DEFAULT);
unit->inv_waitd_seq_hw_phys = pmap_kextract(
(vm_offset_t)&unit->inv_waitd_seq_hw);
DMAR_LOCK(unit);
dmar_write8(unit, DMAR_IQT_REG, 0);
iqa = pmap_kextract((uintptr_t)unit->inv_queue);
iqa |= qi_sz;
dmar_write8(unit, DMAR_IQA_REG, iqa);
dmar_enable_qi(unit);
ics = dmar_read4(unit, DMAR_ICS_REG);
if ((ics & DMAR_ICS_IWC) != 0) {
ics = DMAR_ICS_IWC;
dmar_write4(unit, DMAR_ICS_REG, ics);
}
dmar_enable_qi_intr(unit);
DMAR_UNLOCK(unit);
return (0);
}
void
dmar_fini_qi(struct dmar_unit *unit)
{
struct iommu_qi_genseq gseq;
if (!unit->qi_enabled)
return;
taskqueue_drain(unit->qi_taskqueue, &unit->qi_task);
taskqueue_free(unit->qi_taskqueue);
unit->qi_taskqueue = NULL;
DMAR_LOCK(unit);
/* quisce */
dmar_qi_ensure(unit, 1);
dmar_qi_emit_wait_seq(unit, &gseq, true);
/* See dmar_qi_invalidate_sync_locked(). */
unit->inv_seq_waiters++;
dmar_qi_advance_tail(unit);
dmar_qi_wait_for_seq(unit, &gseq, false);
/* only after the quisce, disable queue */
dmar_disable_qi_intr(unit);
dmar_disable_qi(unit);
KASSERT(unit->inv_seq_waiters == 0,
("dmar%d: waiters on disabled queue", unit->iommu.unit));
DMAR_UNLOCK(unit);
kmem_free(unit->inv_queue, unit->inv_queue_size);
unit->inv_queue = NULL;
unit->inv_queue_size = 0;
unit->qi_enabled = 0;
}
void
dmar_enable_qi_intr(struct dmar_unit *unit)
{
uint32_t iectl;
DMAR_ASSERT_LOCKED(unit);
KASSERT(DMAR_HAS_QI(unit), ("dmar%d: QI is not supported",
unit->iommu.unit));
iectl = dmar_read4(unit, DMAR_IECTL_REG);
iectl &= ~DMAR_IECTL_IM;
dmar_write4(unit, DMAR_IECTL_REG, iectl);
}
void
dmar_disable_qi_intr(struct dmar_unit *unit)
{
uint32_t iectl;
DMAR_ASSERT_LOCKED(unit);
KASSERT(DMAR_HAS_QI(unit), ("dmar%d: QI is not supported",
unit->iommu.unit));
iectl = dmar_read4(unit, DMAR_IECTL_REG);
dmar_write4(unit, DMAR_IECTL_REG, iectl | DMAR_IECTL_IM);
}