/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2008 Poul-Henning Kamp
* Copyright (c) 2010 Alexander Motin <mav@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_acpi.h"
#include "opt_isa.h"
#include <sys/param.h>
#include <sys/systm.h>
#include <sys/bus.h>
#include <sys/clock.h>
#include <sys/lock.h>
#include <sys/mutex.h>
#include <sys/kdb.h>
#include <sys/kernel.h>
#include <sys/module.h>
#include <sys/proc.h>
#include <sys/rman.h>
#include <sys/timeet.h>
#include <isa/rtc.h>
#ifdef DEV_ISA
#include <isa/isareg.h>
#include <isa/isavar.h>
#endif
#include <machine/intr_machdep.h>
#include "clock_if.h"
#ifdef DEV_ACPI
#include <contrib/dev/acpica/include/acpi.h>
#include <contrib/dev/acpica/include/accommon.h>
#include <dev/acpica/acpivar.h>
#include <machine/md_var.h>
#endif
/* tunable to detect a power loss of the rtc */
static bool atrtc_power_lost = false;
SYSCTL_BOOL(_machdep, OID_AUTO, atrtc_power_lost, CTLFLAG_RD, &atrtc_power_lost,
false, "RTC lost power on last power cycle (probably caused by an emtpy cmos battery)");
/*
* atrtc_lock protects low-level access to individual hardware registers.
* atrtc_time_lock protects the entire sequence of accessing multiple registers
* to read or write the date and time.
*/
static struct mtx atrtc_lock;
MTX_SYSINIT(atrtc_lock_init, &atrtc_lock, "atrtc", MTX_SPIN);
/* Force RTC enabled/disabled. */
static int atrtc_enabled = -1;
TUNABLE_INT("hw.atrtc.enabled", &atrtc_enabled);
struct mtx atrtc_time_lock;
MTX_SYSINIT(atrtc_time_lock_init, &atrtc_time_lock, "atrtc_time", MTX_DEF);
int atrtcclock_disable = 0;
static int rtc_century = 0;
static int rtc_reg = -1;
static u_char rtc_statusa = RTCSA_DIVIDER | RTCSA_NOPROF;
static u_char rtc_statusb = RTCSB_24HR;
#ifdef DEV_ACPI
#define _COMPONENT ACPI_TIMER
ACPI_MODULE_NAME("ATRTC")
#endif
/*
* RTC support routines
*/
static inline u_char
rtcin_locked(int reg)
{
if (rtc_reg != reg) {
inb(0x84);
outb(IO_RTC, reg);
rtc_reg = reg;
inb(0x84);
}
return (inb(IO_RTC + 1));
}
static inline void
rtcout_locked(int reg, u_char val)
{
if (rtc_reg != reg) {
inb(0x84);
outb(IO_RTC, reg);
rtc_reg = reg;
inb(0x84);
}
outb(IO_RTC + 1, val);
inb(0x84);
}
int
rtcin(int reg)
{
u_char val;
mtx_lock_spin(&atrtc_lock);
val = rtcin_locked(reg);
mtx_unlock_spin(&atrtc_lock);
return (val);
}
void
writertc(int reg, u_char val)
{
mtx_lock_spin(&atrtc_lock);
rtcout_locked(reg, val);
mtx_unlock_spin(&atrtc_lock);
}
static void
atrtc_start(void)
{
mtx_lock_spin(&atrtc_lock);
rtcout_locked(RTC_STATUSA, rtc_statusa);
rtcout_locked(RTC_STATUSB, RTCSB_24HR);
mtx_unlock_spin(&atrtc_lock);
}
static void
atrtc_rate(unsigned rate)
{
rtc_statusa = RTCSA_DIVIDER | rate;
writertc(RTC_STATUSA, rtc_statusa);
}
static void
atrtc_enable_intr(void)
{
rtc_statusb |= RTCSB_PINTR;
mtx_lock_spin(&atrtc_lock);
rtcout_locked(RTC_STATUSB, rtc_statusb);
rtcin_locked(RTC_INTR);
mtx_unlock_spin(&atrtc_lock);
}
static void
atrtc_disable_intr(void)
{
rtc_statusb &= ~RTCSB_PINTR;
mtx_lock_spin(&atrtc_lock);
rtcout_locked(RTC_STATUSB, rtc_statusb);
rtcin_locked(RTC_INTR);
mtx_unlock_spin(&atrtc_lock);
}
void
atrtc_restore(void)
{
/* Restore all of the RTC's "status" (actually, control) registers. */
mtx_lock_spin(&atrtc_lock);
rtcin_locked(RTC_STATUSA); /* dummy to get rtc_reg set */
rtcout_locked(RTC_STATUSB, RTCSB_24HR);
rtcout_locked(RTC_STATUSA, rtc_statusa);
rtcout_locked(RTC_STATUSB, rtc_statusb);
rtcin_locked(RTC_INTR);
mtx_unlock_spin(&atrtc_lock);
}
/**********************************************************************
* RTC driver for subr_rtc
*/
struct atrtc_softc {
int port_rid, intr_rid;
struct resource *port_res;
struct resource *intr_res;
void *intr_handler;
struct eventtimer et;
#ifdef DEV_ACPI
ACPI_HANDLE acpi_handle;
#endif
};
static int
rtc_start(struct eventtimer *et, sbintime_t first, sbintime_t period)
{
atrtc_rate(max(fls(period + (period >> 1)) - 17, 1));
atrtc_enable_intr();
return (0);
}
static int
rtc_stop(struct eventtimer *et)
{
atrtc_disable_intr();
return (0);
}
/*
* This routine receives statistical clock interrupts from the RTC.
* As explained above, these occur at 128 interrupts per second.
* When profiling, we receive interrupts at a rate of 1024 Hz.
*
* This does not actually add as much overhead as it sounds, because
* when the statistical clock is active, the hardclock driver no longer
* needs to keep (inaccurate) statistics on its own. This decouples
* statistics gathering from scheduling interrupts.
*
* The RTC chip requires that we read status register C (RTC_INTR)
* to acknowledge an interrupt, before it will generate the next one.
* Under high interrupt load, rtcintr() can be indefinitely delayed and
* the clock can tick immediately after the read from RTC_INTR. In this
* case, the mc146818A interrupt signal will not drop for long enough
* to register with the 8259 PIC. If an interrupt is missed, the stat
* clock will halt, considerably degrading system performance. This is
* why we use 'while' rather than a more straightforward 'if' below.
* Stat clock ticks can still be lost, causing minor loss of accuracy
* in the statistics, but the stat clock will no longer stop.
*/
static int
rtc_intr(void *arg)
{
struct atrtc_softc *sc = (struct atrtc_softc *)arg;
int flag = 0;
while (rtcin(RTC_INTR) & RTCIR_PERIOD) {
flag = 1;
if (sc->et.et_active)
sc->et.et_event_cb(&sc->et, sc->et.et_arg);
}
return(flag ? FILTER_HANDLED : FILTER_STRAY);
}
#ifdef DEV_ACPI
/*
* ACPI RTC CMOS address space handler
*/
#define ATRTC_LAST_REG 0x40
static void
rtcin_region(int reg, void *buf, int len)
{
u_char *ptr = buf;
/* Drop lock after each IO as intr and settime have greater priority */
while (len-- > 0)
*ptr++ = rtcin(reg++) & 0xff;
}
static void
rtcout_region(int reg, const void *buf, int len)
{
const u_char *ptr = buf;
while (len-- > 0)
writertc(reg++, *ptr++);
}
static bool
atrtc_check_cmos_access(bool is_read, ACPI_PHYSICAL_ADDRESS addr, UINT32 len)
{
/* Block address space wrapping on out-of-bound access */
if (addr >= ATRTC_LAST_REG || addr + len > ATRTC_LAST_REG)
return (false);
if (is_read) {
/* Reading 0x0C will muck with interrupts */
if (addr <= RTC_INTR && addr + len > RTC_INTR)
return (false);
} else {
/*
* Allow single-byte writes to alarm registers and
* multi-byte writes to addr >= 0x30, else deny.
*/
if (!((len == 1 && (addr == RTC_SECALRM ||
addr == RTC_MINALRM ||
addr == RTC_HRSALRM)) ||
addr >= 0x30))
return (false);
}
return (true);
}
static ACPI_STATUS
atrtc_acpi_cmos_handler(UINT32 func, ACPI_PHYSICAL_ADDRESS addr,
UINT32 bitwidth, UINT64 *value, void *context, void *region_context)
{
device_t dev = context;
UINT32 bytewidth = howmany(bitwidth, 8);
bool is_read = func == ACPI_READ;
/* ACPICA is very verbose on CMOS handler failures, so we, too */
#define CMOS_HANDLER_ERR(fmt, ...) \
device_printf(dev, "ACPI [SystemCMOS] handler: " fmt, ##__VA_ARGS__)
ACPI_FUNCTION_TRACE((char *)(uintptr_t)__func__);
if (value == NULL) {
CMOS_HANDLER_ERR("NULL parameter\n");
return (AE_BAD_PARAMETER);
}
if (bitwidth == 0 || (bitwidth & 0x07) != 0) {
CMOS_HANDLER_ERR("Invalid bitwidth: %u\n", bitwidth);
return (AE_BAD_PARAMETER);
}
if (!atrtc_check_cmos_access(is_read, addr, bytewidth)) {
CMOS_HANDLER_ERR("%s access rejected: addr=%#04jx, len=%u\n",
is_read ? "Read" : "Write", (uintmax_t)addr, bytewidth);
return (AE_BAD_PARAMETER);
}
switch (func) {
case ACPI_READ:
rtcin_region(addr, value, bytewidth);
break;
case ACPI_WRITE:
rtcout_region(addr, value, bytewidth);
break;
default:
CMOS_HANDLER_ERR("Invalid function: %u\n", func);
return (AE_BAD_PARAMETER);
}
ACPI_VPRINT(dev, acpi_device_get_parent_softc(dev),
"ACPI RTC CMOS %s access: addr=%#04x, len=%u, val=%*D\n",
is_read ? "read" : "write", (unsigned)addr, bytewidth,
bytewidth, value, " ");
return (AE_OK);
}
static int
atrtc_reg_acpi_cmos_handler(device_t dev)
{
struct atrtc_softc *sc = device_get_softc(dev);
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
/* Don't handle address space events if driver is disabled. */
if (acpi_disabled("atrtc"))
return (ENXIO);
if (ACPI_FAILURE(AcpiGetHandle(ACPI_ROOT_OBJECT, "\\_SB_", &sc->acpi_handle))) {
return (ENXIO);
}
if (sc->acpi_handle == NULL ||
ACPI_FAILURE(AcpiInstallAddressSpaceHandler(sc->acpi_handle,
ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler, NULL, dev))) {
sc->acpi_handle = NULL;
device_printf(dev,
"Can't register ACPI CMOS address space handler\n");
return (ENXIO);
}
return (0);
}
static int
atrtc_unreg_acpi_cmos_handler(device_t dev)
{
struct atrtc_softc *sc = device_get_softc(dev);
ACPI_FUNCTION_TRACE((char *)(uintptr_t) __func__);
if (sc->acpi_handle != NULL)
AcpiRemoveAddressSpaceHandler(sc->acpi_handle,
ACPI_ADR_SPACE_CMOS, atrtc_acpi_cmos_handler);
return (0);
}
#endif /* DEV_ACPI */
/*
* Attach to the ISA PnP descriptors for the timer and realtime clock.
*/
static struct isa_pnp_id atrtc_ids[] = {
{ 0x000bd041 /* PNP0B00 */, "AT realtime clock" },
{ 0 }
};
static bool
atrtc_acpi_disabled(void)
{
#ifdef DEV_ACPI
uint16_t flags;
if (!acpi_get_fadt_bootflags(&flags))
return (false);
return ((flags & ACPI_FADT_NO_CMOS_RTC) != 0);
#else
return (false);
#endif
}
static int
rtc_acpi_century_get(void)
{
#ifdef DEV_ACPI
ACPI_TABLE_FADT *fadt;
vm_paddr_t physaddr;
int century;
physaddr = acpi_find_table(ACPI_SIG_FADT);
if (physaddr == 0)
return (0);
fadt = acpi_map_table(physaddr, ACPI_SIG_FADT);
if (fadt == NULL)
return (0);
century = fadt->Century;
acpi_unmap_table(fadt);
return (century);
#else
return (0);
#endif
}
static int
atrtc_probe(device_t dev)
{
int result;
if ((atrtc_enabled == -1 && atrtc_acpi_disabled()) ||
(atrtc_enabled == 0))
return (ENXIO);
result = ISA_PNP_PROBE(device_get_parent(dev), dev, atrtc_ids);
/* ENOENT means no PnP-ID, device is hinted. */
if (result == ENOENT) {
device_set_desc(dev, "AT realtime clock");
return (BUS_PROBE_LOW_PRIORITY);
}
rtc_century = rtc_acpi_century_get();
return (result);
}
static int
atrtc_attach(device_t dev)
{
struct atrtc_softc *sc;
rman_res_t s;
int i;
sc = device_get_softc(dev);
sc->port_res = bus_alloc_resource(dev, SYS_RES_IOPORT, &sc->port_rid,
IO_RTC, IO_RTC + 1, 2, RF_ACTIVE);
if (sc->port_res == NULL)
device_printf(dev, "Warning: Couldn't map I/O.\n");
atrtc_start();
clock_register(dev, 1000000);
bzero(&sc->et, sizeof(struct eventtimer));
if (!atrtcclock_disable &&
(resource_int_value(device_get_name(dev), device_get_unit(dev),
"clock", &i) != 0 || i != 0)) {
sc->intr_rid = 0;
while (bus_get_resource(dev, SYS_RES_IRQ, sc->intr_rid,
&s, NULL) == 0 && s != 8)
sc->intr_rid++;
sc->intr_res = bus_alloc_resource(dev, SYS_RES_IRQ,
&sc->intr_rid, 8, 8, 1, RF_ACTIVE);
if (sc->intr_res == NULL) {
device_printf(dev, "Can't map interrupt.\n");
return (0);
} else if ((bus_setup_intr(dev, sc->intr_res, INTR_TYPE_CLK,
rtc_intr, NULL, sc, &sc->intr_handler))) {
device_printf(dev, "Can't setup interrupt.\n");
return (0);
} else {
/* Bind IRQ to BSP to avoid live migration. */
bus_bind_intr(dev, sc->intr_res, 0);
}
sc->et.et_name = "RTC";
sc->et.et_flags = ET_FLAGS_PERIODIC | ET_FLAGS_POW2DIV;
sc->et.et_quality = 0;
sc->et.et_frequency = 32768;
sc->et.et_min_period = 0x00080000;
sc->et.et_max_period = 0x80000000;
sc->et.et_start = rtc_start;
sc->et.et_stop = rtc_stop;
sc->et.et_priv = dev;
et_register(&sc->et);
}
return(0);
}
static int
atrtc_isa_attach(device_t dev)
{
return (atrtc_attach(dev));
}
#ifdef DEV_ACPI
static int
atrtc_acpi_attach(device_t dev)
{
int ret;
ret = atrtc_attach(dev);
if (ret)
return (ret);
(void)atrtc_reg_acpi_cmos_handler(dev);
return (0);
}
static int
atrtc_acpi_detach(device_t dev)
{
(void)atrtc_unreg_acpi_cmos_handler(dev);
return (0);
}
#endif /* DEV_ACPI */
static int
atrtc_resume(device_t dev)
{
atrtc_restore();
return(0);
}
static int
atrtc_settime(device_t dev __unused, struct timespec *ts)
{
struct bcd_clocktime bct;
clock_ts_to_bcd(ts, &bct, false);
clock_dbgprint_bcd(dev, CLOCK_DBG_WRITE, &bct);
mtx_lock(&atrtc_time_lock);
mtx_lock_spin(&atrtc_lock);
/* Disable RTC updates and interrupts. */
rtcout_locked(RTC_STATUSB, RTCSB_HALT | RTCSB_24HR);
/* Write all the time registers. */
rtcout_locked(RTC_SEC, bct.sec);
rtcout_locked(RTC_MIN, bct.min);
rtcout_locked(RTC_HRS, bct.hour);
rtcout_locked(RTC_WDAY, bct.dow + 1);
rtcout_locked(RTC_DAY, bct.day);
rtcout_locked(RTC_MONTH, bct.mon);
rtcout_locked(RTC_YEAR, bct.year & 0xff);
if (rtc_century)
rtcout_locked(rtc_century, bct.year >> 8);
/*
* Re-enable RTC updates and interrupts.
*/
rtcout_locked(RTC_STATUSB, rtc_statusb);
rtcin_locked(RTC_INTR);
mtx_unlock_spin(&atrtc_lock);
mtx_unlock(&atrtc_time_lock);
return (0);
}
static int
atrtc_gettime(device_t dev, struct timespec *ts)
{
struct bcd_clocktime bct;
/* Look if we have a RTC present and the time is valid */
if (!(rtcin(RTC_STATUSD) & RTCSD_PWR)) {
atrtc_power_lost = true;
device_printf(dev, "WARNING: Battery failure indication\n");
return (EINVAL);
}
/*
* wait for time update to complete
* If RTCSA_TUP is zero, we have at least 244us before next update.
* This is fast enough on most hardware, but a refinement would be
* to make sure that no more than 240us pass after we start reading,
* and try again if so.
*/
mtx_lock(&atrtc_time_lock);
while (rtcin(RTC_STATUSA) & RTCSA_TUP)
continue;
mtx_lock_spin(&atrtc_lock);
bct.sec = rtcin_locked(RTC_SEC);
bct.min = rtcin_locked(RTC_MIN);
bct.hour = rtcin_locked(RTC_HRS);
bct.day = rtcin_locked(RTC_DAY);
bct.mon = rtcin_locked(RTC_MONTH);
bct.year = rtcin_locked(RTC_YEAR);
if (rtc_century)
bct.year |= rtcin_locked(rtc_century) << 8;
mtx_unlock_spin(&atrtc_lock);
mtx_unlock(&atrtc_time_lock);
/* dow is unused in timespec conversion and we have no nsec info. */
bct.dow = 0;
bct.nsec = 0;
clock_dbgprint_bcd(dev, CLOCK_DBG_READ, &bct);
return (clock_bcd_to_ts(&bct, ts, false));
}
static device_method_t atrtc_isa_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, atrtc_probe),
DEVMETHOD(device_attach, atrtc_isa_attach),
DEVMETHOD(device_detach, bus_generic_detach),
DEVMETHOD(device_shutdown, bus_generic_shutdown),
DEVMETHOD(device_suspend, bus_generic_suspend),
/* XXX stop statclock? */
DEVMETHOD(device_resume, atrtc_resume),
/* clock interface */
DEVMETHOD(clock_gettime, atrtc_gettime),
DEVMETHOD(clock_settime, atrtc_settime),
{ 0, 0 }
};
static driver_t atrtc_isa_driver = {
"atrtc",
atrtc_isa_methods,
sizeof(struct atrtc_softc),
};
#ifdef DEV_ACPI
static device_method_t atrtc_acpi_methods[] = {
/* Device interface */
DEVMETHOD(device_probe, atrtc_probe),
DEVMETHOD(device_attach, atrtc_acpi_attach),
DEVMETHOD(device_detach, atrtc_acpi_detach),
/* XXX stop statclock? */
DEVMETHOD(device_resume, atrtc_resume),
/* clock interface */
DEVMETHOD(clock_gettime, atrtc_gettime),
DEVMETHOD(clock_settime, atrtc_settime),
{ 0, 0 }
};
static driver_t atrtc_acpi_driver = {
"atrtc",
atrtc_acpi_methods,
sizeof(struct atrtc_softc),
};
#endif /* DEV_ACPI */
DRIVER_MODULE(atrtc, isa, atrtc_isa_driver, 0, 0);
#ifdef DEV_ACPI
DRIVER_MODULE(atrtc, acpi, atrtc_acpi_driver, 0, 0);
#endif
ISA_PNP_INFO(atrtc_ids);