/*-
* SPDX-License-Identifier: BSD-2-Clause
*
* Copyright (c) 2004 Christian Limpach.
* Copyright (c) 2004-2006,2008 Kip Macy
* Copyright (c) 2008 The NetBSD Foundation, Inc.
* Copyright (c) 2013 Roger Pau Monné <roger.pau@citrix.com>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
#include <sys/cdefs.h>
#include "opt_ddb.h"
#include "opt_kstack_pages.h"
#include <sys/param.h>
#include <sys/bus.h>
#include <sys/kernel.h>
#include <sys/reboot.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/linker.h>
#include <sys/lock.h>
#include <sys/rwlock.h>
#include <sys/boot.h>
#include <sys/ctype.h>
#include <sys/mutex.h>
#include <sys/smp.h>
#include <sys/efi.h>
#include <sys/tslog.h>
#include <vm/vm.h>
#include <vm/vm_extern.h>
#include <vm/vm_kern.h>
#include <vm/vm_page.h>
#include <vm/vm_map.h>
#include <vm/vm_object.h>
#include <vm/vm_pager.h>
#include <vm/vm_param.h>
#include <machine/_inttypes.h>
#include <machine/intr_machdep.h>
#include <x86/apicvar.h>
#include <x86/init.h>
#include <machine/pc/bios.h>
#include <machine/smp.h>
#include <machine/intr_machdep.h>
#include <machine/md_var.h>
#include <machine/metadata.h>
#include <machine/cpu.h>
#include <xen/xen-os.h>
#include <xen/hvm.h>
#include <xen/hypervisor.h>
#include <xen/xenstore/xenstorevar.h>
#include <xen/xen_pv.h>
#include <contrib/xen/arch-x86/cpuid.h>
#include <contrib/xen/arch-x86/hvm/start_info.h>
#include <contrib/xen/vcpu.h>
#include <dev/xen/timer/timer.h>
#ifdef DDB
#include <ddb/ddb.h>
#endif
/* Native initial function */
extern u_int64_t hammer_time(u_int64_t, u_int64_t);
/* Xen initial function */
uint64_t hammer_time_xen(vm_paddr_t);
#define MAX_E820_ENTRIES 128
/*--------------------------- Forward Declarations ---------------------------*/
static caddr_t xen_pvh_parse_preload_data(uint64_t);
static void pvh_parse_memmap(caddr_t, vm_paddr_t *, int *);
/*---------------------------- Extern Declarations ---------------------------*/
/*
* Placed by the linker at the end of the bss section, which is the last
* section loaded by Xen before loading the symtab and strtab.
*/
extern uint32_t end;
/*-------------------------------- Global Data -------------------------------*/
struct init_ops xen_pvh_init_ops = {
.parse_preload_data = xen_pvh_parse_preload_data,
.early_clock_source_init = xen_clock_init,
.early_delay = xen_delay,
.parse_memmap = pvh_parse_memmap,
};
static struct bios_smap xen_smap[MAX_E820_ENTRIES];
static struct hvm_start_info *start_info;
/*-------------------------------- Xen PV init -------------------------------*/
static int
isxen(void)
{
static int xen = -1;
uint32_t base;
u_int regs[4];
if (xen != -1)
return (xen);
/*
* The full code for identifying which hypervisor we're running under
* is in sys/x86/x86/identcpu.c and runs later in the boot process;
* this is sufficient to distinguish Xen PVH booting from non-Xen PVH
* and skip some very early Xen-specific code in the non-Xen case.
*/
xen = 0;
for (base = 0x40000000; base < 0x40010000; base += 0x100) {
do_cpuid(base, regs);
if (regs[1] == XEN_CPUID_SIGNATURE_EBX &&
regs[2] == XEN_CPUID_SIGNATURE_ECX &&
regs[3] == XEN_CPUID_SIGNATURE_EDX) {
xen = 1;
break;
}
}
return (xen);
}
#define CRASH(...) do { \
if (isxen()) { \
xc_printf(__VA_ARGS__); \
HYPERVISOR_shutdown(SHUTDOWN_crash); \
} else { \
halt(); \
} \
} while (0)
uint64_t
hammer_time_xen(vm_paddr_t start_info_paddr)
{
struct hvm_modlist_entry *mod;
struct xen_add_to_physmap xatp;
uint64_t physfree;
char *kenv;
int rc;
if (isxen()) {
xen_domain_type = XEN_HVM_DOMAIN;
vm_guest = VM_GUEST_XEN;
rc = xen_hvm_init_hypercall_stubs(XEN_HVM_INIT_EARLY);
if (rc) {
xc_printf("ERROR: failed to initialize hypercall page: %d\n",
rc);
HYPERVISOR_shutdown(SHUTDOWN_crash);
}
}
start_info = (struct hvm_start_info *)(start_info_paddr + KERNBASE);
if (start_info->magic != XEN_HVM_START_MAGIC_VALUE) {
CRASH("Unknown magic value in start_info struct: %#x\n",
start_info->magic);
}
/*
* Select the higher address to use as physfree: either after
* start_info, after the kernel, after the memory map or after any of
* the modules. We assume enough memory to be available after the
* selected address for the needs of very early memory allocations.
*/
physfree = roundup2(start_info_paddr + sizeof(struct hvm_start_info),
PAGE_SIZE);
physfree = MAX(roundup2((vm_paddr_t)_end - KERNBASE, PAGE_SIZE),
physfree);
if (start_info->memmap_paddr != 0)
physfree = MAX(roundup2(start_info->memmap_paddr +
start_info->memmap_entries *
sizeof(struct hvm_memmap_table_entry), PAGE_SIZE),
physfree);
if (start_info->modlist_paddr != 0) {
unsigned int i;
if (start_info->nr_modules == 0) {
CRASH(
"ERROR: modlist_paddr != 0 but nr_modules == 0\n");
}
mod = (struct hvm_modlist_entry *)
(start_info->modlist_paddr + KERNBASE);
for (i = 0; i < start_info->nr_modules; i++)
physfree = MAX(roundup2(mod[i].paddr + mod[i].size,
PAGE_SIZE), physfree);
}
if (isxen()) {
xatp.domid = DOMID_SELF;
xatp.idx = 0;
xatp.space = XENMAPSPACE_shared_info;
xatp.gpfn = atop(physfree);
if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) {
xc_printf("ERROR: failed to setup shared_info page\n");
HYPERVISOR_shutdown(SHUTDOWN_crash);
}
HYPERVISOR_shared_info = (shared_info_t *)(physfree + KERNBASE);
physfree += PAGE_SIZE;
}
/*
* Init a static kenv using a free page. The contents will be filled
* from the parse_preload_data hook.
*/
kenv = (void *)(physfree + KERNBASE);
physfree += PAGE_SIZE;
bzero_early(kenv, PAGE_SIZE);
init_static_kenv(kenv, PAGE_SIZE);
/* Set the hooks for early functions that diverge from bare metal */
init_ops = xen_pvh_init_ops;
hvm_start_flags = start_info->flags;
/* Now we can jump into the native init function */
return (hammer_time(0, physfree));
}
/*-------------------------------- PV specific -------------------------------*/
/*
* When booted as a PVH guest FreeBSD needs to avoid using the RSDP address
* hint provided by the loader because it points to the native set of ACPI
* tables instead of the ones crafted by Xen. The acpi.rsdp env variable is
* removed from kenv if present, and a new acpi.rsdp is added to kenv that
* points to the address of the Xen crafted RSDP.
*/
static bool reject_option(const char *option)
{
static const char *reject[] = {
"acpi.rsdp",
};
unsigned int i;
for (i = 0; i < nitems(reject); i++)
if (strncmp(option, reject[i], strlen(reject[i])) == 0)
return (true);
return (false);
}
static void
xen_pvh_set_env(char *env, bool (*filter)(const char *))
{
char *option;
if (env == NULL)
return;
option = env;
while (*option != 0) {
char *value;
if (filter != NULL && filter(option)) {
option += strlen(option) + 1;
continue;
}
value = option;
option = strsep(&value, "=");
if (kern_setenv(option, value) != 0 && isxen())
xc_printf("unable to add kenv %s=%s\n", option, value);
option = value + strlen(value) + 1;
}
}
#ifdef DDB
/*
* The way Xen loads the symtab is different from the native boot loader,
* because it's tailored for NetBSD. So we have to adapt and use the same
* method as NetBSD. Portions of the code below have been picked from NetBSD:
* sys/kern/kern_ksyms.c CVS Revision 1.71.
*/
static void
xen_pvh_parse_symtab(void)
{
Elf_Ehdr *ehdr;
Elf_Shdr *shdr;
int i, j;
ehdr = (Elf_Ehdr *)(&end + 1);
if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) ||
ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS ||
ehdr->e_version > 1) {
if (isxen())
xc_printf("Unable to load ELF symtab: invalid symbol table\n");
return;
}
shdr = (Elf_Shdr *)((uint8_t *)ehdr + ehdr->e_shoff);
/* Find the symbol table and the corresponding string table. */
for (i = 1; i < ehdr->e_shnum; i++) {
if (shdr[i].sh_type != SHT_SYMTAB)
continue;
if (shdr[i].sh_offset == 0)
continue;
ksymtab = (uintptr_t)((uint8_t *)ehdr + shdr[i].sh_offset);
ksymtab_size = shdr[i].sh_size;
j = shdr[i].sh_link;
if (shdr[j].sh_offset == 0)
continue; /* Can this happen? */
kstrtab = (uintptr_t)((uint8_t *)ehdr + shdr[j].sh_offset);
break;
}
if ((ksymtab == 0 || kstrtab == 0) && isxen())
xc_printf(
"Unable to load ELF symtab: could not find symtab or strtab\n");
}
#endif
static void
fixup_console(caddr_t kmdp)
{
struct xen_platform_op op = {
.cmd = XENPF_get_dom0_console,
};
xenpf_dom0_console_t *console = &op.u.dom0_console;
union {
struct efi_fb efi;
struct vbe_fb vbe;
} *fb = NULL;
int size;
size = HYPERVISOR_platform_op(&op);
if (size < 0) {
xc_printf("Failed to get dom0 video console info: %d\n", size);
return;
}
switch (console->video_type) {
case XEN_VGATYPE_VESA_LFB:
fb = (__typeof__ (fb))preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_VBE_FB);
if (fb == NULL) {
xc_printf("No VBE FB in kernel metadata\n");
return;
}
_Static_assert(offsetof(struct vbe_fb, fb_bpp) ==
offsetof(struct efi_fb, fb_mask_reserved) +
sizeof(fb->efi.fb_mask_reserved),
"Bad structure overlay\n");
fb->vbe.fb_bpp = console->u.vesa_lfb.bits_per_pixel;
/* FALLTHROUGH */
case XEN_VGATYPE_EFI_LFB:
if (fb == NULL) {
fb = (__typeof__ (fb))preload_search_info(kmdp,
MODINFO_METADATA | MODINFOMD_EFI_FB);
if (fb == NULL) {
xc_printf("No EFI FB in kernel metadata\n");
return;
}
}
fb->efi.fb_addr = console->u.vesa_lfb.lfb_base;
if (size >
offsetof(xenpf_dom0_console_t, u.vesa_lfb.ext_lfb_base))
fb->efi.fb_addr |=
(uint64_t)console->u.vesa_lfb.ext_lfb_base << 32;
fb->efi.fb_size = console->u.vesa_lfb.lfb_size << 16;
fb->efi.fb_height = console->u.vesa_lfb.height;
fb->efi.fb_width = console->u.vesa_lfb.width;
fb->efi.fb_stride = (console->u.vesa_lfb.bytes_per_line << 3) /
console->u.vesa_lfb.bits_per_pixel;
#define FBMASK(c) \
((~0u << console->u.vesa_lfb.c ## _pos) & \
(~0u >> (32 - console->u.vesa_lfb.c ## _pos - \
console->u.vesa_lfb.c ## _size)))
fb->efi.fb_mask_red = FBMASK(red);
fb->efi.fb_mask_green = FBMASK(green);
fb->efi.fb_mask_blue = FBMASK(blue);
fb->efi.fb_mask_reserved = FBMASK(rsvd);
#undef FBMASK
break;
default:
xc_printf("Video console type unsupported\n");
return;
}
}
static caddr_t
xen_pvh_parse_preload_data(uint64_t modulep)
{
caddr_t kmdp;
vm_ooffset_t off;
vm_paddr_t metadata;
char *envp;
char acpi_rsdp[19];
TSENTER();
if (start_info->modlist_paddr != 0) {
struct hvm_modlist_entry *mod;
const char *cmdline;
mod = (struct hvm_modlist_entry *)
(start_info->modlist_paddr + KERNBASE);
cmdline = mod[0].cmdline_paddr ?
(const char *)(mod[0].cmdline_paddr + KERNBASE) : NULL;
if (strcmp(cmdline, "header") == 0) {
struct xen_header *header;
header = (struct xen_header *)(mod[0].paddr + KERNBASE);
if ((header->flags & XENHEADER_HAS_MODULEP_OFFSET) !=
XENHEADER_HAS_MODULEP_OFFSET) {
xc_printf("Unable to load module metadata\n");
HYPERVISOR_shutdown(SHUTDOWN_crash);
}
preload_metadata = (caddr_t)(mod[0].paddr +
header->modulep_offset + KERNBASE);
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
if (kmdp == NULL) {
xc_printf("Unable to find kernel\n");
HYPERVISOR_shutdown(SHUTDOWN_crash);
}
/*
* Xen has relocated the metadata and the modules, so
* we need to recalculate it's position. This is done
* by saving the original modulep address and then
* calculating the offset from the real modulep
* position.
*/
metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP,
vm_paddr_t);
off = mod[0].paddr + header->modulep_offset - metadata +
KERNBASE;
} else {
preload_metadata = (caddr_t)(mod[0].paddr + KERNBASE);
kmdp = preload_search_by_type("elf kernel");
if (kmdp == NULL)
kmdp = preload_search_by_type("elf64 kernel");
if (kmdp == NULL) {
xc_printf("Unable to find kernel\n");
HYPERVISOR_shutdown(SHUTDOWN_crash);
}
metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP, vm_paddr_t);
off = mod[0].paddr + KERNBASE - metadata;
}
preload_bootstrap_relocate(off);
boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int);
envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *);
if (envp != NULL)
envp += off;
xen_pvh_set_env(envp, reject_option);
if (MD_FETCH(kmdp, MODINFOMD_EFI_MAP, void *) != NULL)
strlcpy(bootmethod, "UEFI", sizeof(bootmethod));
else
strlcpy(bootmethod, "BIOS", sizeof(bootmethod));
fixup_console(kmdp);
} else {
/* Parse the extra boot information given by Xen */
if (start_info->cmdline_paddr != 0)
boot_parse_cmdline_delim(
(char *)(start_info->cmdline_paddr + KERNBASE),
", \t\n");
kmdp = NULL;
strlcpy(bootmethod, "PVH", sizeof(bootmethod));
}
boothowto |= boot_env_to_howto();
snprintf(acpi_rsdp, sizeof(acpi_rsdp), "%#" PRIx64,
start_info->rsdp_paddr);
kern_setenv("acpi.rsdp", acpi_rsdp);
#ifdef DDB
xen_pvh_parse_symtab();
#endif
TSEXIT();
return (kmdp);
}
static void
pvh_parse_memmap_start_info(caddr_t kmdp, vm_paddr_t *physmap,
int *physmap_idx)
{
const struct hvm_memmap_table_entry * entries;
size_t nentries;
size_t i;
/* Extract from HVM start_info. */
entries = (struct hvm_memmap_table_entry *)(start_info->memmap_paddr + KERNBASE);
nentries = start_info->memmap_entries;
/* Convert into E820 format and handle one by one. */
for (i = 0; i < nentries; i++) {
struct bios_smap entry;
entry.base = entries[i].addr;
entry.length = entries[i].size;
/*
* Luckily for us, the XEN_HVM_MEMMAP_TYPE_* values exactly
* match the SMAP_TYPE_* values so we don't need to translate
* anything here.
*/
entry.type = entries[i].type;
bios_add_smap_entries(&entry, 1, physmap, physmap_idx);
}
}
static void
xen_pvh_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
{
struct xen_memory_map memmap;
u_int32_t size;
int rc;
/* We should only reach here if we're running under Xen. */
KASSERT(isxen(), ("xen_pvh_parse_memmap reached when !Xen"));
/* Fetch the E820 map from Xen */
memmap.nr_entries = MAX_E820_ENTRIES;
set_xen_guest_handle(memmap.buffer, xen_smap);
rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap);
if (rc) {
xc_printf("ERROR: unable to fetch Xen E820 memory map: %d\n",
rc);
HYPERVISOR_shutdown(SHUTDOWN_crash);
}
size = memmap.nr_entries * sizeof(xen_smap[0]);
bios_add_smap_entries(xen_smap, size, physmap, physmap_idx);
}
static void
pvh_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx)
{
/*
* If version >= 1 and memmap_paddr != 0, use the memory map provided
* in the start_info structure; if not, we're running under legacy
* Xen and need to use the Xen hypercall.
*/
if ((start_info->version >= 1) && (start_info->memmap_paddr != 0))
pvh_parse_memmap_start_info(kmdp, physmap, physmap_idx);
else
xen_pvh_parse_memmap(kmdp, physmap, physmap_idx);
}