/*- * SPDX-License-Identifier: BSD-2-Clause * * Copyright (c) 2004 Christian Limpach. * Copyright (c) 2004-2006,2008 Kip Macy * Copyright (c) 2008 The NetBSD Foundation, Inc. * Copyright (c) 2013 Roger Pau Monné <roger.pau@citrix.com> * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include <sys/cdefs.h> #include "opt_ddb.h" #include "opt_kstack_pages.h" #include <sys/param.h> #include <sys/bus.h> #include <sys/kernel.h> #include <sys/reboot.h> #include <sys/systm.h> #include <sys/malloc.h> #include <sys/linker.h> #include <sys/lock.h> #include <sys/rwlock.h> #include <sys/boot.h> #include <sys/ctype.h> #include <sys/mutex.h> #include <sys/smp.h> #include <sys/efi.h> #include <sys/tslog.h> #include <vm/vm.h> #include <vm/vm_extern.h> #include <vm/vm_kern.h> #include <vm/vm_page.h> #include <vm/vm_map.h> #include <vm/vm_object.h> #include <vm/vm_pager.h> #include <vm/vm_param.h> #include <machine/_inttypes.h> #include <machine/intr_machdep.h> #include <x86/apicvar.h> #include <x86/init.h> #include <machine/pc/bios.h> #include <machine/smp.h> #include <machine/intr_machdep.h> #include <machine/md_var.h> #include <machine/metadata.h> #include <machine/cpu.h> #include <xen/xen-os.h> #include <xen/hvm.h> #include <xen/hypervisor.h> #include <xen/xenstore/xenstorevar.h> #include <xen/xen_pv.h> #include <contrib/xen/arch-x86/cpuid.h> #include <contrib/xen/arch-x86/hvm/start_info.h> #include <contrib/xen/vcpu.h> #include <dev/xen/timer/timer.h> #ifdef DDB #include <ddb/ddb.h> #endif /* Native initial function */ extern u_int64_t hammer_time(u_int64_t, u_int64_t); /* Xen initial function */ uint64_t hammer_time_xen(vm_paddr_t); #define MAX_E820_ENTRIES 128 /*--------------------------- Forward Declarations ---------------------------*/ static caddr_t xen_pvh_parse_preload_data(uint64_t); static void pvh_parse_memmap(caddr_t, vm_paddr_t *, int *); /*---------------------------- Extern Declarations ---------------------------*/ /* * Placed by the linker at the end of the bss section, which is the last * section loaded by Xen before loading the symtab and strtab. */ extern uint32_t end; /*-------------------------------- Global Data -------------------------------*/ struct init_ops xen_pvh_init_ops = { .parse_preload_data = xen_pvh_parse_preload_data, .early_clock_source_init = xen_clock_init, .early_delay = xen_delay, .parse_memmap = pvh_parse_memmap, }; static struct bios_smap xen_smap[MAX_E820_ENTRIES]; static struct hvm_start_info *start_info; /*-------------------------------- Xen PV init -------------------------------*/ static int isxen(void) { static int xen = -1; uint32_t base; u_int regs[4]; if (xen != -1) return (xen); /* * The full code for identifying which hypervisor we're running under * is in sys/x86/x86/identcpu.c and runs later in the boot process; * this is sufficient to distinguish Xen PVH booting from non-Xen PVH * and skip some very early Xen-specific code in the non-Xen case. */ xen = 0; for (base = 0x40000000; base < 0x40010000; base += 0x100) { do_cpuid(base, regs); if (regs[1] == XEN_CPUID_SIGNATURE_EBX && regs[2] == XEN_CPUID_SIGNATURE_ECX && regs[3] == XEN_CPUID_SIGNATURE_EDX) { xen = 1; break; } } return (xen); } #define CRASH(...) do { \ if (isxen()) { \ xc_printf(__VA_ARGS__); \ HYPERVISOR_shutdown(SHUTDOWN_crash); \ } else { \ halt(); \ } \ } while (0) uint64_t hammer_time_xen(vm_paddr_t start_info_paddr) { struct hvm_modlist_entry *mod; struct xen_add_to_physmap xatp; uint64_t physfree; char *kenv; int rc; if (isxen()) { xen_domain_type = XEN_HVM_DOMAIN; vm_guest = VM_GUEST_XEN; rc = xen_hvm_init_hypercall_stubs(XEN_HVM_INIT_EARLY); if (rc) { xc_printf("ERROR: failed to initialize hypercall page: %d\n", rc); HYPERVISOR_shutdown(SHUTDOWN_crash); } } start_info = (struct hvm_start_info *)(start_info_paddr + KERNBASE); if (start_info->magic != XEN_HVM_START_MAGIC_VALUE) { CRASH("Unknown magic value in start_info struct: %#x\n", start_info->magic); } /* * Select the higher address to use as physfree: either after * start_info, after the kernel, after the memory map or after any of * the modules. We assume enough memory to be available after the * selected address for the needs of very early memory allocations. */ physfree = roundup2(start_info_paddr + sizeof(struct hvm_start_info), PAGE_SIZE); physfree = MAX(roundup2((vm_paddr_t)_end - KERNBASE, PAGE_SIZE), physfree); if (start_info->memmap_paddr != 0) physfree = MAX(roundup2(start_info->memmap_paddr + start_info->memmap_entries * sizeof(struct hvm_memmap_table_entry), PAGE_SIZE), physfree); if (start_info->modlist_paddr != 0) { unsigned int i; if (start_info->nr_modules == 0) { CRASH( "ERROR: modlist_paddr != 0 but nr_modules == 0\n"); } mod = (struct hvm_modlist_entry *) (start_info->modlist_paddr + KERNBASE); for (i = 0; i < start_info->nr_modules; i++) physfree = MAX(roundup2(mod[i].paddr + mod[i].size, PAGE_SIZE), physfree); } if (isxen()) { xatp.domid = DOMID_SELF; xatp.idx = 0; xatp.space = XENMAPSPACE_shared_info; xatp.gpfn = atop(physfree); if (HYPERVISOR_memory_op(XENMEM_add_to_physmap, &xatp)) { xc_printf("ERROR: failed to setup shared_info page\n"); HYPERVISOR_shutdown(SHUTDOWN_crash); } HYPERVISOR_shared_info = (shared_info_t *)(physfree + KERNBASE); physfree += PAGE_SIZE; } /* * Init a static kenv using a free page. The contents will be filled * from the parse_preload_data hook. */ kenv = (void *)(physfree + KERNBASE); physfree += PAGE_SIZE; bzero_early(kenv, PAGE_SIZE); init_static_kenv(kenv, PAGE_SIZE); /* Set the hooks for early functions that diverge from bare metal */ init_ops = xen_pvh_init_ops; hvm_start_flags = start_info->flags; /* Now we can jump into the native init function */ return (hammer_time(0, physfree)); } /*-------------------------------- PV specific -------------------------------*/ /* * When booted as a PVH guest FreeBSD needs to avoid using the RSDP address * hint provided by the loader because it points to the native set of ACPI * tables instead of the ones crafted by Xen. The acpi.rsdp env variable is * removed from kenv if present, and a new acpi.rsdp is added to kenv that * points to the address of the Xen crafted RSDP. */ static bool reject_option(const char *option) { static const char *reject[] = { "acpi.rsdp", }; unsigned int i; for (i = 0; i < nitems(reject); i++) if (strncmp(option, reject[i], strlen(reject[i])) == 0) return (true); return (false); } static void xen_pvh_set_env(char *env, bool (*filter)(const char *)) { char *option; if (env == NULL) return; option = env; while (*option != 0) { char *value; if (filter != NULL && filter(option)) { option += strlen(option) + 1; continue; } value = option; option = strsep(&value, "="); if (kern_setenv(option, value) != 0 && isxen()) xc_printf("unable to add kenv %s=%s\n", option, value); option = value + strlen(value) + 1; } } #ifdef DDB /* * The way Xen loads the symtab is different from the native boot loader, * because it's tailored for NetBSD. So we have to adapt and use the same * method as NetBSD. Portions of the code below have been picked from NetBSD: * sys/kern/kern_ksyms.c CVS Revision 1.71. */ static void xen_pvh_parse_symtab(void) { Elf_Ehdr *ehdr; Elf_Shdr *shdr; int i, j; ehdr = (Elf_Ehdr *)(&end + 1); if (memcmp(ehdr->e_ident, ELFMAG, SELFMAG) || ehdr->e_ident[EI_CLASS] != ELF_TARG_CLASS || ehdr->e_version > 1) { if (isxen()) xc_printf("Unable to load ELF symtab: invalid symbol table\n"); return; } shdr = (Elf_Shdr *)((uint8_t *)ehdr + ehdr->e_shoff); /* Find the symbol table and the corresponding string table. */ for (i = 1; i < ehdr->e_shnum; i++) { if (shdr[i].sh_type != SHT_SYMTAB) continue; if (shdr[i].sh_offset == 0) continue; ksymtab = (uintptr_t)((uint8_t *)ehdr + shdr[i].sh_offset); ksymtab_size = shdr[i].sh_size; j = shdr[i].sh_link; if (shdr[j].sh_offset == 0) continue; /* Can this happen? */ kstrtab = (uintptr_t)((uint8_t *)ehdr + shdr[j].sh_offset); break; } if ((ksymtab == 0 || kstrtab == 0) && isxen()) xc_printf( "Unable to load ELF symtab: could not find symtab or strtab\n"); } #endif static void fixup_console(caddr_t kmdp) { struct xen_platform_op op = { .cmd = XENPF_get_dom0_console, }; xenpf_dom0_console_t *console = &op.u.dom0_console; union { struct efi_fb efi; struct vbe_fb vbe; } *fb = NULL; int size; size = HYPERVISOR_platform_op(&op); if (size < 0) { xc_printf("Failed to get dom0 video console info: %d\n", size); return; } switch (console->video_type) { case XEN_VGATYPE_VESA_LFB: fb = (__typeof__ (fb))preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_VBE_FB); if (fb == NULL) { xc_printf("No VBE FB in kernel metadata\n"); return; } _Static_assert(offsetof(struct vbe_fb, fb_bpp) == offsetof(struct efi_fb, fb_mask_reserved) + sizeof(fb->efi.fb_mask_reserved), "Bad structure overlay\n"); fb->vbe.fb_bpp = console->u.vesa_lfb.bits_per_pixel; /* FALLTHROUGH */ case XEN_VGATYPE_EFI_LFB: if (fb == NULL) { fb = (__typeof__ (fb))preload_search_info(kmdp, MODINFO_METADATA | MODINFOMD_EFI_FB); if (fb == NULL) { xc_printf("No EFI FB in kernel metadata\n"); return; } } fb->efi.fb_addr = console->u.vesa_lfb.lfb_base; if (size > offsetof(xenpf_dom0_console_t, u.vesa_lfb.ext_lfb_base)) fb->efi.fb_addr |= (uint64_t)console->u.vesa_lfb.ext_lfb_base << 32; fb->efi.fb_size = console->u.vesa_lfb.lfb_size << 16; fb->efi.fb_height = console->u.vesa_lfb.height; fb->efi.fb_width = console->u.vesa_lfb.width; fb->efi.fb_stride = (console->u.vesa_lfb.bytes_per_line << 3) / console->u.vesa_lfb.bits_per_pixel; #define FBMASK(c) \ ((~0u << console->u.vesa_lfb.c ## _pos) & \ (~0u >> (32 - console->u.vesa_lfb.c ## _pos - \ console->u.vesa_lfb.c ## _size))) fb->efi.fb_mask_red = FBMASK(red); fb->efi.fb_mask_green = FBMASK(green); fb->efi.fb_mask_blue = FBMASK(blue); fb->efi.fb_mask_reserved = FBMASK(rsvd); #undef FBMASK break; default: xc_printf("Video console type unsupported\n"); return; } } static caddr_t xen_pvh_parse_preload_data(uint64_t modulep) { caddr_t kmdp; vm_ooffset_t off; vm_paddr_t metadata; char *envp; char acpi_rsdp[19]; TSENTER(); if (start_info->modlist_paddr != 0) { struct hvm_modlist_entry *mod; const char *cmdline; mod = (struct hvm_modlist_entry *) (start_info->modlist_paddr + KERNBASE); cmdline = mod[0].cmdline_paddr ? (const char *)(mod[0].cmdline_paddr + KERNBASE) : NULL; if (strcmp(cmdline, "header") == 0) { struct xen_header *header; header = (struct xen_header *)(mod[0].paddr + KERNBASE); if ((header->flags & XENHEADER_HAS_MODULEP_OFFSET) != XENHEADER_HAS_MODULEP_OFFSET) { xc_printf("Unable to load module metadata\n"); HYPERVISOR_shutdown(SHUTDOWN_crash); } preload_metadata = (caddr_t)(mod[0].paddr + header->modulep_offset + KERNBASE); kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); if (kmdp == NULL) { xc_printf("Unable to find kernel\n"); HYPERVISOR_shutdown(SHUTDOWN_crash); } /* * Xen has relocated the metadata and the modules, so * we need to recalculate it's position. This is done * by saving the original modulep address and then * calculating the offset from the real modulep * position. */ metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP, vm_paddr_t); off = mod[0].paddr + header->modulep_offset - metadata + KERNBASE; } else { preload_metadata = (caddr_t)(mod[0].paddr + KERNBASE); kmdp = preload_search_by_type("elf kernel"); if (kmdp == NULL) kmdp = preload_search_by_type("elf64 kernel"); if (kmdp == NULL) { xc_printf("Unable to find kernel\n"); HYPERVISOR_shutdown(SHUTDOWN_crash); } metadata = MD_FETCH(kmdp, MODINFOMD_MODULEP, vm_paddr_t); off = mod[0].paddr + KERNBASE - metadata; } preload_bootstrap_relocate(off); boothowto = MD_FETCH(kmdp, MODINFOMD_HOWTO, int); envp = MD_FETCH(kmdp, MODINFOMD_ENVP, char *); if (envp != NULL) envp += off; xen_pvh_set_env(envp, reject_option); if (MD_FETCH(kmdp, MODINFOMD_EFI_MAP, void *) != NULL) strlcpy(bootmethod, "UEFI", sizeof(bootmethod)); else strlcpy(bootmethod, "BIOS", sizeof(bootmethod)); fixup_console(kmdp); } else { /* Parse the extra boot information given by Xen */ if (start_info->cmdline_paddr != 0) boot_parse_cmdline_delim( (char *)(start_info->cmdline_paddr + KERNBASE), ", \t\n"); kmdp = NULL; strlcpy(bootmethod, "PVH", sizeof(bootmethod)); } boothowto |= boot_env_to_howto(); snprintf(acpi_rsdp, sizeof(acpi_rsdp), "%#" PRIx64, start_info->rsdp_paddr); kern_setenv("acpi.rsdp", acpi_rsdp); #ifdef DDB xen_pvh_parse_symtab(); #endif TSEXIT(); return (kmdp); } static void pvh_parse_memmap_start_info(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx) { const struct hvm_memmap_table_entry * entries; size_t nentries; size_t i; /* Extract from HVM start_info. */ entries = (struct hvm_memmap_table_entry *)(start_info->memmap_paddr + KERNBASE); nentries = start_info->memmap_entries; /* Convert into E820 format and handle one by one. */ for (i = 0; i < nentries; i++) { struct bios_smap entry; entry.base = entries[i].addr; entry.length = entries[i].size; /* * Luckily for us, the XEN_HVM_MEMMAP_TYPE_* values exactly * match the SMAP_TYPE_* values so we don't need to translate * anything here. */ entry.type = entries[i].type; bios_add_smap_entries(&entry, 1, physmap, physmap_idx); } } static void xen_pvh_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx) { struct xen_memory_map memmap; u_int32_t size; int rc; /* We should only reach here if we're running under Xen. */ KASSERT(isxen(), ("xen_pvh_parse_memmap reached when !Xen")); /* Fetch the E820 map from Xen */ memmap.nr_entries = MAX_E820_ENTRIES; set_xen_guest_handle(memmap.buffer, xen_smap); rc = HYPERVISOR_memory_op(XENMEM_memory_map, &memmap); if (rc) { xc_printf("ERROR: unable to fetch Xen E820 memory map: %d\n", rc); HYPERVISOR_shutdown(SHUTDOWN_crash); } size = memmap.nr_entries * sizeof(xen_smap[0]); bios_add_smap_entries(xen_smap, size, physmap, physmap_idx); } static void pvh_parse_memmap(caddr_t kmdp, vm_paddr_t *physmap, int *physmap_idx) { /* * If version >= 1 and memmap_paddr != 0, use the memory map provided * in the start_info structure; if not, we're running under legacy * Xen and need to use the Xen hypercall. */ if ((start_info->version >= 1) && (start_info->memmap_paddr != 0)) pvh_parse_memmap_start_info(kmdp, physmap, physmap_idx); else xen_pvh_parse_memmap(kmdp, physmap, physmap_idx); }