/*-
* Copyright (c) 2012 David Schultz <das@FreeBSD.org>
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
* IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
* ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
* FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
* DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
* OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
* HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
* LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
* OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
* SUCH DAMAGE.
*/
/*
* Test that floating-point arithmetic works as specified by the C standard.
*/
#include <sys/cdefs.h>
#include <fenv.h>
#include <float.h>
#include <math.h>
#include <stdio.h>
#ifdef __i386__
#include <ieeefp.h>
#endif
#define ALL_STD_EXCEPT (FE_DIVBYZERO | FE_INEXACT | FE_INVALID | \
FE_OVERFLOW | FE_UNDERFLOW)
#define TWICE(x) ((x) + (x))
#define test(desc, pass) test1((desc), (pass), 0)
#define skiptest(desc, pass) test1((desc), (pass), 1)
#pragma STDC FENV_ACCESS ON
static const float one_f = 1.0 + FLT_EPSILON / 2;
static const double one_d = 1.0 + DBL_EPSILON / 2;
static const long double one_ld = 1.0L + LDBL_EPSILON / 2;
static int testnum, failures;
static void
test1(const char *testdesc, int pass, int skip)
{
testnum++;
printf("%sok %d - %s%s\n", pass || skip ? "" : "not ", testnum,
skip ? "(SKIPPED) " : "", testdesc);
if (!pass && !skip)
failures++;
}
/*
* Compare d1 and d2 using special rules: NaN == NaN and +0 != -0.
*/
static int
fpequal(long double d1, long double d2)
{
if (d1 != d2)
return (isnan(d1) && isnan(d2));
return (copysignl(1.0, d1) == copysignl(1.0, d2));
}
void
run_zero_opt_test(double d1, double d2)
{
test("optimizations don't break the sign of 0",
fpequal(d1 - d2, 0.0)
&& fpequal(-d1 + 0.0, 0.0)
&& fpequal(-d1 - d2, -0.0)
&& fpequal(-(d1 - d2), -0.0)
&& fpequal(-d1 - (-d2), 0.0));
}
void
run_inf_opt_test(double d)
{
test("optimizations don't break infinities",
fpequal(d / d, NAN) && fpequal(0.0 * d, NAN));
}
static inline double
todouble(long double ld)
{
return (ld);
}
static inline float
tofloat(double d)
{
return (d);
}
void
run_tests(void)
{
volatile long double vld;
long double ld;
volatile double vd;
double d;
volatile float vf;
float f;
int x;
test("sign bits", fpequal(-0.0, -0.0) && !fpequal(0.0, -0.0));
vd = NAN;
test("NaN equality", fpequal(NAN, NAN) && NAN != NAN && vd != vd);
feclearexcept(ALL_STD_EXCEPT);
test("NaN comparison returns false", !(vd <= vd));
/*
* XXX disabled; gcc/amd64 botches this IEEE 754 requirement by
* emitting ucomisd instead of comisd.
*/
skiptest("FENV_ACCESS: NaN comparison raises invalid exception",
fetestexcept(ALL_STD_EXCEPT) == FE_INVALID);
vd = 0.0;
run_zero_opt_test(vd, vd);
vd = INFINITY;
run_inf_opt_test(vd);
feclearexcept(ALL_STD_EXCEPT);
vd = INFINITY;
x = (int)vd;
/* XXX disabled (works with -O0); gcc doesn't support FENV_ACCESS */
skiptest("FENV_ACCESS: Inf->int conversion raises invalid exception",
fetestexcept(ALL_STD_EXCEPT) == FE_INVALID);
/* Raising an inexact exception here is an IEEE-854 requirement. */
feclearexcept(ALL_STD_EXCEPT);
vd = 0.75;
x = (int)vd;
test("0.75->int conversion rounds toward 0, raises inexact exception",
x == 0 && fetestexcept(ALL_STD_EXCEPT) == FE_INEXACT);
feclearexcept(ALL_STD_EXCEPT);
vd = -42.0;
x = (int)vd;
test("-42.0->int conversion is exact, raises no exception",
x == -42 && fetestexcept(ALL_STD_EXCEPT) == 0);
feclearexcept(ALL_STD_EXCEPT);
x = (int)INFINITY;
/* XXX disabled; gcc doesn't support FENV_ACCESS */
skiptest("FENV_ACCESS: const Inf->int conversion raises invalid",
fetestexcept(ALL_STD_EXCEPT) == FE_INVALID);
feclearexcept(ALL_STD_EXCEPT);
x = (int)0.5;
/* XXX disabled; gcc doesn't support FENV_ACCESS */
skiptest("FENV_ACCESS: const double->int conversion raises inexact",
x == 0 && fetestexcept(ALL_STD_EXCEPT) == FE_INEXACT);
test("compile-time constants don't have too much precision",
one_f == 1.0L && one_d == 1.0L && one_ld == 1.0L);
test("const minimum rounding precision",
1.0F + FLT_EPSILON != 1.0F &&
1.0 + DBL_EPSILON != 1.0 &&
1.0L + LDBL_EPSILON != 1.0L);
/* It isn't the compiler's fault if this fails on FreeBSD/i386. */
vf = FLT_EPSILON;
vd = DBL_EPSILON;
vld = LDBL_EPSILON;
test("runtime minimum rounding precision",
1.0F + vf != 1.0F && 1.0 + vd != 1.0 && 1.0L + vld != 1.0L);
test("explicit float to float conversion discards extra precision",
(float)(1.0F + FLT_EPSILON * 0.5F) == 1.0F &&
(float)(1.0F + vf * 0.5F) == 1.0F);
test("explicit double to float conversion discards extra precision",
(float)(1.0 + FLT_EPSILON * 0.5) == 1.0F &&
(float)(1.0 + vf * 0.5) == 1.0F);
test("explicit ldouble to float conversion discards extra precision",
(float)(1.0L + FLT_EPSILON * 0.5L) == 1.0F &&
(float)(1.0L + vf * 0.5L) == 1.0F);
test("explicit double to double conversion discards extra precision",
(double)(1.0 + DBL_EPSILON * 0.5) == 1.0 &&
(double)(1.0 + vd * 0.5) == 1.0);
test("explicit ldouble to double conversion discards extra precision",
(double)(1.0L + DBL_EPSILON * 0.5L) == 1.0 &&
(double)(1.0L + vd * 0.5L) == 1.0);
/*
* FLT_EVAL_METHOD > 1 implies that float expressions are always
* evaluated in double precision or higher, but some compilers get
* this wrong when registers spill to memory. The following expression
* forces a spill when there are at most 8 FP registers.
*/
test("implicit promption to double or higher precision is consistent",
#if FLT_EVAL_METHOD == 1 || FLT_EVAL_METHOD == 2 || defined(__i386__)
TWICE(TWICE(TWICE(TWICE(TWICE(
TWICE(TWICE(TWICE(TWICE(1.0F + vf * 0.5F)))))))))
== (1.0 + FLT_EPSILON * 0.5) * 512.0
#else
1
#endif
);
f = 1.0 + FLT_EPSILON * 0.5;
d = 1.0L + DBL_EPSILON * 0.5L;
test("const assignment discards extra precision", f == 1.0F && d == 1.0);
f = 1.0 + vf * 0.5;
d = 1.0L + vd * 0.5L;
test("variable assignment discards explicit extra precision",
f == 1.0F && d == 1.0);
f = 1.0F + vf * 0.5F;
d = 1.0 + vd * 0.5;
test("variable assignment discards implicit extra precision",
f == 1.0F && d == 1.0);
test("return discards extra precision",
tofloat(1.0 + vf * 0.5) == 1.0F &&
todouble(1.0L + vd * 0.5L) == 1.0);
fesetround(FE_UPWARD);
/* XXX disabled (works with -frounding-math) */
skiptest("FENV_ACCESS: constant arithmetic respects rounding mode",
1.0F + FLT_MIN == 1.0F + FLT_EPSILON &&
1.0 + DBL_MIN == 1.0 + DBL_EPSILON &&
1.0L + LDBL_MIN == 1.0L + LDBL_EPSILON);
fesetround(FE_TONEAREST);
ld = vld * 0.5;
test("associativity is respected",
1.0L + ld + (LDBL_EPSILON * 0.5) == 1.0L &&
1.0L + (LDBL_EPSILON * 0.5) + ld == 1.0L &&
ld + 1.0 + (LDBL_EPSILON * 0.5) == 1.0L &&
ld + (LDBL_EPSILON * 0.5) + 1.0 == 1.0L + LDBL_EPSILON);
}
int
main(int argc, char *argv[])
{
printf("1..26\n");
#ifdef __i386__
fpsetprec(FP_PE);
#endif
run_tests();
return (failures);
}